[image: image8.png]Wy icrosore

. 2
;. Windows

Protected Broadcast Driver Architecture - 31

Protected Broadcast Driver Architecture

WinHEC 2005 Update - April 20, 2005 - Draft 0.4a

Abstract

This paper provides information about Protected Broadcast Driver Architecture for the Microsoft® Windows® family of operating systems. It provides guidelines for audio video tuner devices to build devices that can deliver protected broadcast content to a digital rights management (DRM)-approved recording application in a dynamic way.

This information applies for Microsoft Windows codenamed “Longhorn.” Future versions of this preview information will be provided in the Windows Driver Kit at http://www.microsoft.com/whdc/driver/wdk/default.mspx. Preview versions of the WDK are available through the Longhorn Beta program.

The current version of this paper is maintained on the Web at
http://www.microsoft.com/whdc/.

Contents

31
Introduction

32
FCC Broadcast Flag

32.1
Cryptographic Memory and Performance Requirements

32.1.1
Asymmetric Public Key Operations

42.1.2
Other Conditional Access Systems

42.1.3
Symmetric Key Operations

52.2
Optional Features

52.2.1
Content Screening

52.2.2
Control of Transport Stream Delivery

62.2.3
Vertical Blanking Interval Data

62.3
Revocation

63
Device

63.1
Conventions

73.2
Global Data

93.3
Data Structures

93.3.1
SBDA_CIPHER_HEADER

113.3.2
SBDA_TS_AES_COUNTER

123.3.3
SBDA_MAC_COMMAND

123.3.4
Cardea Responses

143.4
Device Driver Interfaces

153.4.1
Initialization

193.4.2
Query Information

233.4.3
Run Time

273.4.4
Timers

283.4.5
Internal Functions

313.4.6
Other Device Operations

363.5
Operation

373.5.1
Initialization

383.5.2
Content Changes

413.5.3
Repairing

414
Security Short List

425
Error Codes

42Appendix

42Microsoft Public Root Key

43Terms

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

1 Introduction

The current Broadcast Driver Architecture (BDA) interfaces are used to transfer clear text audio and visual content from a tuner to a recording application in digital form. Protected BDA defines extensions to these interfaces to allow tuners to securely transfer dynamic broadcast content to Microsoft® Windows® Media digital rights management (WMDRM)-authorized playback, capture, or interactive Media Center-style applications. The goals of Protected BDA design include limiting the impact on cost to the tuner as much as possible, while still allowing the tuner to address a wide range of industry requirements for protected content.

These extensions work by settings up a secure channel between the hardware tuner device and the WMDRM system. In turn, the WMDRM system releases content to recording, playback, and other authorized applications. WMDRM is viewed as the most robust component within the system to control conditional-access content, by holding onto and protecting keys through a variety of ever-growing technologies. This allows the Protected BDA device to trust the system to which it is delivering content by getting trust directly from WMDRM. WMDRM then enforces proper downstream behavior by entrusting components with access to the data through a revocation and a renewability system.

The device uses standard cryptographic protocols to check for an authorized WMDRM system and to set up a secure data channel, specifically, asymmetric RSA public/private key operations at initialization and AES symmetric counter-mode operations during run time to securely move content. Next, the Protected BDA interfaces are designed to efficiently support the dynamic nature of broadcast content.

This document covers, in detail, the implementation details for a tuner device to solve these problems in a common way.

2 FCC Broadcast Flag

A tuner that correctly implements Protected BDA natively supports the marked content rules for the Federal Communications Commission (FCC) broadcast flag. By properly performing the certificate steps at initialization to set up a connection to the Microsoft WMDRM system, the Protected BDA tuner is using an FCC-approved output mechanism. The tuner must inform the WMDRM-approved capturing application that it is delivering unscreened Advanced TV Systems Committee (ATSC) content or that it has screened the content (in which case the tuner provides the marked content flag). If the tuner supplies unscreened ATSC content, WMDRM enforces the approved capture application to screen the incoming content . No matter where the detection is done, WMDRM protects the broadcast flag marked content.

2.1 Cryptographic Memory and Performance Requirements

This section defines reasonable limits on some otherwise open-ended operations in the Protected BDA specification. It does not address all memory or storage requirements for the Protected BDA device to function.

2.1.1 Asymmetric Public Key Operations

The interface for registration uses an individualized Cardea certificate from the WMDRM system for the host PC. The conditions apply to the Cardea certificates passed to Protected BDA–compliant tuner devices:

· All public keys are of the form of RSA 1024 bits and use the exponent of 65537.

· Each individual certificate is 8 K or less.

· Signature algorithm is PKCS #1 v2.1 RSASSA_PSS.
· No limit is given on the total number of required certificates before hitting the well-defined Microsoft root key. However, no more then six total certificates are assumed when setting performance goals.

The required initialization time for a Protected BDA device should be as fast as possible, and a goal should be initialization in less than 5 seconds. The Protected BDA implementation requires a maximum of seven public key operations during initialization—six for the certificate chain and one for the base license response. To reach the 5-second goal, the device should therefore be able to perform a 1,024-bit public key operation in less than 140 milliseconds.

The Protected BDA tuner design alone does not require any unique or secret data to be present in the device. The device requires only public data, such as the well-known Microsoft root key. Although it is possible to support Protected BDA without putting the Microsoft root key in the device, it does not remove the requirement to store at least one public root key in the device and it is not the goal of this document to define such a solution. This document assumes that the Microsoft public is in the device.

Note To avoid hard-coding the Microsoft public key into the device, the device could have a programmable DRM root key that the driver supplies the device. For the driver to provide the DRM root key, the device would require an IHV root key to verify the certificate of the loadable DRM root key. If this level of indirection is added, the number of public key operations increases, thus affecting the required performance to ensure a quick device initialization. Also, the DRM root key would likely need to be a package of data, not just the root key.

2.1.2 Other Conditional Access Systems

To interface with other condition-access (CA) systems, the device might be required to store private keys and be able to perform other cryptographic operations as required by a particular CA system. In this case, the function of a Protected BDA tuner is to transcode the content encryption to the Protected BDA interfaces.

For example, a CA system might encrypt data specifically for a given tuner to grant access to content. The tuner could then transcrypt the content and use Protected BDA to securely deliver it to the host PC. If the protections are in the transport stream, the tuner could then require that the host screen the content. WMDRM guarantees this; otherwise, content delivery is blocked. Alternatively, the tuner could screen the content itself and map the CA policy to an acceptable WMDRM policy and deliver that to the host PC through the Protected BDA interfaces.

2.1.3 Symmetric Key Operations

The Protected BDA design assumes the device has one active AES symmetric key at a time. All content encryption is done by counter mode encryption on the currently active key, from one of at least 16 counters stored in a “slot.” The encryption rate must be able to sustain 105 percent of the DMA rate of the source data. (Protected BDA adds the 5-percent overhead to the output data stream). It is envisioned that a dedicated hardware AES encryption engine is the most efficient way for the device to support the AES encryption requirement.

In addition, the microcontroller on the Protected BDA device must be able to perform a limited amount of AES encryption operations concurrently. This bit rate for such operations is nominal (less then one kb/s), and the larger impact here is the concurrent usage of the encryption engine by the microcontroller.

The host rotates to a new symmetric key frequently based on screening and policy requirements, but the device may complete the key rotation request asynchronously in a reasonable amount of time. The required operation to rotate to a new symmetric key is Sha1 over a 256-byte block, and a reasonable target is less then 100 ms. When the device physically moves to the new key, it must atomically update the key ID in the SBDA_CIPHER_HEADER at the same time.

2.2 Optional Features

Protected BDA allows a scalable device solution. This section outlines some of the more significant optional functions a Protected BDA–compliant device could implement and some of the driving factors for either doing or not doing them.

2.2.1 Content Screening

Typically, the content protection information is embedded in the content in some manner. The act of screening involves locating the information that describes how the content will be protected and then informing some other part of the system of the policy rules. For most CA systems, the capturing software in the PC can locate the policy information and perform this function, with no impact on the overall security of the DRM solution. In the case, where the device does not screen for the content protection policy information, the WMDRM system enforces that the capturing software will do so or that the capturing software will not be allowed to see the unscreened content. WMDRM enforces that any future playback software follow the content protection policy rules set down at capture time, or it refuses to let the playback software see the content.

Protected BDA also allows tuners to detect and inform the capturing system of the content protection requirements. In addition, a Protected BDA tuner may also implement a hybrid solution where some content types is detected by the device and then securely inform the capturing system of the protection requirements. Other types of content require the capturing software to make the detection.

The reasons to perform detection in the tuner device include:

· The policy information is delivered to the device though some means not exposed in the transport stream.

· It might be more expedient to get licensing approval for supporting some content types by performing the detection in the device.

· The content screening is some proprietary format that standard capturing software does not understand, but can be mapped into standard DRM definitions that the Protected BDA interfaces support. (It is also possible to write the appropriate PC software to perform the screening and add it to the capture software as a trusted plug-in.)

2.2.2 Control of Transport Stream Delivery

The Protected BDA device is required to have at least 16 programmable “slots,” each of which contains an AES counter that can be used for encrypting incoming content. These slots are indexed by the program identifier (PID) in the transport stream header, and this allows the PC to configure the device to encrypt some of the PIDs to use their own AES counter. This allows the capturing application to combine multiple transport stream payloads arriving for the same PID into one larger data item without requiring transcryption. The required overhead on the PC to securely receive content from a Protected BDA tuner is significantly reduced.

In addition to the counter, each slot contains several other bits of control information that are applied by the device on a packet bases (by PID) as content arrives.

Although 16 is the minimum number of slots that are required, the device may support up to 256 slots. Note that due to the way transport stream payloads are sized, each slot also must have 64 bits of continuation information to ensure the encryption is sequential counter-mode encryption (for that PID).

2.2.3 Vertical Blanking Interval Data

A nonsecurity feature that is added for Protected BDA devices is the ability to support hybrid tuners. A hybrid tuner is a tuner that can tune in more then one tuning space (such as National Television System Committee—NTSC—and ATSC), but can tune and deliver content from only one of its tuning spaces at any one time. Because this allows for both analog and digital content to arrive from the same tuner, there is an issue that the previous methods defined for delivering vertical blanking interval (VBI) data in each space are different. To resolve this issue, the preferred implementation is for the device to slice and provide the VBI data in one of the de facto digital standards. For U.S. locals, Society of Cable Telecommunications Engineers (SCTE) 21 is the supported method for delivering Line 20,21,23 data. For Teletext, usage of digital video broadcasting (DVB) Teletext encoding is supported. Using the digital standards significantly reduces the bus bandwidth that the tuner devices require.

