[image: f:\dsbuildroot\wswemdmain\1033\Art\wss_logo\wss_logo.gif]

System Center Virtual Machine Manager 2008 Cmdlet Reference
Microsoft Corporation
Published: March 2009
Abstract
System Center Virtual Machine Manager (VMM) 2008 is a server application that you can use to manage virtual machines on a variety of virtualization platforms. As an alternative to using the VMM Administrator Console to administer your Virtual Machine Manager environment, you can use the cmdlets in the Windows PowerShell - Virtual Machine Manager command shell, which is an administrator-focused command-line shell. This document provides the Help topics for the VMM 2008 cmdlets.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This cmdlet reference is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
© 2009 Microsoft Corporation. All rights reserved.
Microsoft, Active Directory, Excel, Hyper-V, SQL Server, Windows, Windows PowerShell, and Windows Vista are trademarks of the Microsoft group of companies.
All other trademarks are property of their respective owners.

Contents
Introduction	10
Cmdlets Grouped by Noun	10
Certificate	11
Get-Certificate	11
Cluster	13
Discover-Cluster	13
Computer	16
Discover-Computer	16
CPUType	19
Get-CPUType	19
DependentLibraryObject	20
Get-DependentLibraryObject	20
DirectoryChildItem	22
Get-DirectoryChildItem	22
GuestOSProfile	24
Get-GuestOSProfile	24
New-GuestOSProfile	25
Remove-GuestOSProfile	29
Set-GuestOSProfile	31
HardDisk	35
Copy-HardDisk	35
HardwareProfile	39
Get-HardwareProfile	39
New-HardwareProfile	40
Remove-HardwareProfile	46
Set-HardwareProfile	47
ISO	52
Get-ISO	52
Remove-ISO	53
Set-ISO	55
Job	58
Get-Job	58
Restart-Job	59
Stop-Job	61
LibraryRating	63
Get-LibraryRating	63
LibraryServer	65
Add-LibraryServer	65
Get-LibraryServer	68
Remove-LibraryServer	69
Set-LibraryServer	71
Add-LibraryShare	73
Discover-LibraryShare	75
Get-LibraryShare	76
Refresh-LibraryShare	78
Remove-LibraryShare	79
Set-LibraryShare	80
MachineConfig	82
Get-MachineConfig	82
New-MachineConfig	83
Remove-MachineConfig	85
NetworkLocation	88
Get-NetworkLocation	88
OperatingSystem	89
Get-OperatingSystem	89
P2V	90
New-P2V	90
Patch	101
Add-Patch	101
PhysicalAddress	103
New-PhysicalAddress	103
PROTip	106
Dismiss-PROTip	106
Get-PROTip	107
Invoke-PROTip	109
Set-PROTip	110
Script	113
Get-Script	113
Remove-Script	115
Set-Script	117
SshPublicKey	120
Get-SshPublicKey	120
Step	122
Get-Step	122
Template	124
Get-Template	124
New-Template	125
Remove-Template	134
Set-Template	135
V2V	142
New-V2V	142
VirtualCOMPort	151
Get-VirtualCOMPort	151
Set-VirtualCOMPort	152
VirtualDiskDrive	159
Compress-VirtualDiskDrive	159
Convert-VirtualDiskDrive	160
Expand-VirtualDiskDrive	163
Get-VirtualDiskDrive	165
New-VirtualDiskDrive	167
Remove-VirtualDiskDrive	174
Set-VirtualDiskDrive	177
VirtualDVDDrive	180
Get-VirtualDVDDrive	180
New-VirtualDVDDrive	181
Remove-VirtualDVDDrive	185
Set-VirtualDVDDrive	187
VirtualFloppyDisk	192
Get-VirtualFloppyDisk	192
Remove-VirtualFloppyDisk	193
Set-VirtualFloppyDisk	195
VirtualFloppyDrive	198
Get-VirtualFloppyDrive	198
Set-VirtualFloppyDrive	200
VirtualHardDisk	204
Get-VirtualHardDisk	204
Move-VirtualHardDisk	205
Remove-VirtualHardDisk	208
Set-VirtualHardDisk	209
VirtualizationManager	213
Add-VirtualizationManager	213
Get-VirtualizationManager	215
Refresh-VirtualizationManager	216
Remove-VirtualizationManager	218
Set-VirtualizationManager	220
VirtualNetwork	223
Get-VirtualNetwork	223
New-VirtualNetwork	225
Remove-VirtualNetwork	231
Set-VirtualNetwork	233
VirtualNetworkAdapter	238
Get-VirtualNetworkAdapter	238
New-VirtualNetworkAdapter	239
Remove-VirtualNetworkAdapter	245
Set-VirtualNetworkAdapter	248
VirtualSCSIAdapter	252
Get-VirtualSCSIAdapter	252
New-VirtualSCSIAdapter	253
Remove-VirtualSCSIAdapter	257
Set-VirtualSCSIAdapter	258
VM	261
DisableUndoDisk-VM	261
DiscardSavedState-VM	262
Get-VM	264
Move-VM	265
New-VM	270
Refresh-VM	280
Register-VM	281
Remove-VM	284
Repair-VM	286
Resume-VM	288
SaveState-VM	290
Set-VM	291
Shutdown-VM	300
Start-VM	302
Stop-VM	303
Store-VM	305
Suspend-VM	308
VMCheckpoint	310
Get-VMCheckpoint	310
Merge-VMCheckpoint	312
New-VMCheckpoint	314
Remove-VMCheckpoint	317
Restore-VMCheckpoint	319
Set-VMCheckpoint	321
VMDK	323
Copy-VMDK	323
VMHost	327
Add-VMHost	327
Associate-VMHost	335
Get-VMHost	337
Move-VMHost	339
Refresh-VMHost	341
Remove-VMHost	343
Set-VMHost	346
Update-VMHost	352
VMHostCluster	354
Add-VMHostCluster	354
Get-VMHostCluster	356
Move-VMHostCluster	358
Refresh-VMHostCluster	359
Remove-VMHostCluster	360
Set-VMHostCluster	362
VMHostDisk	366
Get-VMHostDisk	366
VMHostGroup	368
Get-VMHostGroup	368
Move-VMHostGroup	369
New-VMHostGroup	371
Remove-VMHostGroup	373
Set-VMHostGroup	374
VMHostNetworkAdapter	378
Add-VMHostNetworkAdapter	378
Get-VMHostNetworkAdapter	382
Remove-VMHostNetworkAdapter	384
Set-VMHostNetworkAdapter	385
VMHostRating	390
Get-VMHostRating	390
VMHostVolume	399
Get-VMHostVolume	399
Set-VMHostVolume	401
VMMManagedComputer	404
Get-VMMManagedComputer	404
Reassociate-VMMManagedComputer	406
Update-VMMManagedComputer	408
VMMServer	410
Backup-VMMServer	410
Get-VMMServer	412
Set-VMMServer	414
VMMUserRole	421
Get-VMMUserRole	421
New-VMMUserRole	423
Remove-VMMUserRole	425
Set-VMMUserRole	427
VMPerformance	432
Get-VMPerformance	432
VMRCCertificateRequest	434
New-VMRCCertificateRequest	434
VMwareResourcePool	437
Get-VMwareResourcePool	437
VMXMachineConfig	439
Get-VMXMachineConfig	439
New-VMXMachineConfig	440
Remove-VMXMachineConfig	441

[bookmark: _Toc175662103][bookmark: _Toc225244407]Introduction
This document contains the output that you receive after you type the following command in the Windows PowerShell – Virtual Machine Manager command shell:
Get-Command -PSSnapin Microsoft.SystemCenter.VirtualMachineManager | SortObject Noun, Verb | Get-Help -detailed > VMM2008CmdletHelpSortedNounVerb.txt
This command generates a list of cmdlet Help topics that is sorted by noun. This list contains the same Help for each cmdlet that you can view in the Windows PowerShell – Virtual Machine Manager command shell by typing the following command:
Get-Help <Cmdlet-Name> -detailed
For more information about the Windows PowerShell – Virtual Machine Manager command shell, see Introduction to Scripting in Virtual Machine Manager 2008 (http://go.microsoft.com/fwlink/?LinkId=146907).
[bookmark: _Toc175662104][bookmark: _Toc225244408]Cmdlets Grouped by Noun
In the names of Windows PowerShell cmdlets, including Virtual Machine Manager cmdlets, the word that precedes the hyphen is the verb, and the word that follows the hyphen is the noun (Verb-Noun). This command reference groups the cmdlets into sets that are alphabetized first by the noun and then by the verb. To view the entire list of cmdlets in the left margin of this document, click View and then select the Document Map check box.

[bookmark: _Toc225244409]Certificate
[bookmark: _Toc225244410]Get-Certificate

SYNOPSIS
 Gets a security certificate object from a VMware VirtualCenter server or fr
 om an ESX Server.

SYNTAX
 Get-Certificate [-ComputerName] <String> [-TCPPort <Int32>] [-VMMServer [<S
 tring ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets an object that represents a security certificate from a VMware Virtual
 Center Server or from an ESX Server. You can use this cmdlet to import a no
 n-trusted certificate into Virtual Machine Manager so that you can use the
 certificate with the Add-VirtualizationManager cmdlet or the Set-Virtualiza
 tionManager cmdlet.

 The certificate is required in order to establish an SSL connection between
 the Virtual Machine Manager server and the VirtualCenter Server or ESX Ser
 ver.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -TCPPort <Int32>
 Specifies a numeric value that represents a TCP port.
 Note: In VMM 2007, this parameter, when used with the Get-VMMServer cmd
 let, was named Port.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Retrieve the security certificate for the specified VMware VirtualCenter
 Server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-Certificate -Computername "VirtMgrServer01.Contoso.com"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets the object that represents the security certificate
 from the VMware VirtualCenter server named VirtMgrServer01, located in the
 Contoso.com domain, and displays the security certficate string.

 2: Retrieve the security certificate for the specified VMware ESX Server ho
 st.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $ESXCert = Get-Certificate -Computername "nnn.nnn.nnn.nnn"
 PS C:\> $ESXCert | Get-Member

 The first command connects to VMMServer1.

 The second command gets the object that represents the security certificate
 from the ESX server (whose IP address is represented in this example by "n
 nn.nnn.nnn.nnn") and stores the certificate object in $ESXCert.

 The last command passes the contents of $ESXCert to the Get-Member cmdlet,
 which displays the .NET type for the certificate object:

 TypeName:
 Microsoft.SystemCenter.VirtualMachineManager.Remoting.ClientCertificate

 The Get-Member cmdlet also displays a list of methods and properties for th
 e certificate object.

REMARKS
 For more information, type: "get-help Get-Certificate -detailed".
 For technical information, type: "get-help Get-Certificate -full".

[bookmark: _Toc225244411]Cluster
[bookmark: _Toc225244412]Discover-Cluster

SYNOPSIS
 Discovers the specified failover cluster in a Virtual Machine Manager envir
 onment.

SYNTAX
 Discover-Cluster [-ComputerName] <String> -Credential <PSCredential> [-JobV
 ariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<Str
 ing ServerConnection>]] [<CommonParameters>]

 Discover-Cluster -LibraryServer [<String LibraryServer>] [-JobVariable <Str
 ing>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String ServerCo
 nnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Discovers whether the specified name represents a Windows Server 2008 failo
 ver cluster or one of its nodes, and, if so, returns an object that contain
 s more information about the failover cluster. The information returned by
 the Discover-Cluster cmdlet includes cluster name, nodes of the cluster, an
 d highly available file servers hosted by the cluster.

 You cannot use Virtual Machine Manager to create a failover cluster. You ca
 n, however, use the Discover-Cluster cmdlet to discover an existing failove
 r cluster configured earlier by using the Failover Cluster Management conso
 le.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Discover all nodes of a failover cluster from the cluster name.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Cluster = Discover-Cluster -ComputerName "VMHostCluster01.Contoso.
 com" -Credential $Credential
 PS C:\> $ClusterNodes = $Cluster.ClusterNodes
 PS C:\> Write-Host $ClusterNodes

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are a domain account with administrator r
 ights on all nodes of the failover cluster that you want to find more infor
 mation about.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following commands use this
 server by default.

 The third command uses Discover-Cluster to create a cluster object after qu
 erying the failover cluster named VMHostCluster01 and stores the cluster ob
 ject in $Cluster, using $Credential to provide your credentials to Discover
 -Cluster. Notice that the -ComputerName parameter treats the name of the cl
 uster as if it were the name of a computer.

 The fourth command gets the names of all nodes of the failover cluster in $
 Cluster.

 The last command displays the FQDN names of the cluster nodes to the user.

 2: Discover all nodes of a failover cluster from one of the node names.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Cluster = Discover-Cluster -ComputerName "VMHostNode02.Contoso.com
 " -Credential $Credential
 PS C:\> $ClusterName = $Cluster.Name
 PS C:\> $ClusterNodes = $Cluster.ClusterNodes
 PS C:\> Write-Host $ClusterNodes

 The first command uses Get-Credential to prompt you to supply an appropriat
 e user name and password and stores your credentials in $Credential.

 The second command connects to VMMServer1.

 The third command uses Discover-Cluster to create a cluster object after qu
 erying a failover cluster node named VMHostNode02 and stores the cluster ob
 ject in $Cluster.

 The next two commands retrieve the cluster name and the name of each node t
 hat belongs to this failover cluster from $Cluster.

 The last command displays the FQDN name of the nodes in the cluster to the
 user.

 3: Discovers, from the cluster name, all highly available file servers host
 ed by that failover cluster.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Cluster = Discover-Cluster -ComputerName "VMHostCluster03.Contoso.
 com" -Credential $Credential
 PS C:\> $HAFileServers = $Cluster.HAFileServers
 PS C:\> Write-Host $HAFileServers

 The first command uses Get-Credential to prompt you to supply an appropriat
 e user name and password and stores your credentials in $Credential.

 The second command connects to VMMServer1.

 The third command uses Discover-Cluster to create a cluster object after qu
 erying the failover cluster named VMHostCluster03 and stores the cluster ob
 ject in $Cluster.

 The fourth command gets the names of all highly available file servers host
 ed by this failover cluster from $Cluster. NOTE: This example assumes that
 the failover cluster is hosting at least one highly available file server.

 The last command displays the FQDN name of the highly available file server
 s in $Cluster to the user.

REMARKS
 For more information, type: "get-help Discover-Cluster -detailed".
 For technical information, type: "get-help Discover-Cluster -full".

[bookmark: _Toc225244413]Computer
[bookmark: _Toc225244414]Discover-Computer

SYNOPSIS
 Discovers computers by querying Active Directory, and returns the computer
 objects.

SYNTAX
 Discover-Computer -Domain <String> [-ComputerNameFilter <String>] [-Credent
 ial <PSCredential>] [-DiscoveryID <Guid>] [-ExcludeVMMHost] [-ExcludeVMMLib
 rary] [-FindHyperVHosts] [-FindVSHosts] [-JobVariable <String>] [-RunAsynch
 ronously] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 Discover-Computer [-ComputerName] <String> [-Credential <PSCredential>] [-E
 xcludeVMMHost] [-ExcludeVMMLibrary] [-FindHyperVHosts] [-FindVSHosts] [-VMM
 Server [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Discovers one or more computers by querying Active Directory, and returns t
 he computer objects.

 You can use this cmdlet to query Active Directory for computers based on sp
 ecified criteria, or a combination of criteria, including:

 * The fully qualified domain name (FQDN) of a computer.
 * All or part of the computer name.
 * The name of a domain.
 * All computers except hosts managed by Virtual Machine Manager.
 * All computers except library servers managed by Virtual Machine Manager.
 * Only Hyper-V hosts.
 * Only Virtual Server hosts.

 NOTE: If you add a new computer (such as a host or library server) located
 in an Active Directory domain to Virtual Machine Manager and then immediate
 ly run the Discover-Computer cmdlet, the cmdlet might not immediately disco
 ver the new computer when it searches Active Directory. This delay is becau
 se data about the new computer might not have replicated yet across the Act
 ive Directory domain. If you are a Domain Administrator, you can use the Ac
 tive Directory Sites and Services console to force the data to replicate im
 mediately.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Domain <String>
 Specifies a fully qualified domain name (FQDN) for an Active Directory
 domain.
 Example format: "ThisDomain.Corp.Contoso.com"

 -ComputerNameFilter <String>
 Specifies the partial or full name of a computer that the cmdlet will t
 ry to discover in Active Directory.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -DiscoveryID <Guid>
 For internal use only (not for use in your code).

 -ExcludeVMMHost
 Excludes virtual machine host servers currently managed by VMM.

 -ExcludeVMMLibrary
 Excludes library servers currently managed by VMM.

 -FindHyperVHosts
 Searches for computers running a Windows Server 2008 operating system o
 n which the Hyper-V server role is enabled.

 -FindVSHosts
 Searches for computers running a Windows server operating system on whi
 ch Virtual Server 2005 R2 SP1 is installed.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1. Discover computers in a specific domain that meet the specified criteria
 .