Support for providing the VBI data in digital form through the above methods is currently a requirement.

2.3 Revocation

WMDRM has a robust system to revoke and renew software on the PC. However, the Protected BDA device must have the ability to revoke WMDRM. Protected BDA and WMDRM define a simple, yet effective, mechanism to accomplish such revocation.

Note Details of this mechanism are to be determined (TBD). Prerelease information is that the mechanism is likely to require nominal nonvolatile storage (<32 bytes) and perhaps 12 kb of required RAM during the initialization phase.

3 Device

Protected BDA defines a set of global data, data structures, and protocols that both the host PC and the tuner agree on to communicate. This section covers these definitions, followed by a description of the overall operation.

The protocols are defined in terms of device driver interfaces and include example pseudocode that details the exact operations the device should take. The implementation outline is intended to provide clarity of detail of the proper implementation and operation. Alternate, and many times faster, methods are assumed to be possible when implemented in a hardware device.
3.1 Conventions

The Protected BDA documentation assumes the following:

· Ordering. All data values, structures, and arguments are defined in little-endian bit and byte ordering.

· Alignment. No implicit padding for alignment is assumed. All structures are declared as byte-packed structures, and any alignment padding is specifically indicated when appropriate.

· Calling convention. All calls are to the independent hardware vendor (IHV) driver and follow the standard driver calling conventions in Windows.

· Synchronization. To simplify synchronization issues, all Protected BDA command packets are processed synchronously (one at a time). The device should enforce that its driver does not issue a new command until a previous command has completed.

Processing the output stream, and other non-Protected BDA operations, is assumed to occur asynchronously to Protected BDA commands. Synchronization points relative to these other operations are called out in the pseudocode examples. Implementations may require less synchronization based on which operations are implemented concurrently.

Assignment statements (such as “ABC = 1”) are assumed to be atomic. If Protected BDA data is implemented within bit-pack values, where not shown, care must be taken to handle synchronization issues that arise from read-modify-write operations that surface from sharing memory different values.

Assignments of the form “ABC |= 1” are not assumed to be atomic.

The following base data types are used:

BYTE
1 byte. 8 bits.

DWORD
4 bytes. 32 bits.

QWORD
8 bytes. 64 bits.

BYTE16
16 bytes. 128 bits. Symmetric block size.

BYTE20
20 bytes. 160 bits. Sha1 hash result size.

BYTE128
128 bytes. 1024 bytes. ASymmetric block size.

SBA_RESULT
DWORD. 32 bits.

3.2 Global Data

The following table outlines the nontransient data values that a Protected BDA tuner device supports. Each value is named and referred to by name throughout this paper.

Protected BDA data values must not appear in shared I/O or memory space that the PC host can directly access. The only permitted access to these values must be through the documented Protected BDA command and control interfaces with the microcontroller on the Protected BDA tuner.

	Data type
	Name
	Description

	Initialization
	LastKey
	A 1,024-bit RSA key value. The public key on the last certificate. Used to walk the tuner device up the certificate chain until the root key is found. This value is used only during the initialization process, before content capture is enabled, and the device is not required to maintain this value after certification initialization has completed.

	Nonvolatile
	TBD (revocation info)
	TBD

	
	MinSecurityLevel
	The value of 3,000. The minimum certificate security level (trust level) that the Protected BDA tuner requires. For some implementations, this value can be considered read-only.

	Nonvolatile read-only
	RootKey
	A 1,024-bit read-only public root key. For simplicity, this specification assumes this is the published Microsoft Cardea root key. However, IHVs may use their own methods to indirect this value through a root key of their own, if desired.

	
	TemplateLicense
	A template SBDA_BASE_LICENSE used in generating a Cardea base license (roughly 262 bytes).

	Run-time
	RSAKey
	A 1,024-bit value that is the public key for the host PC.

	
	AESKey
	The current 128-bit AES key used for symmetric cipher operations.

	
	R
	A 128-bit random number from which to derive key values.

	
	KeyID
	The current 32-bit key ID. The KeyID defines a specific AESKey value derived from R.

	
	Slot[]
	An array of at least 16 “slots”. Each slot is indexed by physical index or by a settable PID value for that slot. For more information, see section 3.2.1.1.

	
	MsgCounter
	A 32-bit counter used to receive authenticated commands from WMDRM-authorized capture application.

	
	CTPending
	A 1-bit flag that indicates a pending, outstanding content type event that the capture application must acknowledge.

	
	EnabledState
	An 8-bit value that indicates the operational state of the Protected BDA device.

	
	ContentType
	A dynamic value that indicates the content type that the tuner is currently delivering to the host PC. This value currently fits within 8 bits.

	
	ContentProtection
	A value whose format is determined by ContentType and that has meaning only for selected ContentTypes. Support of this value is optional based on what ContentTypes the tuner supports. If required, this value is 32 bits.

	
	StartCodes
	A 256-bit mask value used to indicate which start-codes the Protected BDA device must detect for the host.

	
	ProximityChallenge
	A 128-bit random value used for checking proximity.

	
	ProximityTime
	Time that the ProximityChallenge was issued.

	
	ProximityDeadman
	A timer that ensures proximity testing remains fresh.

	
	LinkDeadman
	A timer that ensures link validity remains fresh.

3.2.1.1 Per-Slot[] Datum

The Protected BDA tuner is required to have at least 16 slots. Each slot contains data indicated below and controls the encryption and delivery of transport stream packet to a WMDRM-authorized capture application. A Slot[] is selected either by its physical index (slot number) or by the PID value programmed into the slot. The tuner must always use the data from a single slot to control delivery of a transport stream packet. The rule is that the tuner must first use any slot that has been configured to have the same PID value that is present in the transport stream header. And if no such slot has a matching PID value, then the tuner must use Slot[0] to control the delivery of the packet.

Each Slot[] contains the following fields:

	Field name
	Brief description

	SlotNo
	A field with a physical slot number that is provided by a read-only value. Each Slot[] must have a unique number and be numbered sequentially from 0.

	PID
	A 13-bit value that indicates which transport stream PID this slot is used for.

	Cipher
	A 1-bit value that indicates that the transport stream payload must be encrypted with the AESKey before being sent to a WMDRM-authorized capture application.

	Filter
	A 1-bit value that indicates that the tuner may discard the transport stream packet.

	Counter
	A 32-bit counter used for any AES encryption of transport stream payloads that are delivered using this slot (for example, Cipher is set). This counter advances by 1 every time 16 bytes are encrypted.

	Offset
	A 1-bit value that indicates the offset into a 128-bit combining operation as either 0 or 64 bits.

	PartialCipherValue
	A 64-bit value that holds half of a previously computed cipher value that has not been used yet. This value is meaningful only when Offset indicates the previous combining operation has used only the first half of the previous cipher text. This is required because transport stream payloads are not an even multiple of 16-byte encryption blocks.

3.2.1.2 EnabledState Value

The enabled state controls whether the tuner is enabled to deliver content to the host PC. Only if EnabledState equals SBDA_ES_ENABLED will content flow through the Protected BDA tuner to the authorized capture application.

// Bit definitions for EnabledState

#define SBDA_ES_LINK_VALID

0x40

#define SBDA_ES_PROXIMITY_VALUD

0x20

#define SBDA_ES_CERT_CHAIN_VALID

0x10

#define SBDA_ES_CERT_INDIVDUALIZED

0x08

#define SBDA_ES_CERT_VERSION_VALID

0x04

#define SBDA_ES_CERT_LEVEL_VALID

0x02

#define SBDA_ES_RSA_KEY_SET

0x01

// Enabled is when all bits are set

#define SBDA_ES_ENABLED

0x7F

3.3 Data Structures

3.3.1 SBDA_CIPHER_HEADER

An Protected BDA tuner delivers a new content type of MEDIATYPE_SBDA_TRANSPORT. Each SBDA_TRANSPORT packet is composed of an 8-byte SBDA_CIHPER_HEADER followed by a 188-byte Motion Picture Expert Group (MPEG)2 transport stream packet. The SBDA_CIHPER_HEADER declares how to recover the transport stream packet payload and also includes some details about the current operational state of the tuner.

If the tuner encrypts the delivery of content, which is controlled through the Slot[].Cipher bit, it skips the nominal 4 transport stream header and encrypts the transport stream payload. The tuner is not required to check for adaptation field extensions to the transport stream header. Instead, it always encrypts the fixed 184 bytes following the first 4 bytes. (The first 4 bytes of a transport stream packet contains only transport header information and does not contain any content.)

[image: image1]
MEDIATYPE_SBDA_TRANSPORT

The SBDA_CIPHER_HEADER fields include:

	Bits
	Field name
	Brief description

	0..31
	Counter
	The value of Slot[].Counter for the slot before any encryption occurred.

	32..39
	SlotNo
	The index of the slot that was used (Slot->SlotNo).

	40..40
	Filtered
	The Slot[].Filtered value in the slot that was used. This value should always be zero as if it is set in the slot. Then the Transport Stream (TS) packet would not be delivered to the PC. This value is included to segregate the AES counter space by operation type.

	41..41
	Cipher
	The Slot[].Cipher value in the slot that was used. If this value is set, then the TS payload is encrypted by using the key determined by KeyID.

	42..51
	MBZ
	These bits that must be set to zero by the device.

	52..56
	SCI
	A value that informs the PC if an interesting start code pattern is present in the (clear text) TS payload.

	57..57
	CTPending
	A value that is a copy of the global CTPending value at the time of sending this TS payload to the host PC.

	58..59
	KeyID
	A value that is the lower 2 bits of the global KeyID data value at the time of encryption. It informs the host PC exactly with which key (by ID) that TS payload was encrypted.

	60..63
	Offset
	A value 0 to 15 that indicates the number of bytes into Counter to which the cipher operation of the TS payload was aligned. As TS payload encryption results in 8-byte alignments, this value would be 0 or 8 and is determined by Offset = Slot[].ffset << 3.