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Discover-Computer -ComputerNameFilter "host" -Domain "Contoso.com"
 -FindHyperVHosts -ExcludeVMMHost

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command queries Active Directory and returns a list of Hyper-V c
 omputer objects for computers that are located in the Contoso.com domain, t
 hat have a name starting with "host", and that are not managed by VMM.

 NOTE: When you use Discover-Computer with the -Domain parameter, you must s
 pecify the fully qualified domain name.

 2. Discover a specific computer by name and validate its properties in Acti
 ve Directory.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Discover-Computer -ComputerName "VMHost02.Contoso.com"

 The first command connects to VMMServer1.

 The second command uses the fully qualified domain name (FQDN) of the compu
 ter named VMHost02 to discover this computer in Active Directory, returns t
 he computer object, and displays the computer object name and its propertie
 s to the user.

 3: Discover all computers in the specified domain except for VMM library se
 rvers.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Discover-Computer -ComputerNameFilter "vmm" -Domain "Contoso.com" -
 ExcludeVMMLibrary

 The first command connects to VMMServer1.

 The second command queries Active Directory for all computers in the Contos
 o.com domain that include "vmm" in the computer name except for Virtual Mac
 hine Manager library servers.

REMARKS
 For more information, type: "get-help Discover-Computer -detailed".
 For technical information, type: "get-help Discover-Computer -full".

[bookmark: _Toc225244415]CPUType
[bookmark: _Toc225244416]Get-CPUType

SYNOPSIS
 Gets objects that represent CPU types for use in virtual machines, or for u
 se in templates or hardware profiles used to create virtual machines, in a
 Virtual Machine Manager environment.

 NOTE: In VMM 2007, this cmdlet was named Get-ProcessorType.

SYNTAX
 Get-CPUType [-ID <Guid>] [-VMMServer [<String ServerConnection>]] [<CommonP
 arameters>]

DETAILED DESCRIPTION
 Gets objects that represent the types of CPU that are available for use in
 virtual machines, or for use in templates or hardware profiles used to crea
 te virtual machines, in a Virtual Machine Manager environment. The type of
 CPU is one of the factors that the Virtual Machine Manager placement proces
 s uses to determine which computers (among all available computers) are sui
 table hosts for a specific virtual machine.

PARAMETERS
 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all available processor types.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-CPUType

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets all objects that represent any available CPU type f
 rom the VMM database, formats the information about each CPU type in a list
 , and displays this information to the user.

REMARKS
 For more information, type: "get-help Get-CPUType -detailed".
 For technical information, type: "get-help Get-CPUType -full".

[bookmark: _Toc225244417]DependentLibraryObject
[bookmark: _Toc225244418]Get-DependentLibraryObject

SYNOPSIS
 Identifies dependencies between Virtual Machine Manager objects.

SYNTAX
 Get-DependentLibraryObject [-LibraryObject] [<VirtualHardDisk ISO VM Script
 Template VirtualFloppyDisk>] [-VMMServer [<String ServerConnection>]] [<Co
 mmonParameters>]

 Get-DependentLibraryObject [-LibraryServer] [<String LibraryServer>] [-VMMS
 erver [<String ServerConnection>]] [<CommonParameters>]

 Get-DependentLibraryObject [-LibraryShare] <LibraryShare> [-VMMServer [<Str
 ing ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Identifies dependencies between Virtual Machine Manager objects.

 You can use the Get-DependentLibraryObject cmdlet to identify objects that
 are dependent on the existence of:

 * The specified library object
 * Any object on the specified library share
 * Any object on the specified library server

PARAMETERS
 -LibraryShare <LibraryShare>
 Specifies a VMM library share object.

 -LibraryObject [<VirtualHardDisk ISO VM Script Template VirtualFloppyDisk>]
 Specifies a VMM library object to test to determine whether other objec
 ts are dependent on this object.

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Find all of the objects (if any exist) that depend on a particular virtu
 al hard disk.

 PS C:\> $VHD = Get-VirtualHardDisk -VMMServer VMMServer1.Contoso.com | wher
 e { $_.Name -eq “VHD01” -and $_.LibraryServer.Name -eq "FileServer01.Conto
 so.com” }
 PS C:\> Get-DependentLibraryObject -LibraryObject $VHD

 The first command selects from all virtual hard disk objects in the library
 on VMMServer1 the object that represents the virtual hard disk named VHD01
 (stored on the library server called FileServer01) and stores this virtual
 hard disk object in variable $VHD. This example assumes that only one virt
 ual hard disk named VHD01 exists.

 The second command returns all of the library objects that are dependent on
 VHD01.

 If dependent objects exist, removing this virtual hard disk will modify tho
 se dependent objects so that they no longer reference the removed virtual h
 ard disk. Thus, if VHD01 is associated with a specific virtual machine or w
 ith a specific template, that virtual machine or template is modified so th
 at it no longer references VHD01 after it is removed.

REMARKS
 For more information, type: "get-help Get-DependentLibraryObject -detailed"
 .
 For technical information, type: "get-help Get-DependentLibraryObject -full
 ".

[bookmark: _Toc225244419]DirectoryChildItem
[bookmark: _Toc225244420]Get-DirectoryChildItem

SYNOPSIS
 Gets all files and subdirectories in the specified directory on a virtual m
 achine host or on a library server managed by Virtual Machine Manager.

SYNTAX
 Get-DirectoryChildItem -LibraryServer [<String LibraryServer>] -Path <Strin
 g> [<CommonParameters>]

 Get-DirectoryChildItem -Path <String> -VMHost [<String Host>] [<CommonParam
 eters>]

DETAILED DESCRIPTION
 Gets all files and subdirectories immediately under the specified directory
 (folder) on a virtual machine host or on a library server managed by Virtu
 al Machine Manager. If you specify a share path (such as \\ServerName\Share
 Name\Directory\FileName), the subdirectories of the share path are returned
 .

 If you use the Get-DirectoryChildItem cmdlet to retrieve files and subdirec
 tories on a library server, you must specify a path to a valid library shar
 e. For example, the share path to the default library share installed by Se
 tup when you first install the Virtual Machine Manager service is:
 \\VMMServerName.DomainName.com\MSSCVMMLibrary

PARAMETERS
 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get the subdirectories for the specified path on a host server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> Get-DirectoryChildItem -VMHost $VMHost -Path "C:\"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the host named VMHost01
 from the VMM database and stores the host object in variable $VMHost.

 The last command displays the name and other information about each file an
 d subdirectory immediately under the C:\ drive on VMHost01.

 2: Get the subdirectories for the specified path on a library server.

 PS C:\> $LibServ = Get-LibraryServer -VMMServer VMMServer1.Contoso.com -Com
 puterName "FileServer02.Contoso.com"

 PS C:\> Get-DirectoryChildItem -LibraryServer $LibServ -Path "\\FileServer0
 2.Contoso.com\MSSCVMMLibrary"

 The first command gets the object that represents the library server named
 FileServer02 from VMMServer1 and stores the library server object in $LibSe
 rv.

 The second command displays the name, parent directory, and other informati
 on about each file stored in the directory for the default library share on
 FileServer02. You must specify the complete path to the library share.

 NOTE: This example assumes that the default VMM library share (MSSCVMMLibra
 ry) is used in your environment. To determine the names of library shares,
 type: Get-LibraryShare | select Name

REMARKS
 For more information, type: "get-help Get-DirectoryChildItem -detailed".
 For technical information, type: "get-help Get-DirectoryChildItem -full".

[bookmark: _Toc225244421]GuestOSProfile
[bookmark: _Toc225244422]Get-GuestOSProfile

SYNOPSIS
 Gets guest operating system profile objects from the Virtual Machine Manage
 r library.

SYNTAX
 Get-GuestOSProfile [[-Name] <String>] [-VMMServer [<String ServerConnection
 >]] [<CommonParameters>]

 Get-GuestOSProfile [[-Name] <String>] -AnswerFile <Script> [-OperatingSyste
 m <OperatingSystem>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets from the Virtual Machine Manager library one or more objects that repr
 esent guest operating system profiles.

 For more information about guest operating system profiles, type:
 Get-Help New-GuestOSProfile -detailed

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -AnswerFile <Script>
 Specifies a script object stored in the VMM library to use as an answer
 file. The name of the answer file script depends on the operating syst
 em that you want to install on a virtual machine:
 ANSWER FILE GUEST OS TO INSTALL ON VM
 ----------- -------------------------
 Sysprep.inf Windows XP, Windows Server 2000, or Windows Server 2003
 Unattend.xml Windows Vista or Windows Server 2008
 Note: In VMM 2007, this parameter was named SysPrepFile.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1. Get all guest operating system profiles from the library.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-GuestOSProfile

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets all objects that represent guest operating system p
 rofiles from the VMM library and displays information about these profiles
 to the user.

 2. Get a specific guest operating system profile from the library.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-GuestOSProfile | where { $_.Name -eq "Windows Server 2003 Stand
 ard" }

 The first command connects to VMMServer1.

 The second command gets the object that represents the guest operating syst
 em profile named "Windows Server 2003 Standard" and displays information ab
 out this profile to the user.

REMARKS
 For more information, type: "get-help Get-GuestOSProfile -detailed".
 For technical information, type: "get-help Get-GuestOSProfile -full".

[bookmark: _Toc225244423]New-GuestOSProfile

SYNOPSIS
 Creates a guest operating system profile for use in Virtual Machine Manager
 .

SYNTAX
 New-GuestOSProfile [-Name] <String> [-AdminPasswordCredential <PSCredential
 >] [-AnswerFile <Script>] [-ComputerName <String>] [-Description <String>]
 [-FullName <String>] [-GuestOSProfile [<GuestOSProfile String>]] [-GuiRunOn
 ceCommands <String[]>] [-JobVariable <String>] [-JoinWorkgroup <String>] [-
 OperatingSystem <OperatingSystem>] [-OrgName <String>] [-Owner <String>] [-
 ProductKey <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-TimeZone <In
 t32>] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-GuestOSProfile [-Name] <String> -JoinDomain <String> -JoinDomainCredent
 ial <PSCredential> [-AdminPasswordCredential <PSCredential>] [-AnswerFile <
 Script>] [-ComputerName <String>] [-Description <String>] [-FullName <Strin
 g>] [-GuestOSProfile [<GuestOSProfile String>]] [-GuiRunOnceCommands <Strin
 g[]>] [-JobVariable <String>] [-OperatingSystem <OperatingSystem>] [-OrgNam
 e <String>] [-Owner <String>] [-ProductKey <String>] [-PROTipID <Guid>] [-R
 unAsynchronously] [-TimeZone <Int32>] [-VMMServer [<String ServerConnection
 >]] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a guest operating system profile for use in Virtual Machine Manager
 . A guest operating system is the operating system on a virtual machine, in
 contrast to a host operating system on the physical host server on which o
 ne or more virtual machines are deployed.

 A guest operating system profile stores operating system configuration info
 rmation. A profile consists of a set of properties containing the most comm
 on settings specified in an unattended answer file (such as a Sysprep.inf o
 r an Unattend.xml file).

 You can create a standalone guest operating system profile or customize a t
 emplate or virtual machine to include guest operating system profile settin
 gs. The New-GuestOSProfile cmdlet stores the new guest operating system pro
 file object in the Virtual Machine Manager library.

 You can create a guest operating system profile based on default settings,
 based on an existing guest operating system profile, or you can customize s
 ettings as you create the profile. If you specify no parameters except the
 Name parameter, the New-GuestOSProfile cmdlet creates a default guest opera
 ting system profile object.

 Guest operating system settings for a virtual machine include:

 -AdminPasswordCredential
 -AnswerFile
 -ComputerName
 -Description
 -FullName
 -GuiRunOnceCommands
 -JoinDomain
 -JoinDomainCredential
 -JoinWorkgroup
 -Name
 -OperatingSystem
 -OrgName
 -Owner
 -ProductKey
 -TimeZone

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -JoinDomain <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the do
 main to which you want to join a virtual machine. You can use this para
 meter to override the existing value on a template or on a guest operat
 ing system profile. You can join a VM to a domain only if a virtual net
 work adapter is configured for the VM.

 -JoinDomainCredential <PSCredential>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the user name and
 password of an account with permission to join a virtual machine to the
 domain. A limited rights account should be used for joining machines t
 o the domain.

 -AdminPasswordCredential <PSCredential>
 Specifies the password for the local Administrator account. Specifying
 a password (on a new or existing template, on a new or existing guest
 operating system profile, or on a new virtual machine) overrides any ex
 isting Administrator password.

 -AnswerFile <Script>
 Specifies a script object stored in the VMM library to use as an answer
 file. The name of the answer file script depends on the operating syst
 em that you want to install on a virtual machine:
 ANSWER FILE GUEST OS TO INSTALL ON VM
 ----------- -------------------------
 Sysprep.inf Windows XP, Windows Server 2000, or Windows Server 2003
 Unattend.xml Windows Vista or Windows Server 2008
 Note: In VMM 2007, this parameter was named SysPrepFile.

 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Description <String>
 Specifies a description for the specified object.

 -FullName <String>
 Specifies the name of the person in whose name a virtual machine is reg
 istered.

 -GuestOSProfile [<GuestOSProfile String>]
 Specifies a guest operating system profile object.

 -GuiRunOnceCommands <String[]>
 Specifies one or more commands to add to the [GuiRunOnce] section of an
 unattended answer file (such as SysPrep.inf or Unattend.xml). Use sing
 le quotes around each string enclosed in double quotes.
 Example:
 -GuiRunOnceCommands '"C:\APF\APFPostSysPrepCopy.cmd PARAMS1"', '"C:\APF
 \APFPostSysPrepCopy.cmd PARAMS1"'
 For information about how Windows PowerShell uses quotes, type: Get-Hel
 p about_Quoting_Rules

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -JoinWorkgroup <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the wo
 rkgroup to which you want to join a virtual machine. You can use this p
 arameter to override the existing value on a template or on a guest ope
 rating system profile.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -OrgName <String>
 Specifies the name of the organization of the person in whose name a vi
 rtual machine is registered.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -ProductKey <String>
 Specifies the product key to use for the operating system to be install
 ed on a virtual machine. The product key is a 25-digit number that iden
 tifies the product license.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -TimeZone <Int32>
 Specifies a number (an "index") that identifies a geographical region t
 hat shares the same standard time. For a list of time zone indexes, see
 "Microsoft Time Zone Index Values" at: http://go.microsoft.com/fwlink/
 ?LinkId=120935. If no time zone is specified, the default time zone use
 d for a virtual machine is the same time zone setting that is on the vi
 rtual machine host.
 Example: To specify the GMT Standard Time zone, type: -TimeZone 085

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a default guest operating system profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $OS = Get-OperatingSystem -VMMServer "VMMServer1.contoso.com" | whe
 re {$_.Name -eq "64-bit edition of Windows Server 2008 Datacenter"}
 PS C:\> New-GuestOSProfile -Name "NewProfile1" -OperatingSystem $OS

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following command uses t
 his server by default.

 The second command gets from the VMM database the object that represents a
 specific operating system (64-bit edition of Windows Server 2008 Datacenter
) and stores the operating system object in variable $OS.

 The second command creates a default guest operating system profile named N
 ewProfile1 and specifies the name of the operating system.

 2: Create a guest operating system profile to use to join a virtual machine
 to a domain.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $JoinDomainCredential = Get-Credential

 PS C:\> $OS = Get-OperatingSystem -VMMServer "VMMServer1.contoso.com" | whe
 re {$_.Name -eq "Red Hat Enterprise Linux 5 (64 bit)"}

 PS C:\> New-GuestOSProfile -Name "NewProfile2" -JoinDomain "Contoso.com" -J
 oinDomainCredential $JoinDomainCredential -OperatingSystem $OS

 The first command connects to VMMServer1.

 The second command creates a Windows PowerShell credential object (PSCreden
 tial object) by prompting you for a user name and password with permissions
 to join a computer to the domain and stores the credentials in variable $J
 oinDomainCredential.

 The third command gets the object that represents a specific operating syst
 em (Red Hat Enterprise Linux 5 (64 bit) and stores the operating system obj
 ect in $OS.

 The last command creates a guest operating system profile called NewProfile
 2 and specifies the name of the operating system. When you use NewProfile2
 to create a virtual machine, the profile will use the specified domain acco
 unt and account password to join the virtual machine to the Contoso.com dom
 ain.

 NOTE: The recommended practice is to use only an account with limited right
 s for automatically joining a virtual machine to a domain because the domai
 n account name and password appear briefly in plain text on the host server
 .

 3: Clone an existing guest operating system profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $OSProfile = New-GuestOSProfile -Name "NewProfile3" -ComputerName "
 Contoso3" -FullName "Contoso"

 PS C:\> $OS = Get-OperatingSystem -VMMServer "VMMServer1.contoso.com" | whe
 re {$_.Name -eq "Windows Small Business Server 2003"}

 PS C:\> New-GuestOSProfile -Name "NewProfile4" -GuestOSProfile $OSProfile -
 ComputerName "Contoso4"

 The first command connects to VMMServer1.