The C style definition for SBDA_CIPHER_HEADER:

struct SBDA_CIPHER_HEADER {

 QWORD Counter:32;

 QWORD SlotNo:8;

 QWORD Filter:1;

 QWORD Cipher:1;

 QWORD MBZ:10;

 QWORD SCI:5;

 QWORD CTPending:1;

 QWORD KeyID:2;

 QWORD Offset:4;

};

3.3.1.1 SBDA_START_CODE_INDICATOR

The Start Code Indicator (SCI) field in the SBDA_CIPHER_HEADER has the following format:

struct SBDA_START_CODE_INDICATOR {

 BYTE PartialStart:2;
//
bits 0..1

 BYTE PartialEnd:2;

// bits 2..3

 BYTE Found:1;

// bits 4..4

};

The SCI field tells the host PC which transport stream packets contain start codes in which the host is interested. This is required so that the WMDRM-authorized capture application can easily find these codes without decrypting the entire data stream. Note that the capture application stops processing content if the Protected BDA tuner incorrectly marks transport stream packets.

A start code is a 4-byte pattern in the transport payload that consists of the following sequence:

0x00 0x00 0x01 0xSC
where 0xSC is a value that the host has configured the tuner to watch for through the IBDA::put_StartCodeMask() operation.

SBDA_START_CODE_INDICATOR fields include:

	Bits
	Field name
	Brief description

	0..1
	PartialStart
	This value indicates how many bytes at the start of a TS payload match a valid start code pattern.

3 = 0x00 0x01 0xSC

2 = 0x01 0xSC

1 = 0xSC

0 = first byte is some other value

	2..3
	PartialEnd
	This value indicates how many bytes at the end of a TS payload match a valid start code pattern.

3 = 0x00 0x00 0x01

2 = 0x00 0x00
1 = 0x00

0 = last byte is some other value

	4..4
	Found
	This value indicates that one or more 4-byte start code patterns are in the TS payload.

For exact details on how to detect start codes see the pseudocode in section 3.4.6.4.

3.3.2 SBDA_TS_AES_COUNTER

When a transport stream packet payload is encrypted, a well-defined AES counter value is used. The SBDA_CIPHER_HEADER provides the necessary information to construct the SBDA_TS_AES_COUNTER for both the WMDRM system and the tuner.

The following structure is used to construct the AES counter. Note that these values are all from the SBDA_CIPHER_HEADER structure but are rearranged slightly to fill the 128-bit AES counter and to match the WMDRM counter usage model.

struct SBDA_AES_COUNTER {

 // LowPart

 QWORD Counter:32;

// bits 0..31

 QWORD MBZ2:32;

// bits 32..63

 // HighPart

 QWORD SlotNo:8;

// bits 64..71

 QWORD Filter:1;

// bits 72..72

 QWORD Cipher:1;

// bits 73..73

 QWORD MBZ1:54;

};

// Mask for certain bits in the counter

#define SBDA_AES_COUNTER_FILTER_BIT

(1 << 72)

#define SBDA_AES_COUNTER_CIPHER_BIT

(1 << 73)

3.3.3 SBDA_MAC_COMMAND

Some Protected BDA commands must be authenticated as coming only from the WMDRM-approved capture application. Such commands are encoded into the SBDA_MAC_COMMAND structure, encrypted, and then sent to the tuner. The SBDA_MAC_COMMAND structure includes two copies of the command, where the second copy acts as the checksum to prevent ill-formed commands and the encryption uses a counter to prevent replying of previous commands.

struct SBDA_COMMAND {

 BYTE CmdNo;

 BYTE Spare;

 WORD Arg1w;

 DWORD Arg2d;

};

struct SBDA_MAC_COMMAND {

 SBDA_COMMAND Cmd;

 SBDA_COMMAND MAC;

};

#define SBDA_CMD_SetLinkDeadman 0x01

#define SBDA_CMD_ClearSlotCipher 0x02

#define SBDA_CMD_ClearContentType 0x03

3.3.4 Cardea Responses

The initialization process uses the Microsoft Cardea specification for the tuner to build a secure channel to WMDRM and, as such, the tuner must build several Cardea-defined packets. General Cardea support typically uses a library to build and parse Cardea-formatted packets; however, for a Protected BDA tuner the Cardea usage does not include variable-length packet building and is specific enough where it is easier to use a template replacing the required specific fields.

3.3.4.1 SBDA_BASE_LICENSE

The get_BaseLicense() function returns a signed SBDA_BASE_LICENSE structure. The global data value of TemplateBaseLicense is the template used to build the Protected BDA tuner response.

struct PACKED_BYTE SBDA_XMR_OBJECT_HEADER {

 WORD Flags;

 WORD Type;

 DWORD Length;

};

struct PACKED_BYTE SBDA_BASE_LICENSE {

 BYTE XMRHeader;

 BYTE XMRVersion;

 BYTE16 RightsID;
// Dynamic

 SBDA_XMR_OBJECT_HEADER OuterContainer;

 SBDA_XMR_OBJECT_HEADER GlobalPolicy;

 SBDA_XMR_OBJECT_HEADER MinEnviroment;

 WORD MinAppSecurity;

 DWORD MinAppRevListVer;

 DWORD MinDevRevListVer;

 SBDA_XMR_OBJECT_HEADER GlobalRights;

 WORD Rights;

 SBDA_XMR_OBJECT_HEADER KeyContainer;

 SBDA_XMR_OBJECT_HEADER ContentKey;

 BYTE16 KID; // Dynamic

 WORD SymmetricCipherType;

 WORD AsymmetricCipherType;

 WORD EncryptedKeySetLength;

 SBDA_BYTE128 EncryptedKeySet; // Dynamic

 SBDA_XMR_OBJECT_HEADER SignatureObject;

 WORD SignatureType;

 WORD SignatureLength;

 BYTE16 Signature; // Dynamic

};

TemplateBaseLicense is defined as:

	Offset
	Size bits
	Name
	Value
	Description

	0..3
	32
	XMR Header
	0x584D5200
	

	4..7
	32
	XMR Version
	0x00000001
	

	8..23
	128
	Rights-ID
	Rights-ID
	As supplied on the policy request

	24..25
	16
	Object0 Flags
	0x0003
	Must understand, container

	26..27
	16
	Object0 Type
	0x0001
	Outer container

	28..31
	32
	Object0 Length
	0x000000EE
	(24 – 261)

	32..33
	16
	Object1 Flags
	0x0003
	Must understand, container

	34..35
	16
	Object1 Type
	0x0002
	Global policy container

	36..39
	32
	Object1 Length
	0x00000024
	(32 – 67)

	
	
	
	
	

	40..41
	16
	Object2 Flags
	0x0001
	Must understand

	42..43
	16
	Object2 Type
	0x0003
	Minimum environment

	44..47
	32
	Object2 Length
	0x00000012
	(40 – 57)

	48..49
	16
	MinAppSecurity
	0x07D0
	2,000

	50..53
	32
	MinAppRevListVer
	0x00000000
	

	54..57
	32
	MinDevRevListVer
	0x00000000
	

	58..59
	16
	Object3 Flags
	0x0001
	Must understand

	60..61
	16
	Object3 Type
	0x000D
	Global rights

	62..65
	32
	Object3 Length
	0x0000000A
	(58 – 67)

	66..67
	16
	Rights
	0x0011
	Cannot persist, base license

	
	
	
	
	

	68..69
	16
	Object4 Flags
	0x0003
	Must understand, container

	70..71
	16
	Object4 Type
	0x0009
	Key container

	72..75
	32
	Object4 Length
	0x000000A6
	(68 – 233)

	76..77
	16
	Object5 Flags
	0x0001
	Must understand

	78..79
	16
	Object5 Type
	0x000A
	Content key

	80..83
	32
	Object5 Length
	0x0000009E
	(76 – 233)

	84..99
	128
	KID
	Rights-ID
	The RightsID as supplied on the policy request

	100..101
	16
	Symm Cipher Type
	0x0001
	AES_CTR

	102..103
	16
	ASymc Cipher Type
	0x0001
	RSA 1024

	104..105
	16
	Enc Key Length
	0x0080
	

	106..233
	1,024
	Key Set
	E(R..Kn)
	See Note 1

	234..235
	16
	Object6 Flags
	0x0001
	Must understand

	236..237
	16
	Object6 Type
	0x000B
	Signature

	238..241
	32
	Object6 Length
	0x0000001C
	(234 – 261)

	242..243
	16
	Signature Type
	0x0001
	128-b AES OMAC1

	244..245
	16
	Signature Length
	0x0010
	16-byte signature

	246..261
	128
	Signature
	Signature
	Byte 0, length 234 with K3

Note 1: This field contains the 128-bit value of R followed by the 128-bit value of Kn followed by undefined bits to fill a 1,024-bit buffer, encrypted to the leaf RSA 1,024-bit public key provided during a successful initialization.

Prerelease note: Some details of the TemplateBaseLicense are likely to change.

3.4 Device Driver Interfaces

This section contains the Protected BDA driver interfaces. For each interface, the host PC invokes the interface by calling the driver. The driver sends the arguments to the device and obtains the results. All Protected BDA interfaces are concurrent to other interfaces, and output streaming, for the device.

To be as exact as possible, pseudocode is provided for each interface that defines the specific behavior the device must take. Actual implementations may vary, but the visible results to the host PC must remain the same. Also care should be taken to ensure no security exploits are added when adapting the implementation in some way.

3.4.1 Initialization

Driver interfaces primarily used for initialization.

3.4.1.1 ISBDA::put_ResetState()

This interface resets the EnabledState of the device and resets the deadman timers to their default values. The link timer is set to 1 hour, but the WMDRM capture application lowers the timeout to be a small number of seconds based on the acceptable policy for the content as required.

This function is used during initialization or if the capture application wants to start over and reregister with the device.

The pseudocode that the tuner performs is:

SBDA_RESULT

ISBDA::put_ResetState ()

{

// Abort any previous state

EnabledState = 0;

SetTimer(ProximityDeadman, 48 hours);

SetTimer(LinkDeadman, 1 hour);

// optional.. start computation of new base license

return S_OK;

}

3.4.1.2 ISBDA::put_Certificate()

Before a Protected BDA tuner can deliver content, the host must prove that it is an authorized application. This is done by walking the device up a certificate chain until the Microsoft root key is found. The device sets up a secure channel to WMDRM only after a valid certificate is processed.

Not only must the tuner verify that the certificate is rooted to the well-known Microsoft root key, but it also must ensure that the certificate chain includes one or more various flags that indicate the certificate is of the proper type and proper level, and has not been revoked.

Each certificate passed to the tuner contains a 1,024-bit data_rsaKey with an exponent of 65537. The first certificate presented to this key is the public key for the local WMDRM system (assuming the certificate chain verifies properly to the root key).

Subsequent certificates contain a data_rsaKey that is the parent to the certificate and matches the signature key on the previous certificate. When the signature key matches the Microsoft root key, certificate chain processing is complete.

In addition to verifying the signature, the Protected BDA tuner checks for the following values in the data section of any of the valid certificates:

IndivFlag
ASCII base 10 encoded value. This value indicates that the certificate has been securely individualized by the Microsoft DRM infrastructure for the specific WMDRM on the host PC. The Protected BDA tuner requires finding this flag set to 1 in the certificate chain.

SecurityLevel
ASCII base 10 encoded value. This value is the WMDRM security level (trust level) that the certificate implies. The Protected BDA tuner requires finding at least one of these values, and all such values must be >= MinSecurityLevel.

The pseudocode that the tuner performs is:

SBDA_RESULT
ISBDA::put_Certificate (

[in] BYTE

*pCert

// Maxsize 4096 (zero filled)

)

{

// Host PC makes the following gaurentees:

//

*pCert null terminated

//

*pCert length is <= 4096

//

all rsa keys are 1024 bits in length

//

all rsa keys use exponent 65537

//

all digests are Sha1

//

certificate are cononicalized

//

Parse *pCert into:

data_section

“Data”

data_rsaKey

“Modulus”

data_indivFlag

“IndivFlag”

data_securityLevel

“SecurityLevel”

signedinfo_section

“SignedInfo”

signedinfo_dataDigest

“DigestValue”

signature_section

“Signature”

signature_value

“SignatureValue”

signature_rsaKey

“Modulus”

Note that the driver could aid in parsing by locating beginning & ending section locations as well as locations of interesting tags/data within the section.

Note that data_rsaKey, signature_value, and signature_rsaKey are Base64Encoded as per PKCS#1 (big endian).

//

// verify state is valid for this DDI to occur

//

error = SBDA_INVALID_STATE;

if (EnabledState & SBDA_ES_CERT_CHAIN_VALID) {

goto Done;

}

//

// Host must provide certificates in order

//

if (EnabledState & SBDA_ES_RSA_KEY_SET) {

// this should be the parent of the last certificate

if (LastKey != data_rsaKey) {

goto Done;

}

} else {

// First key will be the RSAKey for the host PC

RSAKey = data_rsaKey;

EnabledState |= SBDA_ES_RSA_KEY_SET;

//

SetAllSlotsCipher();
// Default to encrypting

KeyID = 1;

// First NextKey should be key #2

CTPending = 1;

// Force content type update

}

//

// Verify signature and data digest

//

error = SBDA_SIGNATURE_FAILED;

Sha1(data_section.start, data_section.length, &hash);

If (hash != signedinfo_dataDigest) {

goto Done;

}

result = RSASSA_PSS_VERIFY (

&signature_rsaKey,

signedinfo_section.start,

signedinfo_section.length,

&signature_value
);

if (!result) {

goto Done;

}

//

// Signature is good, handle data tags

//

error = SBDA_BAD_CERTIFICATE;

// verify we get a valid security level tag

if (data_securityLevel) {

EnabledState |= SBDA_ES_CERT_LEVEL_VALID;

if (data_securityLevel < MinSecurityLevel) {

goto Done;

}

}

// Revocation processing - TBD

// verify we have an indiviudalized certificate

if (data_indivFlag) {

EnabledState |= SBDA_ES_INDIVDUALIZED;

}

//

// Certificate handled with success. Check to see if we

// hit the root key and setup for next certifiate

//

if (signature_rsaKey == RootKey) {

EnabledState |= SBDA_ES_CERT_CHAIN_VALID;

}

LastKey = signature_rsaKey;

error = S_OK;

Done:

// If there was an error, abort

if (error != S_OK) {

EnabledState = 0;

}

return error;

}

3.4.1.3 ISBDA::get_BaseLicense()

The authorized WMDRM capture application performs a “pairing” operation to the Protected BDA tuner by getting a Cardea base license. This operation is primarily performed at initialization time after certificate processing has successfully completed. After initialization, the host invokes this interface infrequently, to perform repairing, at a rate no more than 1 call each 12 hours.

The base license authorizes WMDRM to allow for an authorized capture application to derived licenses from the encrypted-R value in the base license. Generally, generating a base license is a matter of asymmetrically encrypting R, returning a symmetrically signed Cardea base license packet.

As stated in section 2.1.1, RSA public key operations take less then 140 ms. To support the run-time repairing call, the tuner can precompute the next base license so that the infrequent call can complete in the required amount of time. Note that generating a base license does not affect active keys from the point of view of the host PC.

The pseudocode that the tuner performs is shown below. It assumes that the device can synchronously compute a new base license in less than 140 ms and that the output stream operates asynchronously to the operation.

SBDA_RESULT

ISBDA::get_BaseLicense (

[in] BYTE

*pRightsID,

[out] SBDA_BASE_LICENSE

*pLicense

)

{

SBDA_BASE_LICENSE

response;

DWORD

m;

// Verify certificate processing completed correctly

m =
 SBDA_ES_RSA_KEY_SET |

 SBDA_CERT_LEVEL_VALID | SBDA_ES_CERT_VERSION_VALID |

 SBDA_CERT_INDIVDUALIZED | SBDA_CERT_CHAIN_VALID;

if ((EnabledState & m) != m) {

return SBDA_INVALID_STATE;

}

R = RND();

// Get a new random 128 bit value

ComputeKey(1, &key);
// Compute signing key

// Do not update AESKey or KeyID

// Create response

memcpy(&response, &TemplateLicense, sizeof(response));

memcpy(&response.RightsID, pRightsID, sizeof(*pRightsID));

memcpy(&response.KID, pRightsID, sizeof(response.KID));

p = (BYTE16) &response.EncryptedKeySet;

memcpy(&p[0], &R, sizeof(BYTE16));

memcpy(&p[1], &key, sizeof(BYTE16));

RSAES_OAEP_ENCRYPT(&RSAKey, &response.EncryptedKeySet);

OMAC1(

&key

&response,

FIELD_OFFSET(SBDA_BASE_LICENSE, SignatureObject),

&response.Signature

);

// return result

memcpy(pResponse, response, sizeof(response));

return S_OK;

}

Note that the example is slightly different from the Protected BDA driver interfaces. The driver interfaces has a set_RightsID() and a get_BaseLicense(). The device driver may pass both calls to the device, or it may pass the last rights ID set to the device when get_BaseLicense() is performed as shown above.

If the tuner implements precomputation, it basically precomputes a pending R, key (3) for that R, and Optimal Asymmetric Encryption Padding (OAEP) encrypt the 128-byte key set value in the base licenses. The final steps of generating the base license (applying the RightsID and signing it by using OMAC1) waits until the host requests the next base license. The tuner must also support a call for a new base license even if the precomputed one is not yet available. For this case, the tuner may block the caller as long as necessary to complete the new base license.

3.4.1.4 ISBDA::put_StartCodeMask()

This function sets 256 flags that indicate to the tuner which start codes the capturing application wants to detect. The tuner checks the payload portion of the data (prior to encryption) to determine if any of the requested 4-byte patterns appear in the payload. The first 3 bytes of a start code are the static value of 0x00 0x00 0x01, and the 4th byte is any byte that has a corresponding bit for in the start code mask.

For the pseudocode on start-code detection, see section 3.4.6.4.

The pseudocode that the tuner performs is:

SBDA_RESULT

put_StartCodeMask (

[in] BYTE32

*startCodeMask

)

{

StartCodes = *startCodeMask;

Return S_OK;

}

3.4.2 Query Information

These are interfaces that primarily return Protected BDA information from the tuner without affecting state. All returned values do not require protection. Values that must be read-protected from the host do not have interfaces to read them.

3.4.2.1 ISBDA::get_State()

This interface returns the tuner devices current EnabledState value. For bit definitions of this value see section 0.

The pseudocode that the tuner performs is:

SBDA_RESULT

ISBDA::get_State (

[out] DWORD

*pState

)

{

*pState = EnabledState;

return S_OK;

}

3.4.2.2 ISBDA::get_SlotInformation()

This interface returns the tuner devices current Slot[] information for the requested slot. This function is used for debugging.

SBDA_RESULT

ISBDA::get_SlotInformation (

[in] DWORD

slotNo

[out] SBDA_CIPHER_HEADER
*pInfo

)

{

if (slotNo >= MAX_DEVICE_SLOTS) {

return SBDA_INVALID_PARAMETER;

}

SBDA_SLOT

*pSlot = Slot[slotNo];

SBDA_CIPHER_HEADER
out;

memset(&out, 0, sizeof(out));

out.Counter

= pSlot->Counter;

out.SlotNo

= pSlot->SlotNo;

out.Cipher

= pSlot->Cipher;

out.Offset

= pSlot->Offset << 3;

memcpy(pInfo, &out, sizeof(out));

return S_OK;

}

Note that the example is slightly different from the Protected BDA driver interfaces. The actual driver interfaces captures all slot information at one time. The driver and device can implement the function as above, to return information one slot at a time.

3.4.2.3 ISBDA::get_Information()

This interface returns general information values about the Protected BDA tuner.

The pseudocode that the tuner performs is:

struct SBDA_INFORMATION {

 DWORD

FeatureBits;

 DWORD NoSlots;

 DWORD MinSecurityLevel;

 DWORD KeyID;

 DWORD MsgCounter;

};

#define SBDA_FB_BASE_LICENSE_READY

0x00000001

SBDA_RESULT

ISBDA::get_State (

[out] SBDA_INFORMATION
*pInfo

);

{

pInfo->FeatureBits

= 0;

pInfo->NoSlots

= MAX_DEVICE_SLOTS;

pInfo->MinSecurityLevel
= MinSecurityLevel;

pInfo->KeyID

= KeyID;

pInfo->MsgCounter

= MsgCounter;

return S_OK;

}

The feature bit SBDA_FB_BASE_LICENSE_READY is a hint to the host that the tuner is ready for a call to get_baseLicense(). Note that this value is only a hint: the host may still request a new base license even if this flag is not set.