 The second command creates a guest operating system profile called NewProfi
 le3, specifies that the computer name is Contoso3, that the full name is Co
 ntoso, and stores the profile object in $OSProfile.

 The third command gets the object that represents a specific operating syst
 em (Windows Small Business Server 2003) and stores the operating system obj
 ect in $OS.

 The last command creates another guest operating system profile, called New
 Profile4, which is based on NewProfile3 but modifies the computer name and
 specifies the name of the operating system. All other settings in NewProfil
 e4 are identical to those in NewProfile3.

REMARKS
 For more information, type: "get-help New-GuestOSProfile -detailed".
 For technical information, type: "get-help New-GuestOSProfile -full".

[bookmark: _Toc225244424]Remove-GuestOSProfile

SYNOPSIS
 Removes a guest operating system profile object from Virtual Machine Manage
 r.

SYNTAX
 Remove-GuestOSProfile [-GuestOSProfile] [<GuestOSProfile String>] [-Confirm
] [-Force] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent guest operating system profiles
 from the Virtual Machine Manager library.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -GuestOSProfile [<GuestOSProfile String>]
 Specifies a guest operating system profile object.

 -Confirm
 Prompts for confirmation before running the command.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific guest operating system profile from the library.

 PS C:\> $OSProfile = Get-GuestOSProfile –VMMServer VMMServer1.Contoso.com |
 where { $_.Name –eq "OSP-1" }
 PS C:\> Remove-GuestOSProfile -GuestOSProfile $OSProfile

 The first command gets the object that represents the guest operating syste
 m profile named OSP-1 from the VMM library on VMMServer1 and stores the ope
 rating system profile object in variable $OSProfile.

 The second command removes OSP-1 from the library.

 2: Remove all operating system profiles without being prompted to confirm e
 ach deletion.

 PS C:\> $OSProfiles = Get-GuestOSProfile -VMMServer VMMServer1.Contoso.com
 PS C:\> $OSProfiles | Remove-GuestOSProfile

 The first command gets all operating system profile objects from VMMServer1
 and stores the profile objects in $OSProfiles (an object array).

 The second command passes each object in $OSProfiles to the Remove-OSProfil
 e cmdlet, which removes each of the operating system profile objects from t
 he Virtual Machine Manager library.

REMARKS
 For more information, type: "get-help Remove-GuestOSProfile -detailed".
 For technical information, type: "get-help Remove-GuestOSProfile -full".

[bookmark: _Toc225244425]Set-GuestOSProfile

SYNOPSIS
 Changes the properties of a guest operating system profile used in Virtual
 Machine Manager.

SYNTAX
 Set-GuestOSProfile [-GuestOSProfile] [<GuestOSProfile String>] [-AdminPassw
 ordCredential <PSCredential>] [-AnswerFile <Script>] [-ComputerName <String
 >] [-Description <String>] [-FullName <String>] [-GuiRunOnceCommands <Strin
 g[]>] [-JobVariable <String>] [-JoinWorkgroup <String>] [-Name <String>] [-
 OperatingSystem <OperatingSystem>] [-OrgName <String>] [-Owner <String>] [-
 ProductKey <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-TimeZone <In
 t32>] [<CommonParameters>]

 Set-GuestOSProfile [-GuestOSProfile] [<GuestOSProfile String>] -JoinDomain
 <String> -JoinDomainCredential <PSCredential> [-AdminPasswordCredential <PS
 Credential>] [-AnswerFile <Script>] [-ComputerName <String>] [-Description
 <String>] [-FullName <String>] [-GuiRunOnceCommands <String[]>] [-JobVariab
 le <String>] [-Name <String>] [-OperatingSystem <OperatingSystem>] [-OrgNam
 e <String>] [-Owner <String>] [-ProductKey <String>] [-PROTipID <Guid>] [-R
 unAsynchronously] [-TimeZone <Int32>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a guest operating system profile used in
 a Virtual Machine Manager environment. Changes made to a guest operating sy
 stem profile affect only the guest operating system profile itself. Changes
 do not affect any existing virtual machines that were created earlier by u
 sing this profile.

 Properties that you can change include:

 -AdminPasswordCredential
 -AnswerFile
 -ComputerName
 -Description
 -FullName
 -GuiRunOnceCommands
 -JoinDomain
 -JoinDomainCredential
 -JoinWorkgroup
 -Name
 -OperatingSystem
 -OrgName
 -Owner
 -ProductKey
 -TimeZone

PARAMETERS
 -GuestOSProfile [<GuestOSProfile String>]
 Specifies a guest operating system profile object.

 -JoinDomain <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the do
 main to which you want to join a virtual machine. You can use this para
 meter to override the existing value on a template or on a guest operat
 ing system profile. You can join a VM to a domain only if a virtual net
 work adapter is configured for the VM.

 -JoinDomainCredential <PSCredential>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the user name and
 password of an account with permission to join a virtual machine to the
 domain. A limited rights account should be used for joining machines t
 o the domain.

 -AdminPasswordCredential <PSCredential>
 Specifies the password for the local Administrator account. Specifying
 a password (on a new or existing template, on a new or existing guest
 operating system profile, or on a new virtual machine) overrides any ex
 isting Administrator password.

 -AnswerFile <Script>
 Specifies a script object stored in the VMM library to use as an answer
 file. The name of the answer file script depends on the operating syst
 em that you want to install on a virtual machine:
 ANSWER FILE GUEST OS TO INSTALL ON VM
 ----------- -------------------------
 Sysprep.inf Windows XP, Windows Server 2000, or Windows Server 2003
 Unattend.xml Windows Vista or Windows Server 2008
 Note: In VMM 2007, this parameter was named SysPrepFile.

 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Description <String>
 Specifies a description for the specified object.

 -FullName <String>
 Specifies the name of the person in whose name a virtual machine is reg
 istered.

 -GuiRunOnceCommands <String[]>
 Specifies one or more commands to add to the [GuiRunOnce] section of an
 unattended answer file (such as SysPrep.inf or Unattend.xml). Use sing
 le quotes around each string enclosed in double quotes.
 Example:
 -GuiRunOnceCommands '"C:\APF\APFPostSysPrepCopy.cmd PARAMS1"', '"C:\APF
 \APFPostSysPrepCopy.cmd PARAMS1"'
 For information about how Windows PowerShell uses quotes, type: Get-Hel
 p about_Quoting_Rules

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -JoinWorkgroup <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the wo
 rkgroup to which you want to join a virtual machine. You can use this p
 arameter to override the existing value on a template or on a guest ope
 rating system profile.

 -Name <String>
 Specifies the name of a VMM object.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -OrgName <String>
 Specifies the name of the organization of the person in whose name a vi
 rtual machine is registered.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -ProductKey <String>
 Specifies the product key to use for the operating system to be install
 ed on a virtual machine. The product key is a 25-digit number that iden
 tifies the product license.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -TimeZone <Int32>
 Specifies a number (an "index") that identifies a geographical region t
 hat shares the same standard time. For a list of time zone indexes, see
 "Microsoft Time Zone Index Values" at: http://go.microsoft.com/fwlink/
 ?LinkId=120935. If no time zone is specified, the default time zone use
 d for a virtual machine is the same time zone setting that is on the vi
 rtual machine host.
 Example: To specify the GMT Standard Time zone, type: -TimeZone 085

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Specify an organization name for an existing guest operating system prof
 ile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $OS = Get-OperatingSystem -VMMServer "VMMServer1.contoso.com" | whe
 re {$_.Name -eq "Windows Small Business Server 2003"}

 PS C:\> $OSProfile = New-GuestOSProfile -Name "NewProfile1" -ComputerName "
 Contoso1" -FullName "Contoso"

 PS C:\> Set-GuestOSProfile -GuestOSProfile $OSProfile -OrgName "Contoso"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents a specific operating sys
 tem (Windows Small Business Server 2003) and stores the operating system ob
 ject in variable $OS.

 The third command creates a guest operating system profile named NewProfile
 1, specifies that the computer name is Contoso1 and that the full name is C
 ontoso, and stores the profile object in variable $OSProfile.

 The last command sets Contoso as the organization name for the guest operat
 ing system profile created in the second command and specifies the name of
 the operating system.

REMARKS
 For more information, type: "get-help Set-GuestOSProfile -detailed".
 For technical information, type: "get-help Set-GuestOSProfile -full".

[bookmark: _Toc225244426]HardDisk
[bookmark: _Toc225244427]Copy-HardDisk

SYNOPSIS
 Copies a volume of a physical hard disk on a source computer to a Windows-b
 ased virtual hard disk file (a .vhd file) on the specified Virtual Machine
 Manager host.

SYNTAX
 Copy-HardDisk -SourceComputerName <String> -VMHost [<String Host>] [-Creden
 tial <PSCredential>] [-DiskSizeAdd <Int32>] [-DriverPath <String>] [-Dynami
 c] [-Fixed] [-JobGroup <Guid>] [-JobVariable <String>] [-Offline] [-Owner <
 String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Shutdow
 n] [-Trigger] [-VMMServer [<String ServerConnection>]] [-VolumeDeviceID <Gu
 id>] [<CommonParameters>]

 Copy-HardDisk -MachineConfig <MachineConfig> -VMHost [<String Host>] [-Cred
 ential <PSCredential>] [-DiskSizeAdd <Int32>] [-DriverPath <String>] [-Dyna
 mic] [-Fixed] [-JobGroup <Guid>] [-JobVariable <String>] [-Offline] [-Owner
 <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Shutd
 own] [-Trigger] [-VMMServer [<String ServerConnection>]] [-VolumeDeviceID <
 Guid>] [<CommonParameters>]

DETAILED DESCRIPTION
 Copies a volume of a physical hard disk on a source computer to a Windows-b
 ased virtual hard disk file (a .vhd file) on the specified Virtual Machine
 Manager host. If the volume contains an operating system, after you run Cop
 y-HardDisk, you must use the New-P2V cmdlet to configure the operating syst
 em to run in a virtual environment.

 When you used Copy-HardDisk with the -Offline parameter, the computer whose
 hard disk is to be copied is first started in the Windows Preinstallation
 Environment (Windows PE) and then the volumes are copied.

PARAMETERS
 -MachineConfig <MachineConfig>
 Specifies a physical machine configuration to use when you convert a ph
 ysical machine to a virtual machine. Machine configuration includes inf
 ormation about the physical computer's hardware, disks, and operating s
 ystem.

 -SourceComputerName <String>
 Specifies the source computer for a physical-to-virtual machine convers
 ion (P2V conversion) performed by VMM.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the source computer name.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -DiskSizeAdd <Int32>
 Specifies, in megabytes (MB), the amount of additional disk space to ad
 d to a virtual hard disk when performing a physical-to-virtual (P2V) or
 virtual-to-virtual (V2V) machine conversion. Volumes located on the vi
 rtual hard disk are automatically extended to fill the entire virtual h
 ard disk.

 -DriverPath <String>
 Specifies the path to drivers for any offline physical-to-virtual machi
 ne conversion (P2V conversion).

 -Dynamic
 Specifies that a virtual hard disk can expand dynamically.

 -Fixed
 Specifies that a virtual hard disk is fixed in size.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Offline
 Specifies that the operation is performed offline.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -Shutdown
 Specifies that the source server shuts down after a successful physical
 -to-virtual machine conversion (P2V conversion).

 -Trigger
 Starts the execution a job group for a physical-to-virtual (P2V) conver
 sion, a virtual-to-virtual (V2V) conversion, or the conversion of a phy
 sical hard disk to a virtual hard disk.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -VolumeDeviceID <Guid>
 Specifies the device ID of the volume to convert in a physical-to-virtu
 al machine conversion (P2V conversion).

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Copy a physical hard disk from a source machine to a virtual hard disk f
 ile.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> Copy-HardDisk -SourceComputerName "P2VSource01.Contoso.com" -Volume
 DeviceID "C" -Credential $Credential -VMHost $VMHost -Path "C:\MyVHDs" -Fix
 ed -DiskSizeAdd 1024

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are either a local Administrator account
 or a domain account with administrator rights on the computer on which resi
 des the physical hard disk that you want to convert to a virtual hard disk.

 The second command connects to VMMServer1 in the Contoso.com domain and ret
 rieves the server object from the VMM database; the following commands use
 this server by default.

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in variable $VMHost.

 The last command copies and converts the "C:" volume located on the source
 computer named P2VSource01 (in the Contoso.com domain) into a new virtual h
 ard disk (still named "C:") and places it on VMHost01 at the specified path
 (C:\MyVHDs). The Fixed parameter specifies that the .vhd is fixed rather t
 han dynamic in format, and the DiskSizeAdd parameter increases the size of
 the volume by 1024 MB. As this command is processed, $Credential provides y
 our credentials to Copy-HardDisk.

 2: Copy a physical hard disk and configure the operating system on that vol
 ume to run in a virtual environment.

 PS C:\> $Credential = Get-Credential

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"

 PS C:\> $MachineConfig = New-MachineConfig -SourceComputerName "P2VSource.C
 ontoso.com" -Credential $Credential

 PS C:\> Copy-HardDisk -SourceComputerName "P2VSource02.Contoso.com" -Volume
 DeviceID "C" -Credential $Credential -VMHost $VMHost -Path "C:\MyVMs" -Fixe
 d -DiskSizeAdd 1024

 PS C:\> New-P2V -MachineConfig $MachineConfig -Name "VM01" -VMHost $VMHost
 -Path "C:\MyVMs" -MemoryMB 256 -Credential $Credential -RunAsynchronously

 The first command uses Get-Credential to prompt you to supply an appropriat
 e user name and password and stores your credentials in $Credential.

 The second command connects to VMMServer1.

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in $VMHost.

 The fourth command gathers the machine configuration information from the p
 hysical source machine called P2VSource02 (in the Contoso.com) and stores t
 he machine configuration information in $MachineConfig. As this command is
 processed, $Credential provides your credentials to New-MachineConfig.

 The fifth command copies and converts the "C:" volume located on the source
 computer named P2VSource02 into a new virtual hard disk (still named "C:")
 and places it on VMHost01 at the specified path (C:\MyVMs). The Fixed para
 meter specifies that the .vhd is fixed rather than dynamic in format, and t
 he DiskSizeAdd parameter increases the size of the volume by 1024 MB. As th
 is command is processed, $Credential provides your credentials to Copy-Hard
 Disk.

 The last command uses the virtual hard disk (located at C:\MyVMs on VMHost0
 1) that was created in the preceding step and the machine configuration sto
 red in $MachineConfig to create a new virtual machine called VM01. The New-
 P2V cmdlet automatically configures the operating system on the virtual har
 d disk to run in a virtual environment; it uses the -MemoryMB parameter to
 assign 256 MB of memory on the host for use by the virtual machine; and it
 uses the RunAsynchronously parameter to return control to the shell immedia
 tely (before the command completes).

REMARKS
 For more information, type: "get-help Copy-HardDisk -detailed".
 For technical information, type: "get-help Copy-HardDisk -full".

[bookmark: _Toc225244428]HardwareProfile
[bookmark: _Toc225244429]Get-HardwareProfile

SYNOPSIS
 Gets hardware profile objects from the Virtual Machine Manager library.

SYNTAX
 Get-HardwareProfile [-All] [-VMMServer [<String ServerConnection>]] [<Commo
 nParameters>]

 Get-HardwareProfile [-ID <Guid>] [-VMMServer [<String ServerConnection>]] [
 <CommonParameters>]

DETAILED DESCRIPTION
 Gets from the Virtual Machine Manager library one or more objects that repr
 esent hardware profiles. You can use a hardware profile repeatedly to creat
 e new virtual machines or virtual machine templates.

 For more information about hardware profiles, type:
 Get-Help New-HardwareProfile -detailed

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all hardware profiles from the library.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-HardwareProfile

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets from the VMM library all objects that represent har
 dware profiles and displays information about these profiles to the user.

 2: Get a specific hardware profile from the library.

 C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 C:\> Get-HardwareProfile | where { $_.Name -eq "NewProfile1" }

 The first command connects to VMMServer1.

 The second command gets the object that represent the hardware profile name
 d NewProfile1 and displays information about this hardware profile to the u
 ser.

REMARKS
 For more information, type: "get-help Get-HardwareProfile -detailed".
 For technical information, type: "get-help Get-HardwareProfile -full".

[bookmark: _Toc225244430]New-HardwareProfile

SYNOPSIS
 Creates a hardware profile for use in Virtual Machine Manager.

SYNTAX
 New-HardwareProfile [-Name] <String> [-BootOrder <BootDevice[]>] [-CPUCount
 <Int32>] [-CPUMax <Int32>] [-CPUReserve <Int32>] [-CPUType [<ProcessorType
 String>]] [-Description <String>] [-DiskIO <Int32>] [-ExpectedCPUUtilizati
 on <Int32>] [-HardwareProfile <HardwareProfile>] [-HighlyAvailable <Boolean
 >] [-JobGroup <Guid>] [-JobVariable <String>] [-LimitCPUFunctionality <Bool
 ean>] [-MemoryMB <Int32>] [-NetworkUtilization <Int32>] [-NumLock] [-Owner
 <String>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsynchronously]
 [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a hardware profile for use in Virtual Machine Manager that stores h
 ardware configuration information. You can create a standalone hardware pro
 file or customize a template or virtual machine to include hardware profile
 settings. The New-HardwareProfile cmdlet stores the new hardware profile o
 bject in the Virtual Machine Manager library.