3.4.2.4 ISBDA::get_ContentType()

This interface returns the current ContentType and ContentValue to the host PC. This WMDRM-authorized recording application uses this information to determine the current conditional access policy. For example, the application screens for the broadcast flag if the ContentType is SBDA_UNSCREENED_ATSC. If the ContentType is SBDA_SCREENED_WMDRM10, then the application applies the protections indicated by ContentValue.

ContentValue and ContentType must be matched, for example, updates to these values must be synchronized with the get_ContentType() return.

SBDA_CONTENT_TYPE is defined as:

	Field name
	Value
	Brief description

	UNSCREENED_NTSC
	0x00000001
	The WMDRM-authorized capture application screens for the Copy General Management System-Analog/asynchronous procedure call (CGMS-A/APC) and automatic gain control (AGC) protections.

	UNSCREENED_PAL
	0x00000002
	The WMDRM-authorized capture application screens for the Web storage system (WSS) protections

	UNSCREENED_ATSC
	0x00000003
	The WMDRM-authorized capture application screens for ATSC broadcast flag protection.

	SCREENED_UNPROTECTED
	0x00010000
	A field indicating that the Protected BDA tuner has determined that the content does not require any screening or protections.

	SCREENED_WMDRM10
	0x00010001
	A field indicating that the Protected BDA tuner has screened the content and determined that the content must be protected as per the ContentValue. See section 3.4.2.5.

The pseudocode that the tuner performs for get_ContentType() is:

struct SBDA_CONTENT_TYPE_INFORMATION {

 SBDA_CONTENT_TYPE ContentType;

 DWORD ContentValue;

};

SBDA_RESULT

ISBDA::get_ContentType (

[out] SBDA_CONTENT_TYPE_INFORMATION
*pInfo

)

{

SBDA_CONTENT_TYPE_INFORMATION

out;

AcquireSynchronizationWith(&ContentTypeUpdates);

out.ContentType = ContentType;

out.ContentValue = ContentValue;

ReleaseSynchroziationWith(&ContentTypeUpdates);

memcpy (pInfo, &out, sizeof(out));

return S_OK;

}

3.4.2.5 SCREENED_WMDRM10 ContentValue

For ContentType of SCREENED_WMDRM10, the ContentValue field has the following meaning:

Note This section is included here for completeness. The master location for this definition is found within the Uni-Directional Cable Receiver (UDCR) License Exchange document.

	

Bit
	Meaning
	None
	Hard-ware Macro-vision
	CGMS-A
	WSS
	Digital cable
	ATSC

	24…31
	Input Copy Protection Method.
	0
	1
	2
	3
	4
	5

	8-23
	Reserved.
	MBZ
	MBZ
	MBZ
	MBZ
	MBZ
	MBZ

	7
	Input Device Meets Robustness Rules
	MBZ
	0/1
	0/1
	MBZ
	1
	0/1

	6
	Copy Default
	MBZ
	MBZ
	MBZ
	MBZ
	0/1
	MBZ

	5
	Broadcast Flag/Restricted Content
	MBZ
	MBZ
	MBZ
	MBZ
	MBZ
	BF

	4
	CIT
	MBZ
	MBZ
	MBZ
	MBZ
	CIT
	MBZ

	3
	APS 1
	MBZ
	APS 1
	APS 1
	MBZ
	APS 1
	MBZ

	2
	APS 0
	MBZ
	APS 0
	APS 0
	MBZ
	APS 0
	MBZ

	1
	Protection Type Specific Value 1
	MBZ
	MBZ
	CGMS-A 1
	WSS 1
	EMI 1
	MBZ

	0
	Protection Type Specific Value 0
	MBZ
	MBZ
	CGMS-A 0
	WSS 0
	EMI 0
	MBZ

Input Copy Protection Method defines how to interpret and validate the other 24 bits. It is possible that other industry standards may require defining a new Input Copy Protection Method.

	EMI value
	Digital copy permission content type

	00
	Copying not restricted; not “high value.”

	01
	No further copying is permitted; high value.

	10
	One generation copy is permitted; high value.

	11
	Copying prohibited; high value.

	APS
	Description

	00
	Copy protection encoding off.

	01
	AGC process on, split burst off.

	10
	AGC process on, 2-line split burst on.

	11
	AGC process on, 4-line split burst on.

	CIT value
	Image constraint application

	0
	No image constraint asserted.

	1
	Image constraint required.

3.4.3 Run Time

Interfaces that are used at run time affect the tuner Protected BDA operation. Note that many of the query interfaces are used at run time as well get_BaseLicense().

3.4.3.1 ISBDA::get_ProximityChallenge ()

This function generates a random value, returns it as a challenge value, and records the time of the challenge. To satisfy the proximity requirements of Protected BDA, the WMDRM-authorized application must generate a proper response within 7 ms.

The pseudocode that the tuner performs is:

SBDA_RESULT

get_ProximityChallenge (

[out] BYTE16

*pChallenge

)

{

// Generate a random challenge value

ProximityChallenge = RND();

// Set the F&C bits so our value does not overlap with

// content encryption values in use in other places.

ProximityChallenge |= SBDA_AES_COUNTER_FILTER_BIT;

ProximityChallenge |= SBDA_AES_COUNTER_CIPHER_BIT;

// Clear bits 60..63 to support WMDRM requirements

// on AES counters

ProximityChallenge &= 0xFFFFFFFF0FFFFFFF;

ProximityTime = GetCurrentTime();

*pChallenge = ProximityChallenge;

return S_OK;

}

3.4.3.2 ISBDA::put_ProximityResponse ()

This function verifies that the response is within 7 ms and that it is the proper response for the last-issued challenge. Note it is recommended that the device use a timer with submillisecond resolution to time 7 ms.

On success, the tuner sets a timer to ensure that the proximity is checked at least every 48 hours.

The pseudocode that the tuner performs is:

SBDA_RESULT

put_ProximityResponse (

[in] BYTE16

*pResponse

)

{

if (ProximityTime – GetCurrentTime() >= 7ms) {

return SBDA_PROXIMITY_FAILED;

}

AESEncrypt(&AESKey, &ProximityChallenge, &cihperText);

if (cipherText != *pResponse) {

return SBDA_INVALID_CHECK;

}

// Proximity is valid

SetTimer(ProximityDeadman, 48 hour);

EnabledState |= SBDA_ES_PROXIMITY_VALID;

return S_OK;

}

3.4.3.3 ISBDA::put_NextKey()

This function causes the Protected BDA tuner to rotate to a new AESKey symmetric key. This key is used for all communications to and from the Protected BDA tuner device. The update to both AESKey and KeyID must be atomic so that KeyID always identifies the key used for any symmetric encryption.

The authorized capture application frequently rotates the symmetric key. The tuner must be able to do this without dropping data on the output stream and indicate when the encryption key changes on the output stream by including the KeyID field in the SBDA_CIPHER_HEADER.

The pseudocode that the tuner performs is:

SBDA_RESULT

put_NextKey ()

{

NextKey();

// see section 3.4.5.2.2.

return S_PENDING;

}

3.4.3.4 ISBDA::put_SetAllSlotsCipher()

This function causes the Protected BDA tuner to set the cipher bits on all slots.

The pseudocode that the tuner performs is:

SBDA_RESULT

put_SetAllSlotsCipher ()

{

SetAllSlotsCipher();

return S_OK;

}

3.4.3.5 ISBDA::put_SlotPID()

This function configures a particular Slot[] to match the provided PID value. When the tuner is processing a transport stream packet, it uses the information in a Slot[] that has the same PID value that appears in the transport stream header, or Slot[0] if there is no matching value, to control and configure the output of the packet to the host. This allows the host to configure the tuner to use a specific AES counter for some number of interesting PIDs, which in turn saves the capture application from needing to bulk decrypt the content on that PID.

Before the PID value is updated in a Slot[], the control state must be reset to ensure that the selected slot delivers and encrypts content and that the counter value is not reset.

The pseudocode that the tuner performs is:

SBDA_RESULT

put_SlotPID (

[in] SBDA_SLOT_PID
*slotPid

)

{

if (slotPid->SlotNo >= MAX_DEVICE_SLOTS) {

return SBDA_INVALID_PARAMETER;

}

SBDA_SLOT
*pSlot = &Slot[slotPid->SlotNo];

DWORD

pid = slotPid->PID;

AcquireSynchronizationWith(&ProcessingTS);

Slot[slotPID->SlotNo].Cihper = 1;

Slot[slotPID->SlotNo].Filter = 0;

Slot[slotPID->SlotNo].PID = pid;

// Do not alter other Slot[] data

ReleaseSynchroziationWith(&ProcessingTS);

return S_OK;

}

3.4.3.6 ISBDA::put_AuthenticatedCommand()

Some commands given to a Protected BDA tuner must originate only from the approved WMDRM-capturing application. This is accomplished by requiring the authorized application to encrypt an authentication code. Because the commands are small, this is done by authorized application creating two copies of the entire command into one block and encrypting it.

The tuner decrypts the message and verifies that both copies match, and then dispatches the command.

The pseudocode that the tuner performs is:

SBDA_RESULT

put_AuthenticatedCommand (

[in] SBDA_MAC_COMMAND
*pCmd

)

{

SBDA_MAC_COMMAND

cmd;

SBDA_AES_COUNTER

counter;

BYTE16

cipherText;

memset(&counter, 0, sizeof(counter));

counter.Counter = MsgCount;

AESEncrypt(&AESKey, &counter, &cipherText);

MsgCounter += 1;

cmd = cipherText ^ *pCmd;

status = SBDA_INVALID_CHECK;

if (cmd.Command == cmd.MAC) {

// Dispatch authenticated command

switch(cmd.Cmd.CmdNo) {

case SBDA_CMD_SetLinkDeadman:

status = Cmd_SetLinkDeadman(cmd.Arg1w);

break;

case SBDA_CMD_ClearSlotCipher:

status = Cmd_ClearSlotCipher(cmd.Arg1w);

break;

case SBDA_CMD_ClearSlotCipher:

status = Cmd_ClearCT(cmd.Arg1w, cmd.Arg2d);

break;

default:

status = SBDA_NO_SUCH_COMMAND;

break;

}

return status;

}

3.4.3.6.1 Cmd_SetLinkDeadman

This function sets the timeout on the link deadman timer. If the link deadman timer times out (reaches zero), the tuner clears the link valid bit in the EnabledState. This causes the tuner to stop sending content to the host PC.

To affect the link timer, the CTPending bit must be clear.

The pseudocode that the tuner performs is:

SBDA_RESULT

Cmd_SetLinkDeadman (

[in] DWORD

timeout

)

{

if (!CTPending) {

SetTimer(LinkDeadman, timeout * SECONDS);

EnabledState |= SBDA_ES_LINK_VALID;

}

return CTPending ? SBDA_CT_PENDING : 0;

}

3.4.3.6.2 Cmd_ClearSlotCipher

This function clears the cipher bit on the indicated Slot[]. This allows the authorized WMDRM capture application to disable encryption on any PIDs that do not require encryption. This can be used if the arriving content has been screened and does not require protection or for select data PIDs that might not require protection based on the policy of the ContentType that is in effect. Note that whenever the ContentType changes, the tuner must automatically set the cipher bits for all slots that have unscreened or protected content. The authorized capture application clears cipher bits only if the policy for the content allows it.

The tuner ensures that the authorized capture application is operating with the matching ContentType before clearing the requested cipher bit, by verifying CTPending is clear.

The pseudocode that the tuner performs is:

SBDA_RESULT

Cmd_ClearSlotCipher (

[in] DWORD

slotNo

)

{

AcquireSynchronizationWith(&ContentTypeUpdates);

status = SBDA_INVALID_PARAMETER;

if (slotNo < MAX_DEVICE_SLOTS) {

status = SBDA_CT_PENDING;

if (!CTPending) {

Slot[slotNo].Cipher = 0;

status = S_OK;

}
}

ReleaseSynchronizationWith(&ContentTypeUpdates);

return status;
}

3.4.3.6.3 Cmd_ClearCT

This function clears the CTPending flag if the authorized capture application is acknowledging the current ContentType and ContentValue in effect on the tuner.

The pseudocode that the tuner performs is:

SBDA_RESULT

Cmd_ClearCT (

[in] DWORD

type,

[in] DWORD

value

)

{

AcquireSynchronizationWith(&ContentTypeUpdates);

status = CTPending;

if (type == ContentType && value == ContentValue) {

CTPending = 0;

status = S_OK;

}

ReleaseSynchroziationWith(&ContentTypeUpdates);

return status;

}

3.4.4 Timers

Protected BDA tuners support two timeout timers that count down until they reach 0. Each timer can be set to up to 48 hours. When a timer reaches zero, it performs its timeout operation.

The pseudocode for the timeout condition illustrates some synchronization. This was done on the assumption that timers are handled in an interrupt routine and clearing a status bit is not otherwise an atomic operation in C. If timers count down by synchronous processing with Protected BDA commands, then updates to EnabledState would already be synchronized.

High-resolution accuracy of these timers is not critical. It is important only that they do not time out sooner than requested. The capture application resets the timers before they are due to expire (that is, these timers may be off by seconds per day but should account for their timing tolerance by rounding requested deadlines up as needed).

3.4.4.1 Proximity Timer Timeout

The proximity timer is used to ensure that the proximity is tested at least every 48 hours. If the proximity timer reaches zero, the proximity bit in EnabledState is cleared, which in turn stops the output stream from the tuner.

The pseudocode that the tuner performs is:

VOID

OnProximityDeadmanTimeout ()

{

AcquireSynchronizationWith(&SBDACommandProcessing);

EnabledState &= ~SBDA_ES_PROXIMITY_VALID;

CTPending = 1;

SetAllSlotsCipher();

ReleaseSynchroziationWith(&SBDACommandProcessing);

}

3.4.4.2 Link Timer Timeout

The link timer is used to ensure that the capturing application is actively screening content in accordance with the reported ContentType. Based on the policy requirements and other implementation details (such as if any PIDs are allowed to be set to deliver content unencrypted), the capturing application sets the link timer accordingly. If the capturing application is interfered with, the link timeout expires, which causes the tuner to stop the output stream.

The pseudocode that the tuner performs is:

VOID

OnLinkDeadmanTimeout ()

{

AcquireSynchronizationWith(&SBDACommandProcessing);

EnabledState &= ~SBDA_ES_LINK_VALID;

CTPending = 1;

SetAllSlotsCipher();

ReleaseSynchroziationWith(&SBDACommandProcessing);

}

3.4.5 Internal Functions

Various pseudocode examples reference internal behavior of the Protected BDA tuner device as function calls. This section has example implementations.

3.4.5.1 SetAllSlotsCipher()

SetAllSlotsCipher() turns on the cipher bit in each Slot[]. The caller is responsible for holding the proper synchronization.

VOID

SetAllSlotsCipher (
)

{

for (index=0; index < MAX_DEVICE_SLOTS; index++) {

Slot[index].Cipher = 1;

}

}

3.4.5.2 Key Generation

Symmetric keys are computed by running R followed by a “key number” through Sha1 where the key number is extended to be 128 bits. The key number generally always moves forwards (expect for the base licenses, which always use key #3).

3.4.5.2.1 ComputeKey()

ComputeKey() returns the 128-bit key value for the given key number to generate.

VOID

ComputeKey (

[in] DWORD

keyNo,

[out] BYTE16
*pKey

// 128 bit symmetric key

)

{

BYTE

buffer[32];

BYTE20

hash;

// build a buffer of two 128 bit values.

//

R followed by a zero-extended nextKeyID

//

note this code assumes little endian ordering

memset(buffer, 0, sizeof(buffer));

memcpy(buffer, &R, sizeof(R));

memcpy(buffer+16, &keyNo, sizeof(keyNo));

// compute the next key value

Sha1(buffer, sizeof(buffer), &hash);

// The lower 128 bits is the key’s value

memcpy (pKey, &hash, 16);

}

3.4.5.2.2 NextKey()

NextKey() rotates the symmetric key to the next key. The key update must be synchronized with the transport stream processing so that the output stream correctly confers which key was used.

VOID

NextKey ()

{

BYTE16

newKey;

ComputeKey(KeyID + 1, &newKey);

// Only Protected BDA commands update the key value, so we

// already syncronized with commands. However, we need

// to ensure that transport stream processing gets a

// matching AESKey and KeyID value

AcquireSynchronizationWith(&ProcessingTS);

KeyID += 1;

AESKey = newKey;

// Load key into AES engine

// Set all counters to the start of a block

for (index=0; index < MAX_DEVICE_SLOTS; index++) {

Slot[index].Offset = 0;

}
ReleaseSynchronizationWith(&ProcessingTS);

}

3.4.5.3 Miscellaneous Prototypes of Internal Functions

This section provides pseudocode for common functionality that is referenced by other pseudocode.

/*

 * RSAES_OAEP_ENCRYPT - encrypts the 128 byte pBuffer with the

 * supplied 1024 public key

 */

VOID

RSAES_OAEP_ENCRYPT (

[in] BYTE128

*pRSAKey,

[in out] UNALIGNED BYTE128
*pBuffer

);

/*

 * RSASSA-PSS-VERIFY – verifies RSA signature on message

 */

BOOL

RSASSA_PSS_VERIFY (

[in] BYTE128

*pRSAKey,

[in] BYTE

*pMessage,

[in] DWORD

MessageLength,

[in] BYTE128

*pSignature

);

/*

 * AESEncrypt – encrypts the 16 byte input buffer with the

 * provided aes key to make the output buffer

 */

VOID

AESEncrypt (

[in] BYTE16

*pKey,

[in] BYTE16

*pInputBuffer,

[out] BYTE16

*pOutputBuffer

);

/*

 * Sha1 – computes a 20 byte sha1 hash of pBuffer for length, and

 * stores the result in pHash

 */

VOID

Sha1 (

[in] BYTE

*pBuffer,

[in] DWORD

length,

[OUT] BYTE20

*pHash

);

/*

 * OMAC1 - computes a 16 byte signature of pBuffer for length

 * using the provided aes key and stores the result in pSignature

 */

VOID

OMAC1 (

[in] BYTE16

*pKey,

[in] BYTE16

*pBuffer,

[in] DWORD

length,

[OUT] UNALIGNED BYTE16

*pSignaure

);

3.4.6 Other Device Operations

In addition to the Protected BDA commands, an Protected BDA tuner must affect the Protected BDA state when the following operations occur.

3.4.6.1 Device Initialization

On initialization the tuner must set the following values:

EnabledState = 0;

This ensures that all required initialization steps are taken before the output stream is delivered to the host.

3.4.6.2 Changing Frequency

Unless the tuner is supplying screened content that is known not to require any protections, the tuner must set the cipher bit on all slots whenever a command is processed that changes the tuned frequency. This ensures that content that has not yet been screened is encrypted to the WMDRM-authorized capture application.

3.4.6.3 Changing ContentType or ContentValue

Whenever the tuner changes to an unscreened ContentType, it must set all the cipher bits in addition to setting CTPending.
If the tuner has just performed screening and is changing either ContentType or ContentValue, it must set cipher bits if the screened type requires any type of content protection. If the new settings do not require any protections, the tuner may clear the cipher bits instead.

The tuner should not hold the Slot[].Cipher bits either set or cleared, but should only affect their state when a screening change occurs.

// change to frequency, type, or type-protection value

AcquireSynchronizationWith(&ContentTypeUpdates);

SetAllSlotsCipher();

if (changing ContentType or ContentValue) {

ContentType = new setting

ContentValue = new setting

CTPending = 1;

}

ReleaseSynchroziationWith(&ContentTypeUpdates);

3.4.6.4 Incoming TS packet

There are many ways to implement to flow of transport stream packets from an Protected BDA tuner. The following shows a logical execution example for illustration purposes. It assumes that the function ProcessTSPacket() is called for each arriving transport stream packet and performs the required processing to generate the SBDA_TRANSPORT output .

Note that the example functions are designed for clarity of operations, not necessarily performance.

The sample assumes that it operates asynchronously with Protected BDA command and control requests.

// TS_PACKET – incoming TS packet

struct PACKED_DWORD TS_PACKET {

DWORD

hdr;

// Fixed 4 byte header

QWORD

payload[23];
// 184 bytes

};

// TS_OUTPUT – This first part of this structure (Hdr + Ts)

// build the output packet to be DMAed to the PC. The overflow

// value is used to catch the last 64 bits of the last encrypted

// block if required.

struct PACKED_DWORD TS_OUTPUT {

SBDA_CIPHER_HEADER
hdr;

TS_PACKET

ts;

// N.B. followed by overflow

QWORD

overflow;
// N.B. must be after ts
};

VOID

ProcessTSPacket (

TS_PACKET

*in,

{

TS_OUTPUT

out;

SBDA_AES_COUNTER

counter;

SBDA_SLOT

*slot;

AcquireSynchronizationWith(&ProcessingTS);

// If we’re not enabled, don’t give unscreened or

// protected content to the host PC

if (EnabledState != SBDA_ES_ENABLED) {

goto Done;

}

// Find the Slot to use for this PID.