 You can create a hardware profile based on defaults, based on an existing h
 ardware profile, or you can customize a hardware profile as you create the
 profile. If you specify no parameters except the Name parameter (which is r
 equired), Virtual Machine Manager creates a default hardware profile object
 .

 Hardware profile settingsfor a virtual machine include:

 * Boot order settings in the BIOS that specify the device startup order
 for a virtual machine.

 NOTE: The boot order setting is available only for virtual machines
 on a Hyper-V host.

 * CPU settings for a virtual machine.

 * Memory available on a virtual machine.

 * A virtual floppy drive.

 * Two virtual COM ports (COM1 and COM2).

 * A built-in virtual IDE device.

 * One or more optional virtual SCSI adapters.

 * One or more optional virtual network adapters that you can attach to
 an internal network or to an external network. A virtual network
 adapter can be emulated or synthetic.

 * The priority assigned to a specific virtual machine for using the
 host's CPU resources in comparison to the use of the host's CPU by
 other virtual machines deployed on the same host. CPU priorities are
 determined by the virtualization software.

 * Whether (optionally) a virtual machine created from this profile will
 be highly available. A highly available virtual machine is a virtual
 machine that can be placed only on a host that is part of a host
 cluster.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -BootOrder <BootDevice[]>
 Specifies the order of devices that a virtual machine on a Hyper-V host
 uses to start up.
 Valid values: CD, IDEHardDrive, PXEBoot, or Floppy.
 Example: -BootOrder PXEBoot,IDEHardDrive,CD,Floppy

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUMax <Int32>
 Specifies the highest percentage of the total resources of a single CPU
 on the host that can be used by a specific virtual machine at any give
 n time.
 Example: -CPUMax 80 (to specify 80 per cent)

 -CPUReserve <Int32>
 Specifies the minimum percentage of the resources of a single CPU on th
 e host to allocate to a virtual machine. The percentage of CPU capacity
 that is available to the virtual machine is never less than this perce
 ntage.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -Description <String>
 Specifies a description for the specified object.

 -DiskIO <Int32>
 Specifies the number of disk input/output operations per second (IOPS)
 on the host that can be used by a specific virtual machine.
 Example: -DiskIO 1500 (to specify 1500 IOPS).

 -ExpectedCPUUtilization <Int32>
 Specifies (as a percentage) the amount of CPU on the host that you expe
 ct this virtual machine to use. This value is used only when VMM determ
 ines a suitable host for the virtual machine.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -HighlyAvailable <Boolean>
 Specifies that a virtual machine will be placed on a Hyper-V host that
 is part of a host cluster. Configure this setting on a virtual machine,
 or on a template or hardware profile that will be used to create virtu
 al machines.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LimitCPUFunctionality <Boolean>
 Enables running an older operating system (such as Windows NT 4.0) on a
 virtual machine deployed on a Hyper-V host or on a VMware ESX host by
 providing only limited CPU functionality for the virtual machine.

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -NetworkUtilization <Int32>
 Specifies, in megabits per second (Mb/s), the amount of bandwidth on th
 e host's network that can be used by a specific virtual machine.
 Example: -NetworkUtilization 10 (to specify 10 Mb/s)

 -NumLock
 Enables the BIOS value for NumLock on a virtual machine (or on a templa
 te or hardware profile that is used to create virtual machines) on a Hy
 per-V host. This parameter does not apply to virtual machines on Virtua
 l Server hosts or on VMware ESX hosts.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a default hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> New-HardwareProfile -Name "NewProfile1"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command creates a default hardware profile named NewProfile1.

 2: Create a hardware profile that sets boot order, CPU, and memory.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com" | Out-Null
 PS C:\> New-HardwareProfile -Name "LargeVM" -BootOrder PXEBoot,CD,Floppy,ID
 EHardDrive -MemoryMB 1024 -CPUCount 4

 The first command connects to VMMServer1 and then uses the Out-Null cmdlet
 to redirect the output to $Null instead of sending the output to the consol
 e.

 The second command creates a new hardware profile, names it "LargeVM", sets
 "PXEBoot" as the first entry in the BIOS boot order, specifies 1024 MB of
 memory, and specifies that a virtual machine created by using this hardware
 profile will have four processors.

 3: Clone and then modify an existing hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = New-HardwareProfile -Name "NewProfile3" -MemoryMB 512
 PS C:\> New-HardwareProfile -Name "NewProfile4" -HardwareProfile $HWProfile
 -RelativeWeight 100

 The first command connects to VMMServer1.

 The second command creates a hardware profile called NewProfile3, specifies
 that the amount of memory on the host that a virtual machine (created by u
 sing this hardware profile) can use is 512 MB, and stores the profile objec
 t in variable $HWProfile.

 The last command creates another hardware profile, called NewProfile4, whic
 h is based on NewProfile3 but modifies the value for relative weight. All o
 ther settings in NewProfile4 are identical to those in NewProfile3.

 4: Create a hardware profile that contains a network adapter, a SCSI adapte
 r, and a DVD drive.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $JobGroupId = [Guid]::NewGuid().ToString()

 PS C:\> New-VirtualNetworkAdapter -JobGroup $JobGroupID -PhysicalAddressTyp
 e Dynamic -VirtualNetwork "Internal Network"

 PS C:\> New-VirtualSCSIAdapter -JobGroup $JobGroupID -AdapterID 6 -Shared $
 FALSE

 PS C:\> New-VirtualDVDDrive -JobGroup $JobGroupID -Bus 1 -LUN 0

 PS C:\> New-HardwareProfile -Name "NewProfile2" -Owner "Contoso\Nicholas" -
 Description "Temporary Hardware Config used to create a VM/Template" -Memor
 yMB 512 -JobGroup $JobGroupID

 The first command connects to VMMServer1.

 The second command generates a globally unique identifier (GUID) and stores
 the GUID string in variable $JobGroupID. The job group ID functions as an
 identifier that groups subsequent commands that include this identifier int
 o a single job group.

 The third command will create a virtual network adapter but uses the JobGro
 up parameter to specify that the network adapter is not created until just
 before the New-HardwareProfile cmdlet (in the last command) runs. This comm
 and sets the physical address type (MAC address type) to dynamic and specif
 ies that the new virtual network adapter will connect to a virtual network
 called "Internal Network."

 The fourth command will create a virtual SCSI adapter but uses the JobGroup
 parameter to specify that the SCSI adapter is not created until just befor
 e the New-HardwareProfile cmdlet (in the last command) runs. This command s
 ets the adapter ID to 6, and it sets the Shared parameter to $FALSE so that
 the adapter will not be shared (as it would have had to be if you wanted t
 o use the adapter in guest clustering).

 The fifth command will create a virtual DVD drive but uses the JobGroup par
 ameter to specify that the DVD drive is not created until just before the N
 ew-HardwareProfile cmdlet (in the last command) runs. Specifying Bus 1 and
 LUN 0 attaches the virtual DVD drive to Secondary Channel (0) on the IDE bu
 s.

 The sixth command creates a hardware profile named NewProfile2, sets the ow
 ner to Nicholas (whose account is in the Contoso.com domain), specifies a d
 escription, and specifies that the amount of memory on the host that a virt
 ual machine (created by using this hardware profile) will use is 512 MB. Be
 fore the New-HardwareProfile cmdlet creates the hardware profile, the JobGr
 oup parameter in this final command executes all of the preceding cmdlets t
 hat specify the same JobGroup GUID. When New-VirtualNetworkAdapter, New-Vir
 tualSCSIAdapter, and New-VirtualDVDDrive execute, the resulting objects tha
 t are created will be automatically associated with the new hardware profil
 e.

 5: Create a hardware profile and add it to a new template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com" | Out-Null

 PS C:\> $HWProfile = New-HardwareProfile -Name "LargeHAVM" -CPUCount 4 -Mem
 oryMB 64000 -CPUMax 100 -Owner "User1@Contoso" -HighlyAvailable $TRUE

 PS C:\> $VHD = Get-VirtualHardDisk | where { $_.Name -eq “VHD01.vhd” -and
 $_.LibraryServer.Name -eq "FileServer01.Contoso.com” }

 PS C:\> $OS = Get-OperatingSystem | where {$_.Name -eq "64-bit edition of W
 indows Server 2008 Datacenter"}

 PS C:\> New-Template -Name "LargeHALOBTemplate" -HardwareProfile $HWProfile
 -OperatingSystem $OS -VirtualHardDisk $VHD -NoCustomization

 The first command connects to VMMServer1 and then uses the Out-Null cmdlet
 to redirect the output to $Null instead of sending the output to the consol
 e.

 The second command creates a new hardware profile, names it "LargeHAVM"; sp
 ecifies that it contains four processors and that the highest percentage of
 the total resources of a single CPU on a host that can be used by a virtua
 l machine is 100 percent; assigns 64 GB of RAM and an owner; sets the Highl
 yAvailable flag $TRUE; and stores the new hardware profile object in $HWPro
 file. The HighlyAvailable flag specifies that a virtual machine created by
 using this hardware profile (either directly or through a template) will be
 placed on a host that is a node of a host cluster.

 The third command gets a virtual hard disk object by name from the library
 and stores the virtual hard disk object in $VHD.

 The fourth command gets an operating system object by name and stores the o
 perating system object in $OS.

 The last command creates a new template, names it "LargeHALOBTemplate", and
 specifies that it use the operating system, hardware profile, and virtual
 hard disk retrieved or created in the preceding commands, without any custo
 mization to the operating system.

REMARKS
 For more information, type: "get-help New-HardwareProfile -detailed".
 For technical information, type: "get-help New-HardwareProfile -full".

[bookmark: _Toc225244431]Remove-HardwareProfile

SYNOPSIS
 Removes a hardware profile object from Virtual Machine Manager.

SYNTAX
 Remove-HardwareProfile [-HardwareProfile] <HardwareProfile> [-Confirm] [-Jo
 bVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParamet
 ers>]

DETAILED DESCRIPTION
 Removes one or more objects that represent hardware profiles from the Virtu
 al Machine Manager library.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -Confirm
 Prompts for confirmation before running the command.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific hardware profile from the library.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "NewProfile1
 "}
 PS C:\> Remove-HardwareProfile -HardwareProfile $HWProfile

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the hardware profile nam
 ed NewProfile1 from the VMM library and stores the hardware profile object
 in variable $HWProfile.

 The second command removes New-Profile1 from the library.

 2: Remove all hardware profiles without being prompted to confirm each dele
 tion.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-HardwareProfile | Remove-HardwareProfile -Confirm

 The first command connects to VMMServer1.

 The second command gets all hardware profile objects and passes each profil
 e object to the Remove-HardwareProfile cmdlet, which removes each hardware
 profile. The Confirm parameter prompts you to confirm whether you want to d
 elete these hardware profile objects.

REMARKS
 For more information, type: "get-help Remove-HardwareProfile -detailed".
 For technical information, type: "get-help Remove-HardwareProfile -full".

[bookmark: _Toc225244432]Set-HardwareProfile

SYNOPSIS
 Changes the properties of a hardware profile used in Virtual Machine Manage
 r.

SYNTAX
 Set-HardwareProfile [-HardwareProfile] <HardwareProfile> [-BootOrder <BootD
 evice[]>] [-CPUCount <Int32>] [-CPUMax <Int32>] [-CPUReserve <Int32>] [-CPU
 Type [<ProcessorType String>]] [-Description <String>] [-DiskIO <Int32>] [-
 ExpectedCPUUtilization <Int32>] [-HighlyAvailable <Boolean>] [-JobGroup <Gu
 id>] [-JobVariable <String>] [-LimitCPUFunctionality <Boolean>] [-MemoryMB
 <Int32>] [-Name <String>] [-NetworkUtilization <Int32>] [-NumLock] [-Owner
 <String>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsynchronously]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a hardware profile object used in a Virtu
 al Machine Manager environment. Properties that you can change include sett
 ings for boot order, CPU settings, the amount memory on the host that is as
 signed to a virtual machine, and other options.

 If you want to change the properties of a virtual floppy drive, virtual DVD
 drive, virtual COM port, virtual network adapter, or virtual SCSI adapter
 associated with a specific hardware profile, you can use Set-VirtualFloppyD
 rive, Set-VirtualDVDDrive, Set-VirtualCOMPort, Set-VirtualNetworkAdapter, o
 r Set-VirtualSCSIAdapter, respectively.

 Changes made to a hardware profile affect only the hardware profile itself.
 Changes do not affect any existing virtual machines that were created earl
 ier by using this profile.

 For more information about hardware profiles, type:
 Get-Help New-HardwareProfile -detailed

PARAMETERS
 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -BootOrder <BootDevice[]>
 Specifies the order of devices that a virtual machine on a Hyper-V host
 uses to start up.
 Valid values: CD, IDEHardDrive, PXEBoot, or Floppy.
 Example: -BootOrder PXEBoot,IDEHardDrive,CD,Floppy

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUMax <Int32>
 Specifies the highest percentage of the total resources of a single CPU
 on the host that can be used by a specific virtual machine at any give
 n time.
 Example: -CPUMax 80 (to specify 80 per cent)

 -CPUReserve <Int32>
 Specifies the minimum percentage of the resources of a single CPU on th
 e host to allocate to a virtual machine. The percentage of CPU capacity
 that is available to the virtual machine is never less than this perce
 ntage.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -Description <String>
 Specifies a description for the specified object.

 -DiskIO <Int32>
 Specifies the number of disk input/output operations per second (IOPS)
 on the host that can be used by a specific virtual machine.
 Example: -DiskIO 1500 (to specify 1500 IOPS).

 -ExpectedCPUUtilization <Int32>
 Specifies (as a percentage) the amount of CPU on the host that you expe
 ct this virtual machine to use. This value is used only when VMM determ
 ines a suitable host for the virtual machine.

 -HighlyAvailable <Boolean>
 Specifies that a virtual machine will be placed on a Hyper-V host that
 is part of a host cluster. Configure this setting on a virtual machine,
 or on a template or hardware profile that will be used to create virtu
 al machines.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LimitCPUFunctionality <Boolean>
 Enables running an older operating system (such as Windows NT 4.0) on a
 virtual machine deployed on a Hyper-V host or on a VMware ESX host by
 providing only limited CPU functionality for the virtual machine.

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -Name <String>
 Specifies the name of a VMM object.

 -NetworkUtilization <Int32>
 Specifies, in megabits per second (Mb/s), the amount of bandwidth on th
 e host's network that can be used by a specific virtual machine.
 Example: -NetworkUtilization 10 (to specify 10 Mb/s)

 -NumLock
 Enables the BIOS value for NumLock on a virtual machine (or on a templa
 te or hardware profile that is used to create virtual machines) on a Hy
 per-V host. This parameter does not apply to virtual machines on Virtua
 l Server hosts or on VMware ESX hosts.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Specify an amount of memory for an existing hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = New-HardwareProfile -Name "NewProfile1" -MemoryMB 512
 PS C:\> Set-HardwareProfile -HardwareProfile $HWProfile -MemoryMB 1024

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command creates a hardware profile named NewProfile1; specifies
 that the amount of memory on a host that a virtual machine (created by usin
 g this hardware profile) will use is 512 MB; and stores the profile object
 in variable $HWProfile.

 The last command changes the memory value for NewProfile1 to 1024 MB.

 2: Specify a new owner for multiple hardware profiles.

 PS C:\> Get-VMMServer "VMMServer01.contoso.com"

 PS C:\> $Profiles = Get-HardwareProfile | where {$_.Name -match "Profile"}

 PS C:\> foreach ($Profile in $Profiles) {Set-HardwareProfile -HardwareProfi
 le $Profile -Owner "Contoso\<NewOwnerUserName>"}

 The first command connects to VMMServer1.

 The second command gets a list of hardware profile objects that match the s
 earch criteria and stores the hardware profile objects in $Profiles (an obj
 ect array).

 The third command uses a foreach statement to specify a new owner for each
 of the profiles in the array.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

 3: Specify a new boot order for multiple hardware profiles.

 PS C:\> Get-VMMServer "VMMServer01.Contoso.com"

 PS C:\> $Profiles = @(Get-HardwareProfile | where {$_.Name -match "RemoteBo
 otProfile"})

 PS C:\> foreach ($Profile in $Profiles) {Set-HardwareProfile -HardwareProfi
 le $Profile -BootOrder PXEBoot,CD,IDEHardDrive,Floppy}

 The first command connects to VMMServer1.

 The second command gets all objects that represent hardware profiles in the
 library that match the search criteria (the profile name contains the stri
 ng "RemoteBootProfile") and stores the hardware profile objects in $Profile
 s. Using the "@" symbol and parentheses ensures that the command stores the
 results in an array (in case the command returns a single object or a null
 value).