// If the Slot is filtered ignore the packet

Slot = SlotFromPID(ts->hdr.PID);

if (Slot->Filtered) {

goto Done;

}

// intiailize reserved & unset bits to zero

memset(&counter, 0, sizeof(counter));

// intiailize output packet reserved & unused bits. Set

// overflow to 0 in case we encrypt into the overflow area.

// This will allow us to pickup the last 64b encryption vector

// And we can combine this last 64b to the first 64b of data

// that uses this slot next

memset(&out.hdr, 0, sizeof(out.hdr));

out.overflow = 0;

// Move the transport stream packet to the output template

memcpy (&out.ts, in, sizeof(out.ts));

// build AES counter to encrypt with

counter.counter
= Slot->Counter;

counter.SlotNo
= Slot->SlotNo;

counter.Cipher
= Slot->Cipher;

// build SBDA_CIPHER_HEADER

out.hdr.Counter

= counter.Counter;

out.hdr.SlotNo
= counter.SlotNo;

out.hdr.Cipher

= counter.Cipher;

out.hdr.SCI

= DetectSCI(out.payload);

out.hdr.CTPending
= CTPending;

out.hdr.KeyID

= KeyID & 3;

out.hdr.Offset

= Slot->Offset << 3;

// If we indicated cipher, then encrypt the output payload

if (out.Cipher) {

i = Slot->Offset;

b = i ? 11 : 12;

// Encrypt 11 or 12 blocks?

// Encrypt the blocks (11 or 12 of them)

AESBlockCounterEncrypt(

counter,

b,

(BYTE16 *) &out.ts.payload[i]

);

// If we started offset by one block,

// handle leading 1/2 block

if (i) {

out.ts.payload[0] ^= Slot->PartialCipherValue;

}

// setup Slot for its next usage

// N.B. these Slot values are only updated by transport

// stream processing. No syncrhonizing with Protected BDA

// commands is required.

Slot->Counter += b;

// N.B. Wraps at 32 bits

Slot->Offset = i ^ 1;

// Offset toggles

Slot->PartialCipherValue = out.overflow;

}

// Send the CipherHeader and TS packet.

// (Do not send the overflow field to the PC)

SendToOutput(&out, FIELD_OFFSET(TS_OUTPUT, overflow));

Done:

ReleaseSynchronizationWith(&ProcessingTS);

}

/* SlotFromPID – returns the Slot[] to use for a given PID.

 * The slot to use is any slot that has been configured for the

 * supplied pid value. If no such slot exists, then Slot[0]
 * is to be used.

 */

SBDA_SLOT *

SlotFromPID(

[in] DWORD

pid

)

{

// Lookup slot with matching PID

for(i=0; i < MAX_SLOT; i++) {

If (Slot[i].PID == pid) {

return &Slot[i];

}

}

// No found – use Slot[0]

Return &Slot[0];

}

// SCI() – non-zero if bit b is set in StartCode bit array

#define SCI(b)
(StartCode[(b)/8] & (1 << (b % 8)))

/*

 * DetectSCI – Examines the unencrypted payload and determines

 * the proper start code indication for the CihperHeader

 * for this payload.

 */

DWORD

DetectSCI(

BYTE

*p

// 184 byte payload to examine

)

{

ind = 0;

//

// Detect a direct start-code hit

//

for(i=0; i < 181; i++) {

if (p[i] == 0x00 &&

 p[i+1] == 0x00 &&

 p[1+2] == 0x01 &&

 SCI(p[i+3])) {

ind.Found = 1;

break;

}

//

// Detect partial hit at tail

//

if (p[181] == 0x00 && p[182] == 0x00 p[183] == 0x01)

{

ind.PartialEnd = 3;

}

else if (p[182] == 0x00 && p[183] == 0x00)

{

ind.PartialEnd = 2;

}

else if (p[183] == 0x00)

{

ind.PartailTail = 1;

}

//

// Detect partial hit at head

//

if (p[0] == 0x00 && p[1] == 0x01 && SCI(p[2]))

{

ind.PartialEnd = 3;

}

else if (p[1] == 0x01 && SCI(p[1]))

{

ind.PartialEnd = 2;

}

else if (SCI(p[0]))

{

ind.PartailTail = 1;

}

// Done

return ind;

}

/*

 * AESBlockCounterEncrypt – Encrypt the requested number of

 * 16 byte blocks using the supplied counter.

 */

VOID

AESBlockCounterEncrypt(

SBDA_AES_COUNTER

counter,

DWORD

blocks,

BYTE16

*buff,

// unaligned

)

{

BYTE16

cipherText;

for (; blocks; blocks -=1) {

// direct aes cipher

AESEncrypt(&AESKey, &counter, &cipherText);

// apply combining mode

*buff ^= cipherText;

// next block

counter.Count += 1;

// N.B. Wraps at 32bits

buff += 1;

}

}

3.5 Operation

The following figure is a general block diagram for the WMDRM portion of a Protected BDA tuner. This is the “back half” of a tuner that connects to the PC. The “front half”, which is not shown, receives the content in accordance with the content source standards.

[image: image2.emf]Processor

Cert/RSA, RND, Proximity

MsgCounter

32b Counter PID OF C F 0

32b Counter PID OF C F 1

32b Counter PID OF C F 2

64b PartialCipher

64b PartialCipher

64b PartialCipher

32b Counter PID OF C F

n

64b PartialCipher

...

AES

AESKey

Enabled?

RSAKey KeyID R ...

Incoming

TS Stream

32b Counter PID OF C F 3 64b PartialCipher

Outgoing

Stream

DMA

Filter? Cihper?

Host commands.

put_Cert, SlotPid, AuthenticatedCommand,

...

3.5.1 Initialization

The following figure shows the typical initialization flow. As each initialization step occurs, more bits in EnabledState are set, until finally all the bits are set that enable content delivery.

[image: image3.emf]Tuner

CreateObjectNetReceiver

GetRegistrationChallange

DeviceID

ISBDA::put_Reset()

TV Capture DRM

put_Certificate

get_State

put_NextKey

get_BaseLicense

Repeat until S_OK

GetLicenseChallenge(“Acquire”)

RightsID

put_StartCodeMask

get_Information

ProcessLicenseResponse

pBaseLic

put_RightsID

pBaseLic->DeriveLicense(2, Default)

pNewLicence

get_ContentType

Authenticated Cmd_ClearCT

p2Enc->Authenticated Commnad

Authenticated Cmd_SetLinkDeadman

p2Enc->Authenticated Commnad

get_ProximityChallenge

p4Enc

put_ProximityResponse

Repeat until S_OK

Repeat until root certificate

R = RND()

KeyID = 2

MsgCounter += 1

EnabledState now

0x0FF

Encrypted SBDA Transport

KeyID = 2

...

Capture Application Authentication

Secure Channel (SAC)

Authorized?

1

2

3

4

5

6

Here is a description of each step:

1. General initialization take place, to authenticate with WMDRM that the recording application is authorized. This allows access to crypto functions for the appropriate licenses.

2. The Protected BDA tuner is walked up the certificate chain. This leaves the device on KeyID number 1 so that the first NextKey() will be key#2.

3. The Cardea base license is obtained and the first content key is generated. The base license allows the authorized capture application to derive child licenses, which to begin with is done for key #2. Note that many of the WMDRM interfaces require using a secure authenticated channel between the capturing application and the WMDRM functions.

4. The capture application satisfies the proximity requirement of the Protected BDA tuner device.

5. The capture application satisfies the link valid requirement and in the process determines the ContentType.

6. All bits in the EnabledState have been set. Encrypted content now arrives to the authorized capture application. To screen the content, the application uses the WMDRM decryption functions to examine the required data.

3.5.2 Content Changes

Whenever the content policy changes, the capture application creates a new WMDRM license. Each WMDRM license uses a different content key that ensures that a key from one license is not used to access different content. In the case of an Protected BDA tuner, the capture application never sees the content key directly and informs WMDRM how to create the same key (from the base license) that the tuner is using. This also allows the content to be recording directly into the WMDRM system without requiring the capture application to bulk decrypt it.

The following figure outlines the steps taken when the capture application is screening content and determines that a content policy change has occurred.

[image: image4.emf]Tuner TV Capture DRM

put_NextKey

KeyID = X+1

Encrypted SBDA Transport

KeyID = X

Content Screening changes

pBaseLic->DeriveLicense(X+1, Default)

pNewLicence

pNewLicence->Update(XMR)

Encrypted SBDA Transport

KeyID(x+1)

KeyID = X+1

pOldLicense->Release

1

2

3

Here is a description of each step:

1. The capture application preallocates the next license that is required, as a “Copy Default” license in preparation for a content change.

2. Later the content protections are noticed to change to a new protection policy. The capture application assigns the policy to the preallocated license (and possibly commits the license to the license store depending on the duration for the new license). The device is told to move to the next key, which matches the preallocated license.

3. Still later the content arriving is encrypted on the proper license key. The capture application can release the previous license (and key) that was used.

The required action between the time of screening the content and the time for the device makes the update depending on the ContentType currently being received. The most stringent rules might require the capture application to transcrypt content arriving on OldLicense to NewLicense (or to a CopyNever license) until the device affects the update.

The following figure outlines the steps taken when the tuner is screening content and determines that a content policy change has occurred.

[image: image5.emf]Tuner TV Capture DRM

put_NextKey

KeyID = X+1

Encrypted SBDA Transport

CT=1

KeyID = X

pBaseLic->DeriveLicense(X+1, Default)

pNewLicence

pNewLicence->Update(XMR)

Encrypted SBDA Transport

KeyID(x+1)

KeyID = X+1

pOldLicense->Release

1

3

4

Repeat until S_OK

get_ContentType

Authenticated Cmd_ClearCT

p4Enc->Auth

enticated Commnad

2

Here is a description of each step:

1. The capture application preallocates the next license that is required, as a “Copy Default” license in preparation for a content change.

2. The device signals that the ContentType (or ContentValue) has changed.

3. The capture application syncs to the current ContentType and value. It assigns the policy to the preallocated license and informs the device to move to the next key. Note that if the content type is unscreened or screened with protection requirements, the device-ensured encryption is enabled for the entire transport stream at step 2.

4. After the capture stream moves to the next key, the old license (and key) are released.

Between steps 2 and 4, depending on the rules for the content type, the capture application might have to treat all content that arrives before step 4 as “Copy Never” content.

The following figure outlines the steps taken when the capture application has determined that the current content key must be rotated, but the policy has not changed.

[image: image6.emf]Tuner TV Capture DRM

put_NextKey

KeyID = X+1

Encrypted SBDA Transport

KeyID = X

License requires key rotation

pBaseLic->DeriveLicense(X+1, XMR)

pNewLicence

pNewLicence->Update(XMR)

Encrypted SBDA Transport

KeyID(x+1)

KeyID = X+1

pOldLicense->Release

1

2

3

Here is a description of each step:

1. The capture application has preallocated the next license.

2. The capture application has determined that a new content key must be used, so it assigns the current policy to the preallocate license and informs the tuner to update the key.

3. When the capture application notices that the content key has changed, it releases it reference to the old content key.

3.5.3 Repairing

Repairing is accomplished by getting a new base license at run time. This happens very infrequently, and the tuner indicates when it can be called to get a new base license without glitching. The following figure shows the steps that occur when the capture application moves to a new base license.

[image: image7.emf]Tuner TV Capture DRM

Encrypted SBDA Transport

KeyID = X

AESKey = R(X)

get_BaseLicense

GetLicenseChallenge(“Acquire”)

RightsID

ProcessLicenseResponse

pNewBaseLic

put_RightsID

R = RND()

Encrypted SBDA Transport

KeyID(X+1)

put_NextKey

KeyID = X+1

AESKey = R(X+1)

Encrypted SBDA Transport

pBaseLic->DeriveLicense(X+1, XMR)

pNewLicence

pOldLicense->Release

pOldBaseLicense->Release

1

2

3

4

5

6

Here is a description of each step:

1. The tuner sends content by using KeyID X, which was generated from R.

2. The capture application causes the creation of a new base license and preallocates a content license for KeyID X+1 for this new base license.

3. The tuner sets a new R, but content continues to flow on the current KeyID X derived from the previous R value (previous base license).

4. The capture application instructs the tuner to go to the next key. This has the effect of moving to a new key on the new base license. Note that the KeyID does not restart with each base license,

5. The capture application sees that the tuner has moved to the new key.

6. The capture application releases the old content license reference and the old base license.

4 Security Short List

This list contains examples of some of the security-related issues that a Protected BDA device must solve. This is not a definitive list because many content sources have their own specific rules that an IHV selling into a market must meet.

· Bounds checking is performed. The device should ensure that the host is not supplying indexes off the end of tables or arrays, such as SlotNo.

· The counters are not reset. The AES counters do not reset and always counter forward.

· KeyID does not reset. KeyID always counts forward, even during the re-pairing operation.

· There is no direct register or memory access to sensitive Protected BDA data, even undocumented ports.

· MACed commands are copied to the device and then verified.

· Signed results are hashed in the device before being DMAed to the PC.

· Tuning operations to sources that might contain protected content flip on the cipher bits before changing to the new frequency.

· Firmware should be cryptographically signed and checked, by the device, before being updated.

5 Error Codes

Protected BDA specific error codes include:

	##
	Mnemonic
	Brief description

	0
	S_OK
	Success. No Error.

	0x80000001
	SBDA_SIGNATURE_FAILED
	The signature check failed.

	0x80000002
	SBDA_BAD_CERTIFICATE
	The attributes of the certificate are not compatible. For example, the version ID is insufficient.

	0x80000003
	SBDA_PROXIMITY_FAILED
	The required time to complete the proximity test was exceeded.

	0x80000004
	SBDA_INVALID_CHECK
	The authentication check failed.

	0x80000005
	SBDA_CT_PENDING
	The operation could not be completed because CTPending is set.

	0x80000006
	SBDA_INVALID_STATE
	The EnabledState is not compatible with the requested operation.

	0x80000007
	SBDA_INVALID_PARAMETER
	The parameter value is not supported.

	0x80000008
	SBDA_NO_SUCH_COMMAND
	The requested command is not supported.

Appendix

Microsoft Public Root Key

const DWORD g_dwPublicRsaExponent = 65537;

const BYTE g_pbPublicRsaModulus[] = {

0xe1, 0x13, 0xba, 0x0b, 0xfc, 0x15, 0xeb, 0x84,

0x03, 0xcb, 0x54, 0x95, 0x6f, 0xa7, 0x35, 0x37,

0x98, 0x3d, 0xdb, 0x68, 0xf0, 0x60, 0x36, 0xd5,

0x6e, 0xe9, 0x3a, 0xc3, 0x8f, 0xfe, 0xb8, 0x83,

0xbd, 0xfe, 0x77, 0x15, 0x9c, 0xa3, 0x73, 0x99,

0x22, 0xe0, 0xa3, 0xb4, 0x34, 0xbd, 0x27, 0xe9,

0xd5, 0xdc, 0x29, 0x66, 0x61, 0x4f, 0x46, 0xa3,

0x8e, 0x0c, 0xfd, 0xa9, 0x65, 0x37, 0xc2, 0x1d,

0xf5, 0x7a, 0x77, 0x11, 0x37, 0x30, 0x0e, 0x18,

0x32, 0x28, 0xb4, 0xf6, 0x4a, 0x1d, 0x85, 0x83,

0x04, 0x9d, 0x3c, 0x1c, 0x91, 0x90, 0xc7, 0x7e,

0x8a, 0x32, 0x7a, 0x28, 0xf9, 0x19, 0x82, 0xdc,

0x44, 0x64, 0xbc, 0x5d, 0x07, 0xdd, 0xd1, 0xf2,

0xd9, 0xf3, 0xf5, 0x6d, 0x8b, 0x62, 0x1b, 0x46,

0x86, 0x90, 0xee, 0x85, 0x12, 0x6f, 0x40, 0x27,

0x3a, 0x2c, 0x93, 0xb4, 0x58, 0x1e, 0x3a, 0xa6

 };

Terms

The following is a list of terms used in this document.

tuner

The add-on device in a PC that demodulates a signal and delivers the content of that signal to the host PC.

content

In the scope of this document, the data received by a tuner and given to the PC as (or within) an MPEG2 transport stream. For a receiver, content is dynamic. Channels changes, programs change, and PES streams within a TS stream change, all while content is being delivered to the PC.

unscreened

Content that has not been examined to determine if it requires any form of content protection.

screening

The act of determining how content is to be protected. Protections are defined by the deliver mechanism.

clear text

Data that is not encrypted in any manner.

cipher text

Data that is encrypted.

recording application

Components that receive content for processing. This is typically a DShow or multifunction (MF) processing pipeline. Strictly speaking, recording application does not mean Media Center Edition (MCE) or Windows Media Player (WMP); however, WMDRM authorization may include the application for simplicity (because the recording application might reside within the same process address space as MCE or WMP).

PacketOffset

PacketLength 196

Encrypted Payload 184

TS.Packet = Length-sizeof CipherHeader = 188

4

8

TS header

TS data payload

CipherHeader

r

r

yload

CipherHeader

PCipherHeader

ayload

CipherHeader

CipherHeader

payload

88

CipherHeader

PacketOffset

PacketLength 196

Encrypted Payload 184

TS.Packet = Length-sizeof CipherHeader = 188

4

8

TS header

TS data payload

CipherHeader

WinHEC 2005 Update - April 20, 2005 - Draft 0.4a

[image: image8.png]_1163517616.vsd
Tuner

CreateObjectNetReceiver

GetRegistrationChallange

DeviceID

ISBDA::put_Reset()

put_Certificate

TV Capture

DRM

get_State

_1163588610.vsd
Outgoing
Stream

DMA

Processor
Cert/RSA, RND, Proximity

MsgCounter

Incoming TS Stream

PID

32b Counter

64b PartialCipher

OF

C

F

0

32b Counter

PID

OF

C

F

1

32b Counter

PID

OF

C

F

2

32b Counter

PID

OF

C

F

3

64b PartialCipher

64b PartialCipher

64b PartialCipher

32b Counter

PID

OF

C

F

n

64b PartialCipher

...

AES

AESKey

Enabled?

RSAKey

R

KeyID

...

Filter? Cihper?

Host commands.
put_Cert, SlotPid, AuthenticatedCommand, ...

_1163234863.vsd
Tuner

TV Capture

DRM

put_NextKey

KeyID = X+1

Encrypted SBDA Transport

CT=1

KeyID = X

2

pBaseLic->DeriveLicense(X+1, Default)

pNewLicence

pNewLicence->Update(XMR)

Encrypted SBDA Transport

KeyID(x+1)

KeyID = X+1

pOldLicense->Release

1

3

4

_1163243650.vsd
Tuner

TV Capture

DRM

put_NextKey

KeyID = X+1

Encrypted SBDA Transport

KeyID = X

License requires key rotation

pBaseLic->DeriveLicense(X+1, XMR)

pNewLicence

pNewLicence->Update(XMR)

Encrypted SBDA Transport

KeyID(x+1)

KeyID = X+1

pOldLicense->Release

1

2

3

_1163237396.vsd
Tuner

TV Capture

DRM

1

Encrypted SBDA Transport

KeyID = X AESKey = R(X)

Encrypted SBDA Transport

KeyID(X+1)

put_NextKey

Encrypted SBDA Transport

2

pBaseLic->DeriveLicense(X+1, XMR)

pNewLicence

pOldLicense->Release

pOldBaseLicense->Release

3

4

5

6

get_BaseLicense

GetLicenseChallenge(“Acquire”)

RightsID

ProcessLicenseResponse

pNewBaseLic

KeyID = X+1 AESKey = R(X+1)

put_RightsID

R = RND()

_1163233754.vsd
Tuner

Encrypted SBDA Transport

pNewLicence->Update(XMR)

KeyID = X

TV Capture

DRM

Encrypted SBDA Transport

1

KeyID(x+1)

KeyID = X+1

put_NextKey

2

3

pOldLicense->Release

Content Screening changes

pBaseLic->DeriveLicense(X+1, Default)

KeyID = X+1

pNewLicence