 The last command uses a foreach statement to specify a new boot order for e
 ach hardware profile object in the array.

 4: Search for hardware profiles with a specific configuration and append te
 xt to the description field.

 PS C:\> Get-VMMServer "VMMServer01.contoso.com"

 PS C:\> $Profiles = @(Get-HardwareProfile | where {$_.CPUCount -eq 4})

 PS C:\> foreach ($Profile in $Profiles) {$Text = $Profile.Description; Set-
 HardwareProfile -HardwareProfile $Profile -Description $Text" (Contains 4 P
 rocessors)"}

 The first command connects to VMMServer1.

 The second command gets all objects that represent hardware profiles that m
 atch the search criteria (CPU Count is equal to 4) and stores the hardware
 profile objects in $Profiles (an object array).

 The last command uses a foreach statement to iterate through each profile o
 bject in the array. For each profile, the Description text is stored to a v
 ariable ($Text), and then the Set-HardwareProfile cmdlet uses the Descripti
 on parameter to append "(Contains 4 Processors)" to the contents of each in
 stance of $Text.

REMARKS
 For more information, type: "get-help Set-HardwareProfile -detailed".
 For technical information, type: "get-help Set-HardwareProfile -full".

[bookmark: _Toc225244433]ISO
[bookmark: _Toc225244434]Get-ISO

SYNOPSIS
 Gets ISO objects from the Virtual Machine Manager library.

SYNTAX
 Get-ISO [-All] [-VMMServer [<String ServerConnection>]] [<CommonParameters>
]

 Get-ISO [-ID <Guid>] [-VMMServer [<String ServerConnection>]] [<CommonParam
 eters>]

DETAILED DESCRIPTION
 Gets objects that represent ISO files from the Virtual Machine Manager libr
 ary. The ISO file that an ISO object represents is stored in a library shar
 e on a library server.

 In Virtual Machine Manager, some typical uses of an ISO file include:

 * Storing an operating system ISO in the library that you can use
 later to install that operating system on a new or existing virtual
 machine deployed on a host.

 * Storing application software, such as a Microsoft Office ISO, in
 the library, so that you can install it later on a virtual machine
 deployed on a host.

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all ISOs on all VMM library servers.

 PS C:\> Get-ISO -VMMServer VMMServer1.Contoso.com

 Gets from the VMM library on VMMServer1 all objects that represent ISO file
 s and displays information about these ISOs to the user. The ISO files that
 the retrieved objects represent are stored in library shares on library se
 rvers.

 2: Get all ISOs on a specific VMM library server.

 PS C:\> Get-ISO -VMMServer VMMServer1.Contoso.com | where { $_.LibraryServe
 r.Name -eq "FileServer01.Contoso.com" }

 Gets from the library on VMMServer1 all objects that represent ISO files st
 ored on library server FileServer01 and displays information about these IS
 Os to the user.

 3: Get all ISOs with a specific string in the file name on any VMM library
 server.

 PS C:\> Get-ISO -VMMServer VMMServer1.Contoso.com | where { $_.Name -match
 "WinISO" }

 Gets all objects on any VMM library server managed by VMMServer1 that repre
 sent ISO files that contain "WinISO" in the file name and displays informat
 ion about these ISOs to the user.

 NOTE: By default, the name of an ISO object in the library is the same name
 as the name of the actual ISO file stored in the file system on the librar
 y server.

REMARKS
 For more information, type: "get-help Get-ISO -detailed".
 For technical information, type: "get-help Get-ISO -full".

[bookmark: _Toc225244435]Remove-ISO

SYNOPSIS
 Removes an ISO object from the library in Virtual Machine Manager.

SYNTAX
 Remove-ISO [-ISO] <ISO> [-Confirm] [-Force] [-JobVariable <String>] [-PROTi
 pID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes an object that represents an ISO image from the Virtual Machine Man
 ager library and deletes the corresponding ISO file on the library server.

 If the ISO is attached to a virtual machine, template, or hardware profile
 (and if you do not use the Force parameter), VMM lists the container that c
 ontains the ISO and prompts you to confirm that you want to remove the ISO:

 * If you reply Yes, VMM removes the association between the ISO and
 the container to which it is attached, and then deletes the ISO
 object from VMM.

 * If you reply No, the operation is cancelled.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -ISO <ISO>
 Specifies an ISO object.

 -Confirm
 Prompts for confirmation before running the command.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove an ISO object and delete the corresponding .iso file.

 PS C:\> $Iso = Get-ISO -VMMServer VMMServer1.Contoso.com | where { $_.Name
 -eq "VMAdditions.iso" -and $_.LibraryServer.Name -eq "FileServer01.Contoso.
 com" }
 PS C:\> Remove-ISO -ISO $Iso

 The first command gets the object that represents the ISO file named VMAddi
 tions (stored in the file system on library server Fileserver01) from VMMSe
 rver1 and stores the ISO object in variable $Iso.

 The second command removes the ISO object from the library and deletes the
 corresponding .iso file from the file system on the library server.

 NOTE: This example assumes that the VMM environment includes at least one V
 irtual Server host and, therefore, that Virtual Machine Addtions (VMAdditio
 ns.iso) is available for installation on virtual machines deployed on a Vir
 tual Server host.

 2: Remove multiple ISO objects from the library.

 PS C:\> $Isos = Get-ISO -VMMServer VMMServer1.Contoso.com | where { $_.Name
 -match “VMAdditions.iso” }
 PS C:\> $Isos | Remove-ISO

 The first command gets all objects that represent ISO files whose name incl
 udes the string “VMAdditions” and stores these ISO objects in $Isos.

 The second command passes each ISO object in $Isos to the Remove-ISO cmdlet
 , which removes each ISO object from the library and deletes the correspond
 ing .iso file from the file system on the library server.

REMARKS
 For more information, type: "get-help Remove-ISO -detailed".
 For technical information, type: "get-help Remove-ISO -full".

[bookmark: _Toc225244436]Set-ISO

SYNOPSIS
 Changes properties of an ISO object used in Virtual Machine Manager.

SYNTAX
 Set-ISO [-ISO] <ISO> [-Description <String>] [-Enabled <Boolean>] [-JobVari
 able <String>] [-Name <String>] [-Owner <String>] [-PROTipID <Guid>] [-RunA
 synchronously] [-SharePath <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of an ISO object used in a Virtual Machine M
 anager environment. Properties that you can change include:

 - Description
 - Enabled
 - Name
 - Owner
 - SharePath

PARAMETERS
 -ISO <ISO>
 Specifies an ISO object.

 -Description <String>
 Specifies a description for the specified object.

 -Enabled <Boolean>
 Enables a library object (when set to TRUE) or disables a library objec
 t (when set to FALSE). For example, if you want to upgrade software on
 a virtual machine template, you can disable the template object in the
 VMM library to temporarily prevent users from using that object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Name <String>
 Specifies the name of a VMM object.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the owner of an ISO file.

 PS C:\> $Iso = @(Get-ISO -VMMServer VMMServer1.Contoso.com | where { $_.Nam
 e -eq "VMAdditions.iso" -and $_.LibraryServer.Name -eq "FileServer01.Contos
 o.com" })

 PS C:\> Set-ISO -ISO $Iso[0] -Owner “Contoso\HanyingFeng”

 The first command gets from the library on VMMServer1 the object that repre
 sents the ISO file named VMAdditions.iso (on library server FileServer01) a
 nd stores the ISO object in variable $Iso. Using the "@" symbol and parenth
 eses ensures that the cmdlet stores the returned object in an array (in cas
 e the command returns a single object or a null value).

 The second command changes the owner of the first ISO object stored in $Iso
 to Hanying Feng, a member of the Contoso.com domain.

 NOTE: In VMM 2008, by default, the name of an ISO object in the VMM library
 is the same name (including the file extension) as the name of the actual
 ISO file on the library server.

 2: Specify an owner for all ISO objects with an "Unknown" owner.

 PS C:\> Get-ISO -VMMServer "VMMServer1.Contoso.com" | where {$_.Owner -eq "
 Unknown"} | Set-ISO -Owner "Contoso\ChrisGray"

 Gets all ISO objects from the VMM library, selects only those ISO objects w
 hose owner is "Unknown", and specifies an owner for each ISO object.

 3: Disable an ISO object stored in the VMM library.

 PS C:\> $Iso = Get-ISO -VMMServer VMMServer1.Contoso.com | where { $_.Name
 -eq "VMAdditions.iso" -and $_.LibraryServer.Name -eq "FileServer01.Contoso.
 com" }

 PS C:\> Set-ISO -ISO $Iso -Enabled $FALSE

 The first command gets the object that represents the ISO image named VMAdd
 itions.iso (whose file is stored on the library server named FileServer01)
 from VMMServer1 and stores the ISO object in $Iso.

 The second command disables the ISO represented by the $Iso variable.

REMARKS
 For more information, type: "get-help Set-ISO -detailed".
 For technical information, type: "get-help Set-ISO -full".

[bookmark: _Toc225244437]Job
[bookmark: _Toc225244438] Get-Job

SYNOPSIS
 Gets Virtual Machine Manager job objects on the Virtual Machine Manager ser
 ver.

SYNTAX
 Get-Job [[-Name] <String>] [-All] [-Full <Boolean>] [-ID <Guid>] [-Job [<St
 ring Task>]] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent Virtual Machine Manager jobs on the
 Virtual Machine Manager server. A job is a series of steps that are perfor
 med sequentially to complete an action in the Virtual Machine Manager envir
 onment. You can retrieve job objects based on specified criteria.

 In Virtual Machine Manager, you can group a series of jobs and run them tog
 ether as a set. For example, a complex action in Virtual Machine Manager, s
 uch as creating a template, might incorporate a series of jobs, known as a
 job group. For examples that show you how to use job groups, type:

 Get-Help New-Template -example
 Get-Help NewHardwareProfile -example
 Get-Help New-VirtualDiskDrive -example
 Get-Help VirtualDVDDrive -example
 Get-Help New-VM -example
 Get-Help Set-VirtualCOMPort -example

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -Full <Boolean>
 Specifies that the cmdlet returns the job object with an audit record.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -Job [<String Task>]
 Specifies a VMM job object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all jobs currently running on a VMM server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MyJobs = Get-Job | where { $_.Status -eq "Running" } | Format-List
 -property Name, ID, Status
 PS C:\> $MyJobs

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command performs the following operations:

 * Gets from the VMM database all objects that represent
 VMM jobs.

 * Passes these job objects to the "where" filter, which selects
 only those jobs that are currently running on VM01.

 * Passes each job object for these running jobs to the Format-List
 cmdlet, which stores the name, ID number, and Status properties
 for each job in $MyJobs.

 The last command displays the information stored in $MyJobs to the user.

 2: Get information about the .NET type, methods, and properties of VMM job
 objects.

 PS C:> Get-Job -VMMServer VMMServer1.Contoso.com | Get-Member

 Gets job objects from VMMServer1 and passes each job object to the Get-Memb
 er cmdlet, which displays the .NET type for a job object:

 TypeName: Microsoft.SystemCenter.VirtualMachineManager.Task

 The command also displays a list of methods and properties that are associa
 ted with a VMM job object.

REMARKS
 For more information, type: "get-help Get-Job -detailed".
 For technical information, type: "get-help Get-Job -full".

[bookmark: _Toc225244439]Restart-Job

SYNOPSIS
 Restarts a failed or canceled Virtual Machine Manager job.

SYNTAX
 Restart-Job [-Job] [<String Task>] [-Credential <PSCredential>] [<CommonPar
 ameters>]

DETAILED DESCRIPTION
 Restarts one or more Virtual Machine Manager jobs that have failed or that
 have been canceled by a user. Jobs that are currently running must be cance
 led before they can be restarted. All restarted jobs start from the last kn
 own good checkpoint before a failure or a cancellation (some jobs have only
 a single checkpoint).

 Restarting a job displays the object properties of the job to the user and
 shows the "Status" property as “Running”.

PARAMETERS
 -Job [<String Task>]
 Specifies a VMM job object.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Restart all jobs that were cancelled on any virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-Job | where { $_.ResultName -eq "VM01" -and $_.Status -eq "Canc
 eled" } | Restart-Job

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command performs the following operations:

 * Gets from the VMM database all objects that represent
 VMM jobs.

 * Passes each job object to the "where" filter to select from
 the job results only jobs on the virtual machine named
 VM01 that have been cancelled.

 * Passes the cancelled job objects on VM01 to the Restart-Job
 cmdlet, which restarts each cancelled job.

 2: Restart a specific failed job.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-Job | where { $_.ID -eq "1234-1234-1234-1234" } | Restart-Job

 The first command connects to VMMServer1.

 The second command gets all objects that represent VMM jobs, selects only t
 he job with the ID 1234-1234-1234-1234, and restarts that job.

REMARKS
 For more information, type: "get-help Restart-Job -detailed".
 For technical information, type: "get-help Restart-Job -full".

[bookmark: _Toc225244440]Stop-Job

SYNOPSIS
 Stops running jobs in Virtual Machine Manager.

SYNTAX
 Stop-Job [-Job] [<String Task>] [<CommonParameters>]

DETAILED DESCRIPTION
 Stops one or more Virtual Machine Manager jobs that are running, and return
 s the object for each job in a stopped state. If the Virtual Machine Manage
 r job is not currently running, this cmdlet has no effect.

PARAMETERS
 -Job [<String Task>]
 Specifies a VMM job object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Stop all currently running jobs.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Job = Get-Job | where { $_.Status -eq "Running" }
 PS C:\> $Job | Stop-Job

 The first command connects to VMMServer1 and retrieves the server object fr
 om the VMM database. The following commands use this server by default.

 The second command gets all objects that represent VMM jobs, passes each jo
 b object to the "where" filter to select only the objects for jobs that are
 currently running, and stores these job objects in variable $Job (an objec
 t array).

 The last command passes each job object in $Job to the Stop-Job cmdlet, whi
 ch stops each running job.

 2: Stop a specific running job asynchronously.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Job = Get-Job | where { $_.ResultName -eq "VM01" -and $_.ID -eq "1
 234-1234-1234-1234" }
 PS C:\> Stop-Job -Job $Job

 The first command connects to VMMServer1.

 The second command gets all objects that represent VMM jobs and, from the j
 ob results, selects only the job on VM01 identified by job ID 1234-1234-123
 4-1234, and stores this job object in $Job.

 The last command stops the job and returns the stopped job object to the us
 er.

REMARKS
 For more information, type: "get-help Stop-Job -detailed".
 For technical information, type: "get-help Stop-Job -full".

[bookmark: _Toc225244441]LibraryRating
[bookmark: _Toc225244442]Get-LibraryRating

SYNOPSIS
 Calculates the placement rating of virtual machine libraries managed by Vir
 tual Machine Manager to determine whether a SAN transfer can be used to tra
 nsfer a virtual machine from a host to the library.

SYNTAX
 Get-LibraryRating -LibraryServer [<LibraryServer LibraryServer[]>] [-VM [<S
 tring VM>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Calculates the placement rating of virtual machine libraries managed by Vir
 tual Machine Manager. Specifically, this rating indicates whether Virtual M
 achine Manager can use a SAN transfer to transfer a particular virtual mach
 ine from a host server to a library server. If a SAN transfer is not possib
 le, you can use a LAN transfer to store the virtual machine in the library.

 For information about how to store a virtual machine in the Virtual Machine
 Manager library, type: Get-Help Store-VM -detailed

PARAMETERS
 -LibraryServer [<LibraryServer LibraryServer[]>]
 Specifies a VMM library server object or an array of library server obj
 ects.

 -VM [<String VM>]
 Specifies a virtual machine object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Determine whether you can use a SAN transfer to store a VM on the specif
 ied library server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $LibServ = Get-LibraryServer -ComputerName "LibraryServer01.Contoso
 .com"
 PS C:\> $LibRate = Get-LibraryRating -LibraryServer $LibServ -VM $VM
 PS C:\> $LibRate

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command gets the object that represents the virtual machine name
 d VM01 and stores the virtual machine object in variable $VM.

 The third command gets the object that represents the library server named
 LibraryServer01 and stores the library server object in variable $LibServ.

 The fourth command returns the placement rating for LibraryServer01 (which
 indicates whether VMM can use a SAN transfer to transfer VM01 to LibrarySer
 ver01)and stores the rating object in variable $LibRate.

 The last command displays the rating for LibraryServer01 to the user.

 NOTE: The Get-LibraryRating cmdlet does not return a star rating (as does t
 he Get-VMHostRating cmdlet for hosts), but indicates only whether it is pos
 sible to use a SAN transfer to transfer a virtual machine currently deploye
 d on a host to a specific library server. If a SAN transfer is not possible
 , you can use a LAN transfer to store the virtual machine in the library.

 2: Get placement ratings to place a VM on each available library server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $LibServ = Get-LibraryServer
 PS C:\> $LibRating = Get-LibraryRating -LibraryServer $LibServ -VM $VM
 PS C:\> $LibRating

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM01 and stores the virtual machine object in variable $VM.

 The third command gets all objects that represent library servers managed b
 y VMM and stores the library server objects in $LibServ.

 The fourth command returns the placement rating for each library server obj
 ect in $LibServ (which indicates whether VMM can use a SAN transfer to tran
 sfer VM01 to each of the library servers) and stores the rating for each li
 brary server object in $LibRating (an object array).

 The last command displays the rating information to the user.

 NOTE: The Get-LibraryRating cmdlet does not return a star rating (as does t
 he Get-VMHostRating cmdlet for hosts), but indicates only whether it is pos
 sible to use a SAN transfer to transfer a VM currently deployed on a host t
 o a specific library server. If a SAN transfer is not possible, you can use
 a LAN transfer to store the VM in the library.

REMARKS
 For more information, type: "get-help Get-LibraryRating -detailed".
 For technical information, type: "get-help Get-LibraryRating -full".

[bookmark: _Toc225244443]LibraryServer
[bookmark: _Toc225244444]Add-LibraryServer

SYNOPSIS
 Adds a computer as a library server to Virtual Machine Manager.

SYNTAX
 Add-LibraryServer [-ComputerName] <String> -Credential <PSCredential> [-Des
 cription <String>] [-JobGroup <Guid>] [-JobVariable <String>] [-LibraryGrou
 p <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String Se
 rverConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Adds one or more computers as library servers to the Virtual Machine Manage
 r database. For a computer to be a library server, it must be in the same d
 omain as, or in a trusted domain with, the Virtual Machine Manager server a
 nd must have one of the following operating systems installed:

 * Windows Server 2008
 * Windows Server 2003 with Service Pack 1 (SP1) or later

 When you add a server as a library server to Virtual Machine Manager, Virtu
 al Machine Manager automatically installs the Virtual Machine Manager agent
 software on that server.

 The Virtual Machine Manager library is made up of two primary components:

 * LIBRARY. The portion of the Virtual Machine Manager database that stores
 objects that represent all library resources.

 * LIBRARY RESOURCE FILES. Files that are stored in library shares on one
 or more physical library servers. Library resources can be distributed
 across multiple physical library servers. Some library objects have
 files and others do not.

 Virtual Machine Manager library resources include virtual machine templates
 , hardware profiles, guest operating system profiles, virtual hard disks (W
 indows-based .vhd files or VMware-based .vmdk files), virtual floppy disks
 (Windows-based .vfd files or VMware-based .flp files), ISO images (.iso fil
 es), and scripts. In addition, you can store virtual machines in the librar
 y that, currently, you do not want to deploy on a host.

 Of these resources, templates, hardware profiles, and guest operating syste
 m profiles are represented only by objects stored in the library. The other
 resources are files stored in the file system on library servers and objec
 ts that correspond to those files stored in the library.

 For more information about the VMM library, type:
 Get-Help about_VMM_2008_Library_Enhancements

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -Description <String>
 Specifies a description for the specified object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LibraryGroup <String>
 Specifies the group to which a VMM library server belongs. You can use
 a library group to associate library servers with particular host group
 s or to associate library servers with one another.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add a library server object to the VMM database.

 PS C:\> Add-LibraryServer -VMMServer VMMServer1.Contoso.com -ComputerName "
 FileServer01.Contoso.com"

 Adds a library server object that represents FileServer01 to the library in
 the VMM database provided by VMMServer1. Both servers are in the Contoso.c
 om domain.

 When a dialog box appears prompting you for credentials to perform this ope
 ration, type the user name and password for either a local Administrator ac
 count or a domain account with administrator rights on the library server.

 2: Add a highly available file server with two nodes as a library server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $Credential = Get-Credential

 PS C:\> $Nodes = "LibraryNode01.Contoso.com","LibraryNode02.Contoso.com"

 PS C:\> foreach ($Node in $Nodes) { Add-LibraryServer -ComputerName $Node
 -Credential $Credential}

 PS C:\> Add-LibraryServer -ComputerName "HAFileServer01.Contoso.com" -Crede
 ntial $Credential

 PS C:\> Add-LibraryShare -SharePath "\\HAFileServer01.Contoso.com\LibShare"
 -Credential $Credential

 The first command connects to VMMServer1 in the Contoso.com domain; the fol
 lowing commands use this server by default.

 The second command uses Get-Credential to prompt you to supply a user name
 and password and stores your credentials in $Credential. The required crede
 ntials for this operation are a domain account with administrator rights on
 each node of a failover cluster hosting the highly available file server t
 hat you want to add to VMM.

 This example assumes that:

 * The Windows Server 2008 Failover Cluster Management
 console was used earlier to create a 2-node failover cluster
 with nodes LibraryNode01 and LibraryNode02.

 * The High Availability Wizard or "Configure a Service or
 Application" action in the Failover Cluster Management
 console was used earlier to create a highly available file
 server named HAFileServer01.

 * The Failover Cluster Management console was used earlier to
 add the share "\\HAFileServer01.Contoso.com\LibraryShare".

 The third command stores, in $Nodes, the strings "LibraryNode01.Contoso.com
 " and "LibraryNode02.Contoso.com".

 The fourth command uses a foreach loop to pass each failover cluster node n
 ame stored in $Nodes to Add-LibraryServer, which adds the two nodes as libr
 ary servers. NOTE: For more information about the standard Windows PowerShe
 ll foreach loop statement, type: Get-Help about_ForEach. The foreach loop s
 tatement is not the same as the Foreach-Object cmdlet, which uses “foreach”
 as an alias.

 The fifth command uses Add-LibraryServer to add the highly available file s
 erver "HAFileServer01.Contoso.com" as a library server. Thus, in this examp
 le, the highly available file server (HAFileServer01) has two physical file
 servers (LibraryNode01 and LibraryNode02) as nodes.

 The sixth command uses Add-LibraryShare to add the share on the highly avai
 lable file server, specifying the share path: "\\HAFileServer01.Contoso.com
 \LibraryShare".

REMARKS
 For more information, type: "get-help Add-LibraryServer -detailed".
 For technical information, type: "get-help Add-LibraryServer -full".

[bookmark: _Toc225244445]Get-LibraryServer

SYNOPSIS
 Gets Virtual Machine Manager library server objects from the Virtual Machin
 e Manager database.

SYNTAX
 Get-LibraryServer [[-ComputerName] <String>] [-ID <Guid>] [-VMMServer [<Str
 ing ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent Virtual Machine Manager library ser
 vers from the Virtual Machine Manager library.

 For more information about library servers, type:
 Get-Help Add-LibraryServer -detailed

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all library servers.

 PS C:\> Get-LibraryServer -VMMServer VMMServer1.Contoso.com

 Gets all objects that represent library servers from the VMM library on VMM
 Server1 and displays information about these library servers to the user.

 NOTE: The name of a library server is the same as its computer name.

 2: Get a specific library server.

 PS C:\> Get-LibraryServer -VMMServer VMMServer1.Contoso.com -ComputerName "
 FileServer01.Contoso.com"

 Gets from the library on VMMServer1 the object that represents the library
 server FileServer01 and displays information about this library server to t
 he user.

 3: Get all library servers that match specified criteria.

 PS C:\> $LibServers = Get-LibraryServer -VMMServer "VMMServer1.Contoso.com"
 | where { $_.Name -match "FileServer" }

 Gets from the library on VMMServer1 all objects that represent library serv
 ers whose name includes the string “FileServer” (such as FileServer01, File
 Server02, and so on) and stores these library server objects in $LibServers
 .

REMARKS
 For more information, type: "get-help Get-LibraryServer -detailed".
 For technical information, type: "get-help Get-LibraryServer -full".

[bookmark: _Toc225244446]Remove-LibraryServer

SYNOPSIS
 Removes a library server object from Virtual Machine Manager.

SYNTAX
 Remove-LibraryServer [-LibraryServer] [<String LibraryServer>] -Credential
 <PSCredential> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronous
 ly] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes an object that represents a library server (and all library objects
 on that library server) from the Virtual Machine Manager database. Library
 objects that have a corresponding file (such as .vhd or .vmdk files) store
 d on the server's file system are not removed from the file system by this
 cmdlet.

 This cmdlet operates as follows:

 * If this library server is also the VMM server, you cannot remove the
 library server, so the remove library server operation will fail.

 * If this computer is both a library server and a host, this cmdlet
 removes only the library server component from VMM, but the
 computer continues to function as a host.

 * If this computer is only a library server (not also a host or a VMM
 server), the library server is removed from VMM.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a library server object from VMM.

 PS C:\> $LibServ = Get-LibraryServer -VMMServer VMMServer1.Contoso.com -Com
 puterName “FileServer01.Contoso.com”
 PS C:\> Remove-LibraryServer -LibraryServer $LibServ

 The first command retrieves from the VMM library on VMMServer1 the object t
 hat represents library server FileServer01 and stores the library server ob
 ject in variable $LibServ.

 The second command removes the library server object, and all library share
 s on this server, from the VMM library. When the Remove-LibraryServer cmdle
 t is used with the -LibraryServer parameter as shown in this example, you c
 an pass only one library server object to the cmdlet.

 2: Remove from VMM multiple library server objects that have the specified
 string in the server name.

 PS C:\> $LibServers = Get-LibraryServer -VMMServer VMMServer1.Contoso.com |
 where { $_.Name -match “FileServer” }
 PS C:\> $LibServer | Remove-LibraryServer

 The first command gets from VMMServer1 all objects that represent library s
 ervers with computer names that include the string “FileServer” and stores
 the returned objects in $LibServers (an object array).

 The second command passes each library server object in $LibServer to Remov
 e-LibraryServer, which removes each object from VMM.

 3: Remove a highly available library server and all of its nodes.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $Credential = Get-Credential

 PS C:\> $Cluster = Discover-Cluster -ComputerName "HAFileServer01.Contoso.c
 om" -Credential $Credential

 PS C:\> Remove-LibraryServer -LibraryServer "HAFileServer01.Contoso.com" -C
 redential $Credential -RunAsynchronously

 PS C:\> ForEach($ClusterNode in $Cluster.ClusterNodes) {Remove-LibraryServe
 r -LibraryServer $ClusterNode -Credential $Credential -RunAsynchronously}

 The first command connects to VMMServer1.

 The second command uses Get-Credential to prompt you to supply a user name
 and password and stores your credentials in $Credential. The required crede
 ntials for this operation are either a local Administrator account or a dom
 ain account with administrator rights on the library server. The following
 commands use $Credential to pass your credentials to each cmdlet that requi
 res credentials.

 The third command uses Discover-Cluster to confirm that HAFileServer01 is a
 highly available file server and stores the objects that represent the clu
 ster nodes in $Cluster (an object array).

 The fourth command removes the highly available file server (by specifying
 its name) as a library server from VMM. The command uses the -RunAsynchrono
 usly parameter to return control to the shell immediately (before this comm
 and completes) because the last command does not need to wait until after t
 his command finishes.

 The last command uses a foreach loop to pass each object stored in $Cluster
 (each of which is a node of the cluster) to the Remove-LibraryServer cmdle
 t, which removes each node from VMM. The command uses the -RunAsynchronousl
 y parameter to return control to the shell immediately.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

REMARKS
 For more information, type: "get-help Remove-LibraryServer -detailed".
 For technical information, type: "get-help Remove-LibraryServer -full".

[bookmark: _Toc225244447]Set-LibraryServer

SYNOPSIS
 Changes specific properties of a Virtual Machine Manager library server obj
 ect.

SYNTAX
 Set-LibraryServer [-LibraryServer] [<String LibraryServer>] [-Description <
 String>] [-JobGroup <Guid>] [-JobVariable <String>] [-LibraryGroup <String>
] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes specific properties of a Virtual Machine Manager library server obj
 ect. You can change the Description property and the LibraryGroup property.
 You can also use this cmdlet as part of a job group, when used with the Ad
 d-LibraryShare cmdlet, to add a set of library shares.

PARAMETERS
 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -Description <String>
 Specifies a description for the specified object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LibraryGroup <String>
 Specifies the group to which a VMM library server belongs. You can use
 a library group to associate library servers with particular host group
 s or to associate library servers with one another.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the description of a library server.

 PS C:\> $LibServer = Get-LibraryServer -VMMServer "VMMServer1.Contoso.com"
 -ComputerName "FileServer01.Contoso.com"

 PS C:\> Set-LibraryServer -LibraryServer $LibServer -Description "Library s
 erver for lab and pre-production"

 The first command retrieves from the VMM library on VMMServer1 the object t
 hat represents the library server FileServer01 and stores the library serve
 r object in variable $LibServer.

 The second command changes the description for FileServer01 to “Library ser
 ver for lab and pre-production.”

 2: Specify a library group for a library server.

 PS C:\> $LibServer = Get-LibraryServer -VMMServer "VMMServer1.Contoso.com"
 -ComputerName "FileServer02.Contoso.com"

 PS C:\> Set-LibraryServer -LibraryServer $LibServer -LibraryGroup "LibraryG
 roup01"

 The first command gets the object that represents the library server named
 FileServer02 and stores the library server object in $LibServer.

 The second command changes the library group for FileServer02 to “LibraryGr
 oup01.”

REMARKS
 For more information, type: "get-help Set-LibraryServer -detailed".
 For technical information, type: "get-help Set-LibraryServer -full".

[bookmark: _Toc225244448]Add-LibraryShare

SYNOPSIS
 Adds Windows shares on the file system of a library server as library share
 s to the Virtual Machine Manager library.

SYNTAX
 Add-LibraryShare [-SharePath] <String> [-Credential <PSCredential>] [-Descr
 iption <String>] [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Gui
 d>] [-RunAsynchronously] [-VMMServer [<String ServerConnection>]] [<CommonP
 arameters>]

DETAILED DESCRIPTION
 Adds Windows shares on the file system of a library server as library share
 s to the Virtual Machine Manager library.

 Before you can add a library share to the VMM library, you must first creat
 e the share in the Windows file system. You can, for example, use Windows E
 xplorer to create and share a folder that you want to add to the library.

 * Add-LibraryShare. If you create a Windows share at the same level as
 the default library share (MSSCVMMLibrary) created by VMM Setup or on
 a separate library server, use the Add-LibraryShare cmdlet to add that
 share to the VMM library.

 * Refresh-LibraryShare. If you create a Windows folder under the default
 VMM library share (MSSCVMMLibrary), you can use the Refresh-LibraryShare
 cmdlet to import that share and its contents into the VMM library.

 Alternatively, after you add a library share, VMM automatically scans
 the share, discovers all existing objects stored on that share that
 qualify as library objects, and adds the library objects to the library
 in the VMM database.

 NOTE: Library resources that can be discovered only by the library refreshe
 r but not created by an administrator include virtual hard disks (Windows-b
 ased .vhd files or VMware-based .vmdk files), virtual floppy disks (Windows
 -based .vfd files or VMware-based .flp files), ISO images (.iso files), and
 scripts.

PARAMETERS
 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -Description <String>
 Specifies a description for the specified object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add a Windows share as a library share object to the VMM library.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Add-LibraryShare –SharePath "\\FileServer01\AllVHDs"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command adds an object to the library that represents AllVHDs (a
 Windows share located on FileServer01) as a library share object. This exa
 mple assumes that FileServer01 is already a VMM library server.

 2: Add two Windows shares as library share objects to the VMM library.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $SharePaths = "\\FileServer01\AllVHDs", "\\FileServer01\AllISOs"
 PS C:\> foreach($SharePath in $SharePaths) { Add-LibraryShare -SharePath $
 SharePath }

 The first command connects to VMMServer1.

 The second command stores the strings "\\FileServer01\AllVHDs" and "\\FileS
 erver01\AllSOs" in $SharePaths. This example assumes that FileServer01 is a
 lready a VMM library server.

 The last command uses a foreach loop to pass the two share names stored in
 $SharePaths to the Add-LibraryShare cmdlet, which adds each Windows share a
 s a library share to VMM. As this command is processed, $Credential provide
 s your credentials to Add-LibraryShare.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

REMARKS
 For more information, type: "get-help Add-LibraryShare -detailed".
 For technical information, type: "get-help Add-LibraryShare -full".

[bookmark: _Toc225244449]Discover-LibraryShare

SYNOPSIS
 Discovers all of the shares on the specified computer or library server man
 aged by Virtual Machine Manager on which it is possible to add a library sh
 are.

SYNTAX
 Discover-LibraryShare [-ComputerName] <String> -Credential <PSCredential> [
 <CommonParameters>]

 Discover-LibraryShare -LibraryServer [<String LibraryServer>] [<CommonParam
 eters>]

DETAILED DESCRIPTION
 Discovers all of the shares on the specified computer or library server man
 aged by Virtual Machine Manager on which it is possible to add a library sh
 are.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Discover Windows shares on a computer that is not yet a VMM library serv
 er.

 PS C:\> $Credential = Get-Credential
 PS C:\> Discover-LibraryShare -Credential $Credential -ComputerName "Server
 1.Contoso.com"

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password with permissions to access Windows shares on Server1 and stores
 your credentials in $Credential.

 The second command confirms that you have valid credentials for this operat
 ion and then displays all existing Windows shares capable of becoming VMM l
 ibrary shares on Server1.

 2: Discover shares on a VMM library server.

 PS C:\> Discover-LibraryShare -LibraryServer LibraryServer1.Contoso.com

 Displays all Windows shares capable of becoming library shares that exist L
 ibraryServer1 as well as all shares that are already VMM library shares.

REMARKS
 For more information, type: "get-help Discover-LibraryShare -detailed".
 For technical information, type: "get-help Discover-LibraryShare -full".

[bookmark: _Toc225244450]Get-LibraryShare

SYNOPSIS
 Gets Virtual Machine Manager library share objects from the Virtual Machine
 Manager library.

SYNTAX
 Get-LibraryShare [-ID <Guid>] [-VMMServer [<String ServerConnection>]] [<Co
 mmonParameters>]

DETAILED DESCRIPTION
 Gets from the Virtual Machine Manager library one or more objects that repr
 esent Virtual Machine Manager library shares located on library servers.

 A library share is a Windows share on a Virtual Machine Manager library ser
 ver that is used to store files that contain library resources. Resources c
 an include virtual machine templates, hardware profiles, guest operating sy
 stem profiles, virtual hard disks (Windows-based .vhd files or VMware-based
 .vmdk files), virtual floppy disks (Windows-based .vfd files or VMware-bas
 ed .flp files), ISO images (.iso files), and scripts, as well as stored vir
 tual machines.

 For more information, type:
 Get-Help Add-LibraryShare -detailed

PARAMETERS
 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all library shares.

 PS C:\> Get-LibraryShare -VMMServer VMMServer1.Contoso.com

 Gets from the VMM library on VMMServer1 all objects that represent library
 shares on library servers and displays information about these library shar
 es to the user.

 2: Get a specific library share on the specified library server.

 PS C:\> $LibShare = Get-LibraryShare -VMMServer VMMServer1.Contoso.com | wh
 ere { $_.LibraryServer.Name -eq "FileServer01.Contoso.com" -and $_.Name -eq
 "AllVhds" }

 Gets from the library on VMMServer1 the object that represents the library
 share named AllVhds (on library server FileServer01) and stores the share o
 bject in $LibShare.

 3: Get all library shares on a specific library server.

 PS C:\> $LibServer = Get-LibraryServer -VMMServer VMMServer1.Contoso.com -C
 omputerName "FileServer01.Contoso.com"
 PS C:\> $AllLibShares = Get-LibraryShare | where { $_.LibraryServer.Name -e
 q "$LibServer" }
 PS C:\> $AllLibShares | Get-Member

 The first command retrieves from the library on VMMServer1 the object that
 represents the library server FileServer01 and stores the library server ob
 ject in $LibServer.

 The second command gets all library share objects on FileServer01 and store
 s the share objects in $AllLibShares.

 The last command passes each share object in $AllLibShares to the Get-Membe
 r cmdlet, which displays the .NET type for a library share object:

 TypeName: Microsoft.SystemCenter.VirtualMachineManager.LibraryShare

 The command also displays a list of methods and properties that are associa
 ted with a VMM library share object.

REMARKS
 For more information, type: "get-help Get-LibraryShare -detailed".
 For technical information, type: "get-help Get-LibraryShare -full".

[bookmark: _Toc225244451]Refresh-LibraryShare

SYNOPSIS
 Refreshes the state and metadata of Virtual Machine Manager library objects
 stored in a library share.

SYNTAX
 Refresh-LibraryShare [-LibraryShare] <LibraryShare> [-JobVariable <String>]
 [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Refreshes (updates) the state and metadata of all Virtual Machine Manager l
 ibrary objects stored in the specified library share. This refresh also fin
 ds new library files (if any exist) on the specified library share as well
 as new child shared folders under the specified library share, and adds an
 object for each new library file or share to the Virtual Machine Manager li
 brary.

PARAMETERS
 -LibraryShare <LibraryShare>
 Specifies a VMM library share object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Refresh the specified library share.

 PS C:\> $LibShare = Get-LibraryShare -VMMServer VMMServer1.Contoso.com | wh
 ere { $_.LibraryServer.Name -eq “FileServer01.Contoso.com” -and $_.Name -eq
 “AllVhds” }
 PS C:\> Refresh-LibraryShare -LibraryShare $LibShare

 The first command retrieves from the library on VMMServer1 the object that
 represents the library share named AllVhds (on library server FileServer01)
 and stores the share object for AllVhds in variable $LibShare.

 The second command updates the state and metadata information for all libra
 ry objects in the share stored in $LibShare, and then it adds any new libra
 ry objects found in the share to the VMM library.

 2: Refresh multiple library shares.

 PS C:\> $LibShares = Get-LibraryShare -VMMServer VMMServer1.Contoso.com | w
 here { $_.LibraryServer.Name -eq "FileServer01.Contoso.com" -and $_.Name -m
 atch "vhd" }
 PS C:\> $LibShares | Refresh-LibraryShare

 The first command retrieves from the library on VMMServer1 all objects that
 represent library shares on library server FileServer01 whose share name c
 ontains the string "vhd" and stores these share objects in variable $LibSha
 res.

 The second command updates the information for all library shares stored in
 $LibShares, and then it adds any new library objects found in these shares
 to the VMM library.

REMARKS
 For more information, type: "get-help Refresh-LibraryShare -detailed".
 For technical information, type: "get-help Refresh-LibraryShare -full".

[bookmark: _Toc225244452]Remove-LibraryShare

SYNOPSIS
 Removes a library share object from Virtual Machine Manager but does not de
 lete the share from the Windows file system.

SYNTAX
 Remove-LibraryShare [-LibraryShare] <LibraryShare> [-JobVariable <String>]
 [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes an object that represents a library share from the Virtual Machine
 Manager library. This cmdlet does not remove any shares or files from the f
 ile system on the computer.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -LibraryShare <LibraryShare>
 Specifies a VMM library share object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a library share object from the VMM library,

 PS C:\> $LibShare = Get-LibraryShare -VMMServer VMMServer1.Contoso.com | wh
 ere { $_.LibraryServer.name -eq “FileServer01.Contoso.com” -and $_.Name -eq
 “AllVhds” }

 PS C:\> Remove-LibraryShare -LibraryShare $LibShare

 The first command gets the object that represents the library share named A
 llVhds (on library server FileServer01) from the VMM library on VMMServer1
 and stores the share object in variable $LibShare.

 The second command removes the library share object and all library objects
 in this share from the VMM library but does not delete the share from the
 file system on the library server.

 2: Remove multiple library share objects from the VMM library.

 PS C:\> $LibShares = Get-LibraryShare -VMMServer VMMServer1.Contoso.com | w
 here { $_.LibraryServer.Name -eq “FileServer01.Contoso.com” -and $_.Name -m
 atch “vhd” }

 PS C:\> $LibShares | Remove-LibraryShare

 The first command gets from VMMServer1 all objects that represent library s
 hares on library server FileServer01 whose share name includes the string “
 vhd” and stores these share objects in $LibShares (an object array).

 The second command passes each library share object in $LibShares to Remove
 -LibraryShare. The cmdlet removes each of the library share objects from th
 e VMM library but does not delete the corresponding shares from the file sy
 stem on the library server.

REMARKS
 For more information, type: "get-help Remove-LibraryShare -detailed".
 For technical information, type: "get-help Remove-LibraryShare -full".

[bookmark: _Toc225244453]Set-LibraryShare

SYNOPSIS
 Changes the Description property of a Virtual Machine Manager library share
 object.

SYNTAX
 Set-LibraryShare [-LibraryShare] <LibraryShare> [-Description <String>] [-J
 obVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParame
 ters>]

DETAILED DESCRIPTION
 Changes a property of a Virtual Machine Manager library share object. The o
 nly property that you can change by using the Set-LibraryShare cmdlet is th
 e Description property.

PARAMETERS
 -LibraryShare <LibraryShare>
 Specifies a VMM library share object.

 -Description <String>
 Specifies a description for the specified object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the description of a library share.

 PS C:\> $LibShare = Get-LibraryShare -VMMServer VMMServer1.Contoso.com | wh
 ere { $_.LibraryServer.Name -eq "FileServer01.Contoso.com" -and $_.Name -eq
 "FileShare01" }

 PS C:\> Set-LibraryShare -LibraryShare $LibShare -Description "Library shar
 e for lab and pre-production"

 The first command retrieves from the VMM library on VMMServer1 the object t
 hat represents the library share named FileShare01 on FileServer01 and stor
 es the library share object in variable $LibShare.

 The second command changes the description for FileShare01 to “Library shar
 e for lab and pre-production.”

REMARKS
 For more information, type: "get-help Set-LibraryShare -detailed".
 For technical information, type: "get-help Set-LibraryShare -full".

[bookmark: _Toc225244454]MachineConfig
[bookmark: _Toc225244455]Get-MachineConfig

SYNOPSIS
 Gets physical machine configuration objects from the Virtual Machine Manage
 r database.

SYNTAX
 Get-MachineConfig [-SourceComputerName <String>] [-VMMServer [<String Serve
 rConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects from the Virtual Machine Manager database that rep
 resent the physical machine configuration associated with one or more physi
 cal computers. Information about a computer's hardware, physical disks, and
 operating system is stored in the machine configuration object.

 A physical machine configuration is used by the New-P2V cmdlet when it conv
 erts a physical machine to a virtual machine. To perform this conversion, y
 ou use a physical computer as a model from which to create an identical, or
 nearly identical, virtual machine that has the same identity (ComputerName
 .DomainName) as the physical machine.

PARAMETERS
 -SourceComputerName <String>
 Specifies the source computer for a physical-to-virtual machine convers
 ion (P2V conversion) performed by VMM.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the source computer name.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get the machine configuration object for a particular physical machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-MachineConfig | where { $_.Name -eq "Server1" }

 The first command connects to VMMServer1 and gets the server object from th
 e VMM database. The next command uses this server by default.

 The second command gets from the VMM database the machine configuration (cr
 eated earlier by using New-MachineConfig) for the physical machine named Se
 rver1 and displays information about this object to the user.

 For more information about creating a new machine configuration by gatherin
 g machine configuration information from a physical source machine that you
 plan to convert to a virtual machine managed by VMM, type: Get-Help New-Ma
 chineConfig -detailed

 2: Get all machine configuration objects in your VMM environment.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-MachineConfig

 The first command connects to VMMServer1.

 The second command gets all objects that represent machine configurations (
 created earlier by using New-MachineConfig) and displays information about
 these machine configuration objects to the user.

REMARKS
 For more information, type: "get-help Get-MachineConfig -detailed".
 For technical information, type: "get-help Get-MachineConfig -full".

[bookmark: _Toc225244456]New-MachineConfig

SYNOPSIS
 Creates a machine configuration object by gathering machine configuration i
 nformation from a physical source machine that you plan to convert to a vir
 tual machine managed by Virtual Machine Manager.

SYNTAX
 New-MachineConfig -Credential <PSCredential> -SourceComputerName <String> [
 -JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer
 [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a machine configuration object by gathering machine configuration i
 nformation from a physical machine that you plan to convert to a virtual ma
 chine managed by Virtual Machine Manager. Information about a computer's ha
 rdware, physical disks, and operating system is stored in the machine confi
 guration object.

 The New-MachineConfig cmdlet installs the Virtual Machine Manager P2V agent
 software on the physical source machine, runs the configuration informatio
 n gathering process, and creates and stores the resulting machine configura
 tion object (which is associated with this physical source computer) in the
 Virtual Machine Manager database.

 A physical machine configuration is used when you use the New-P2V cmdlet to
 convert a physical machine to a virtual machine. To perform this conversio
 n, you use a physical computer as a model from which to create an identical
 , or nearly identical, virtual machine that has the same identity (Computer
 Name.DomainName) as the physical machine.

 This cmdlet supports collecting machine configuration information from a ph
 ysical source machine running the operating systems shown in the following
 table:

 ONLINE P2V OFFLINE P2V
 ---------- -----------
 Windows Server 2008 Yes Yes
 Windows Server 2003 with Service Pack 1 (or later) Yes Yes
 Windows Server 2003 x64 Edition Yes Yes
 Windows 2000 with Service Pack 4 No Yes
 Windows XP with Service Pack 2 (or later) Yes Yes
 Windows XP x64 Edition Yes Yes
 Windows Vista Service Pack 1 Yes Yes
 Windows Vista x64 Service Pack 1 Yes Yes

 NOTE: Virtual Machine Manager support for P2V for Windows Server 2008 inclu
 des both the typical installation of the operating system and the Server Co
 re installation option of Windows Server 2008. P2V supports both 32-bit and
 64-bit for any version of Windows Server 2008.

PARAMETERS
 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -SourceComputerName <String>
 Specifies the source computer for a physical-to-virtual machine convers
 ion (P2V conversion) performed by VMM.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the source computer name.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Gather information from a physical source machine.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> New-MachineConfig -SourceComputerName "P2VSource01.Contoso.com" -Cr
 edential $Credential

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are either a local Administrator account
 or a domain account with administrator rights on the computer from which yo
 u want to gather information.

 The second command connects to VMMServer1 in the Contoso.com domain and ret
 rieves the server object from the VMM database. The following command uses
 this server by default.

 The last command gathers the machine configuration information from the phy
 sical source machine called P2VSource01 in the Contoso.com domain. As this
 command is processed, $Credential provides your credentials to New-MachineC
 onfig. The New-MachineConfig cmdlet stores the resulting machine configurat
 ion object associated with P2VSource01.Contoso.com in the VMM database.

 2: Determine the required patches for a particular conversion.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MachineConfig = New-MachineConfig -SourceComputerName "P2VSource02
 .Contoso.com" -Credential $Credential
 PS C:\> $MachineConfig.ErrorList

 The first command uses Get-Credential to prompt you to supply an appropriat
 e user name and password and stores your credentials in $Credential.

 The second command connects to VMMServer1.

 The third command gathers the machine configuration information from the ph
 ysical source machine called P2VSource02 in the Contoso.com, and it stores
 the machine configuration information in $MachineConfig. As this command is
 processed, $Credential provides your credentials to New-MachineConfig.

 The last command displays the list of errors, if any, that were detected on
 the source machine. Any items with the value 'Error' must be resolved befo
 re you attempt a physical-to-virtual conversion.

REMARKS
 For more information, type: "get-help New-MachineConfig -detailed".
 For technical information, type: "get-help New-MachineConfig -full".

[bookmark: _Toc225244457]Remove-MachineConfig

SYNOPSIS
 Removes a machine configuration object from Virtual Machine Manager.

SYNTAX
 Remove-MachineConfig [-MachineConfig] <MachineConfig> [-Confirm] [-Credenti
 al <PSCredential>] [-Force] [-JobVariable <String>] [-PROTipID <Guid>] [-Ru
 nAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent a machine configuration from the
 Virtual Machine Manager database and removes the Virtual Machine Manager P
 2V agent from the physical source machine (if the agent is still installed)
 .

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -MachineConfig <MachineConfig>
 Specifies a physical machine configuration to use when you convert a ph
 ysical machine to a virtual machine. Machine configuration includes inf
 ormation about the physical computer's hardware, disks, and operating s
 ystem.

 -Confirm
 Prompts for confirmation before running the command.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific machine configuration from the VMM database.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MachineConfig = Get-MachineConfig | where { $_.Name -eq "P2VSource
 01.Contoso.com" }
 PS C:\> Remove-MachineConfig -MachineConfig $MachineConfig -Force

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets from the VMM database the object that represents th
 e machine configuration for the source computer named P2VSource01 and store
 s the machine configuration object in variable $MachineConfig.

 The third command removes the machine configuration object for Server1 from
 the VMM database by using the -Force parameter.

 2: Remove a P2V agent from a specific source computer.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MachineConfig = Get-MachineConfig | where { $_.Name -eq "P2VSource
 01.Contoso.com" }
 PS C:\> Remove-MachineConfig -MachineConfig $MachineConfig -Credential $Cre
 dential

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in $Credential. The required creden
 tials for this operation are either a local Administrator account or a doma
 in account with administrator rights on the computer from which you want to
 gather information.

 The second command connects to VMMServer1.

 The third command gets the object that represents the machine configuration
 for the source computer named P2VSource01 and stores the machine configura
 tion object in $MachineConfig.

 The fourth command removes the P2V agent from P2VSource01.

REMARKS
 For more information, type: "get-help Remove-MachineConfig -detailed".
 For technical information, type: "get-help Remove-MachineConfig -full".

[bookmark: _Toc225244458]NetworkLocation
[bookmark: _Toc225244459]Get-NetworkLocation

SYNOPSIS
 Gets the list of network locations that the specified Virtual Machine Manag
 er server can access.

SYNTAX
 Get-NetworkLocation [-VMMServer [<String ServerConnection>]] [<CommonParame
 ters>]

DETAILED DESCRIPTION
 Gets the list of network locations that the specified Virtual Machine Manag
 er server can access. The list includes both external and internal networks
 and the network tag (if any) for each network.

PARAMETERS
 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all network locations for the specified VMM server.

 PS C:\> $VMMServer = Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> $NetLoc = Get-NetworkLocation -VMMServer $VMMServer
 PS C:\> $NetLoc[1]

 The first command connects to VMMServer1, retrieves the server object, and
 stores it in variable $VMMServer.

 The second command uses Get-NetworkLocation to retrieve the list of network
 locations that VMMServer1 can access and stores the network location in va
 riable $NetLoc (an object array). This example assumes that VMMServer1 can
 access at least two networks (counting 0 to 1).

 The last command displays the name of the second network location stored in
 $NetLoc and the network tag (if any) for that network.

REMARKS
 For more information, type: "get-help Get-NetworkLocation -detailed".
 For technical information, type: "get-help Get-NetworkLocation -full".

[bookmark: _Toc225244460]OperatingSystem
[bookmark: _Toc225244461]Get-OperatingSystem

SYNOPSIS
 Gets valid operating system objects from the Virtual Machine Manager databa
 se.

SYNTAX
 Get-OperatingSystem [-VMMServer [<String ServerConnection>]] [<CommonParame
 ters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent operating systems from the Virtual
 Machine Manager database. An operating system object is used to identify th
 e operating system that is installed on a particular virtual hard disk.

PARAMETERS
 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all operating system objects in your VMM environment.

 PS C:\> Get-OperatingSystem -VMMServer VMMServer1.Contoso.com

 Gets from the VMM database on VMMServer1 all objects that represent operati
 ng systems and displays information about these operating system objects to
 the user.

 2: Get all operating system objects in your VMM environment with the specif
 ied processor architecture.

 PS C:\> Get-OperatingSystem -VMMServer VMMServer1.Contoso.com | where {$_.A
 rchitecture -eq "x86"} | Format-Table -property Name,Architecture

 Gets all operating system objects from VMMServer1 and then selects only tho
 se operating systems that have an x86 processor architecture. The command u
 ses the Format-Table cmdlet to display only the Name and Architecture (such
 as amd64 or x86) properties for each selected operating system.

REMARKS
 For more information, type: "get-help Get-OperatingSystem -detailed".
 For technical information, type: "get-help Get-OperatingSystem -full".

[bookmark: _Toc225244462]P2V
[bookmark: _Toc225244463]New-P2V

SYNOPSIS
 Converts a physical machine to a virtual machine on a Windows-based host (H
 yper-V or Virtual Server) managed by Virtual Machine Manager.

SYNTAX
 New-P2V -MachineConfig <MachineConfig> -VMHost [<String Host>] [-Bus <Int32
 >] [-Check] [-CPUCount <Int32>] [-CPUType [<ProcessorType String>]] [-Crede
 ntial <PSCredential>] [-DelayStart <Int32>] [-Description <String>] [-DiskS
 izeAdd <Int32>] [-DriverPath <String>] [-Dynamic] [-Fixed] [-IDE <Boolean>]
 [-JobGroup <Guid>] [-JobVariable <String>] [-LUN <Int32>] [-MemoryMB <Int3
 2>] [-Name <String>] [-NetworkLocation <String>] [-NetworkTag <String>] [-N
 oConnection] [-Offline] [-OfflineDefaultGateway <String>] [-OfflineIPAddres
 s <String>] [-OfflineNICMACAddress <String>] [-OfflinePrefixLength <String>
] [-OfflineSubnetMask <String>] [-OverridePatchPath <String>] [-Owner <Stri
 ng>] [-Path <String>] [-PhysicalAddress <String>] [-PhysicalAddressType <St
 ring>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsSystem] [-RunAsU
 serCredential <PSCredential>] [-RunAsynchronously] [-SCSI <Boolean>] [-Shut
 down] [-SkipInstallVirtualizationGuestServices] [-SourceNetworkConnectionID
 <String>] [-StartAction <String>] [-StartVM] [-StopAction <String>] [-Trig
 ger] [-UseHardwareAssistedVirtualization] [-VirtualNetwork <VirtualNetwork>
] [-VLANEnabled] [-VLANID <Int32>] [-VMMServer [<String ServerConnection>]]
 [-VolumeDeviceID <Guid>] [<CommonParameters>]

 New-P2V -SourceComputerName <String> -VMHost [<String Host>] [-Bus <Int32>]
 [-Check] [-CPUCount <Int32>] [-CPUType [<ProcessorType String>]] [-Credent
 ial <PSCredential>] [-DelayStart <Int32>] [-Description <String>] [-DiskSiz
 eAdd <Int32>] [-DriverPath <String>] [-Dynamic] [-Fixed] [-IDE <Boolean>] [
 -JobGroup <Guid>] [-JobVariable <String>] [-LUN <Int32>] [-MemoryMB <Int32>
] [-Name <String>] [-NetworkLocation <String>] [-NetworkTag <String>] [-NoC
 onnection] [-Offline] [-OfflineDefaultGateway <String>] [-OfflineIPAddress
 <String>] [-OfflineNICMACAddress <String>] [-OfflinePrefixLength <String>]
 [-OfflineSubnetMask <String>] [-OverridePatchPath <String>] [-Owner <String
 >] [-Path <String>] [-PhysicalAddress <String>] [-PhysicalAddressType <Stri
 ng>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsSystem] [-RunAsUse
 rCredential <PSCredential>] [-RunAsynchronously] [-SCSI <Boolean>] [-Shutdo
 wn] [-SkipInstallVirtualizationGuestServices] [-SourceNetworkConnectionID <
 String>] [-StartAction <String>] [-StartVM] [-StopAction <String>] [-Trigge
 r] [-UseHardwareAssistedVirtualization] [-VirtualNetwork <VirtualNetwork>]
 [-VLANEnabled] [-VLANID <Int32>] [-VMMServer [<String ServerConnection>]] [
 -VolumeDeviceID <Guid>] [<CommonParameters>]

DETAILED DESCRIPTION
 Converts a physical machine to a virtual machine on a Windows-based host (H
 yper-V or Virtual Server) managed by Virtual Machine Manager. You cannot sp
 ecify a VMware ESX host as the destination host for the new virtual machine
 .

 In a P2V conversion, you create a virtual machine from a physical source co
 mputer. The New-P2V cmdlet configures the new virtual machine to have the s
 ame hardware, software, and configuration settings as the physical source c
 omputer and to have the same identity (ComputerName.DomainName) as the sour
 ce computer. During the P2V conversion, disk images of the hard disks on th
 e physical computer are copied to Windows-based virtual hard disk files (.v
 hd files) for use in the new virtual machine.

 VMM 2008 SUPPORTS P2V CONVERSION FOR THESE OPERATING SYSTEMS

 This cmdlet supports a P2V conversion for a physical source machine running
 one of the operating systems listed in the following table:

 ONLINE P2V OFFLINE P2V
 ---------- -----------
 Windows Server 2008 Yes Yes
 Windows Server 2003 with Service Pack 1 (or later) Yes Yes
 Windows Server 2003 x64 Edition Yes Yes
 Windows 2000 with Service Pack 4 No Yes
 Windows XP with Service Pack 2 (or later) Yes Yes
 Windows XP x64 Edition Yes Yes
 Windows Vista Service Pack 1 Yes Yes
 Windows Vista x64 Service Pack 1 Yes Yes

 NOTES:

 * STANDARD OR CORE - Virtual Machine Manager support for P2V for
 Windows Server 2008 includes both the typical installation of the
 operating system and the Server Core installation option. P2V
 supports both 32-bit and 64-bit for any version of Windows Server 2008.

 * OFFLINE USES WINDOWS PE - When you specify the -Offline parameter with
 New-P2V, the conversion process will automatically start the source
 computer in the Windows Preinstallation Environment (Windows PE) and
 then perform the conversion. You can use the -DriverPath parameter with
 the New-P2V cmdlet to specify the driver used by Windows PE for network
 access and storage access during the offline conversion.

 * WINDOWS AIK - In VMM 2008, when you install a Virtual Machine Manager
 server, Setup also automatically installs the Windows Automated
 Installation Kit (Windows AIK), which is required for a P2V conversion.

 ADDING NEEDED FILES TO THE PATCH CACHE

 Some conversions might require that additional files be added to the intern
 al cache. You can use the Add-Patch cmdlet to add the required files to the
 cache.

PARAMETERS
 -MachineConfig <MachineConfig>
 Specifies a physical machine configuration to use when you convert a ph
 ysical machine to a virtual machine. Machine configuration includes inf
 ormation about the physical computer's hardware, disks, and operating s
 ystem.

 -SourceComputerName <String>
 Specifies the source computer for a physical-to-virtual machine convers
 ion (P2V conversion) performed by VMM.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the source computer name.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -Bus <Int32>
 Specifies the IDE bus to which to attach a virtual disk drive or virtua
 l DVD drive, or the SCSI bus to which to attach a virtual disk drive.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter. For more information about how VMM 2008 impleme
 nts IDE and SCSI buses, type: Get-Help about_VMM_2008_Disk_and_DVD_Enha
 ncements.

 -Check
 Checks the source computer for any patches required for conversion.

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -DelayStart <Int32>
 Specifies the number of seconds to wait after the virtualization servic
 e starts before automatically starting a virtual machine. Used to stagg
 er the startup time of multiple virtual machines to help reduce the dem
 and on the physical computer’s resources. A typical setting might be 30
 to 60 seconds.
 TYPE OF HOST MAXIMUM CONFIGURABLE DELAY
 ------------ --------------------------------
 Hyper-V 1000000000 seconds (277777 hours)
 Virtual Server 86400 seconds (24 hours)
 VMware ESX 65535 seconds (18 hours)

 -Description <String>
 Specifies a description for the specified object.

 -DiskSizeAdd <Int32>
 Specifies, in megabytes (MB), the amount of additional disk space to ad
 d to a virtual hard disk when performing a physical-to-virtual (P2V) or
 virtual-to-virtual (V2V) machine conversion. Volumes located on the vi
 rtual hard disk are automatically extended to fill the entire virtual h
 ard disk.

 -DriverPath <String>
 Specifies the path to drivers for any offline physical-to-virtual machi
 ne conversion (P2V conversion).

 -Dynamic
 Specifies that a virtual hard disk can expand dynamically.

 -Fixed
 Specifies that a virtual hard disk is fixed in size.

 -IDE <Boolean>
 Specifies IDE as the bus type to which to attach a virtual disk drive o
 bject or a virtual DVD drive object configured on a virtual machine or
 on a template. (For more information about how VMM 2008 implements the
 IDE bus, type: Get-Help about_VMM_2008_Disk_and_DVD_Enhancements.)
 Example format: -IDE –Bus 0 –LUN 1

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LUN <Int32>
 Specifies the logical unit number (LUN) for a virtual disk drive object
 or for a virtual DVD drive object on an IDE bus, or for a virtual disk
 drive object on a SCSI bus.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -Name <String>
 Specifies the name of a VMM object.

 -NetworkLocation <String>
 Specifies the network location for a physical network adapter or for a
 virtual network adapter, or changes the default network location of a h
 ost's physical network adapter.
 Example formats:
 -NetworkLocation $NetLoc ($NetLoc might contain "Corp.Contoso.com")
 -OverrideNetworkLocation $TRUE –NetworkLocation "HostNICNewLocation.Co
 ntoso.com"

 -NetworkTag <String>
 Specifies a word or phrase to associate with a virtual network adapter
 that is configured to connect to a specific internal or external networ
 k on the host. The NetworkTag identifies all VMs with the same NetworkT
 ag as members of the same network. VMM uses a NeworkTag (if one exists)
 when it evaluates hosts as possible candidates on which to deploy a VM
 . If the host does not include VMs on the network with the same Network
 Tag as the VM to be placed, the host receives zero stars in the placeme
 nt process.

 -NoConnection
 Disconnects a virtual network adapter from a virtual network.

 -Offline
 Specifies that the operation is performed offline.

 -OfflineDefaultGateway <String>
 Specifies the gateway router that Windows PE uses during an offline P2V
 conversion.

 -OfflineIPAddress <String>
 Specifies an IPv4 or IPv6 address on the source computer that Windows P
 E uses during an offline P2V conversion. Use with the OfflineSubnetMask
 parameter (for an IPv4 address) or with the OfflinePrefixLength parame
 ter (for an IPv6 address).

 -OfflineNICMACAddress <String>
 Specifies the MAC address of the network interface card (NIC) on the so
 urce computer that Windows PE uses during an offline P2V conversion.

 -OfflinePrefixLength <String>
 Specifies the length of the prefix for the IPv6 address on the source c
 omputer that Windows PE uses during an offline P2V conversion.

 -OfflineSubnetMask <String>
 Specifies the subnet mask for the IPv4 address on the source computer t
 hat Windows PE uses during an offline P2V conversion.

 -OverridePatchPath <String>
 For internal use only (not for use in your code).

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -PhysicalAddress <String>
 Specifies the physical address (MAC address) of a physical or virtual n
 etwork adapter.
 Note: In VMM 2007, this parameter was named EthernetAddress.

 -PhysicalAddressType <String>
 Specifies the type of physical address (MAC address) to use for a virtu
 al network adapter:
 Valid values: Static, Dynamic
 Note: In VMM 2007, this parameter was named EthernetAddressType.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RunAsSystem
 Specifies that a virtual machine on a Virtual Server host will run unde
 r the local system account. If specified, Virtual Server will not autom
 atically start the virtual machine when the Virtual Server service star
 ts. (This parameter does not apply to virtual machines on Hyper-V or VM
 ware ESX hosts because Hyper-V and VMware run a virtual machine under t
 he local system account by default; you cannot change this setting on t
 hose virtualization platforms.)

 -RunAsUserCredential <PSCredential>
 Specifies the guest account (domain\account) that a virtual machine on
 a Virtual Server host runs under. If specified, Virtual Server will aut
 omatically start a virtual machine when the Virtual Server service star
 ts. For enhanced security, create a special account with limited permis
 sions:
 FILE TYPE MINIMUM REQUIRED PERMISSIONS FOR GUEST ACCOUNT
 ----------- --
 .vmc file Read Data, Write Data, Execute File
 .vmc folder List Folder, Write/Create File (required to save VM state)
 .vhd file Read Data, Read Attributes, Read Extended Attributes,
 Write Data
 .vnc file Execute File, Read Data, Read Attributes, Read
 (required if VM connects to a virtual network)
 Note: This parameter does not apply to virtual machines on Hyper-V or V
 Mware ESX hosts.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SCSI <Boolean>
 Specifies SCSI as the bus type to which to attach a virtual disk drive
 object configured on a virtual machine or on a template.
 Example format: -SCSI -Bus 0 -LUN 0
 For information about the number of devices per controller on a SCSI bu
 s that VMM 2008 supports for each virtualization platform (Hyper-V, Vir
 tual Server, or VMware), type: Get-Help about_VMM_2008_Disk_and_DVD_Enh
 ancements.

 -Shutdown
 Specifies that the source server shuts down after a successful physical
 -to-virtual machine conversion (P2V conversion).

 -SkipInstallVirtualizationGuestServices
 Skips the installation of virtualization guest services on a Windows-ba
 sed virtual machine. By default, this parameter is set to FALSE and
 VMM installs the appropriate virtualization guest service automatically
 . For a virtual machine on a Hyper-V host, the virtualization guest ser
 vice is called Integration Components (VMGuest.iso). For a virtual mach
 ine on a Virtual Server host, the virtualization guest service is calle
 d Virtual Machine Additions (VMAdditions.iso). Virtual machines on a VM
 ware ESX host do not use a virtualization guest service.

 -SourceNetworkConnectionID <String>
 Specifies the MAC address or network name of the physical network adapt
 er to be converted into a virtual network adapter in the virtual machin
 e.

 -StartAction <String>
 Specifies the behavior of a virtual machine when the virtualization ser
 vice (Hyper-V, Virtual Server, or VMware) starts. To specify that a vir
 tual machine deployed on a Virtual Server host starts automatically, us
 e the -RunAsUserCredential parameter to specify an account with appropr
 iate permissions (otherwise, the StartAction reverts to NeverAutoTurnOn
 VM).
 Valid values: AlwaysAutoTurnOnVM, NeverAutoTurnOnVM, TurnOnVMIfRunningW
 henVSStopped

 -StartVM
 Specifies that the virtual machine starts when it arrives at the destin
 ation host.

 -StopAction <String>
 Specifies the behavior of the virtual machine when the virtualization s
 ervice (Hyper-V, Virtual Server, or VMware) stops.
 Valid values: SaveVM, TurnOffVM, ShutdownGuestOS

 -Trigger
 Starts the execution a job group for a physical-to-virtual (P2V) conver
 sion, a virtual-to-virtual (V2V) conversion, or the conversion of a phy
 sical hard disk to a virtual hard disk.

 -UseHardwareAssistedVirtualization
 Specifies that, for a virtual machine deployed on a Virtual Server host
 , hardware-assisted virtualization is used if it is available (when set
 to TRUE). The Virtual Server host must support AMD Virtualization (AMD
 -V) or Intel Virtualization Technology (Intel-VT) hardware virtualizati
 on. This parameter does not apply to virtual machines on Hyper-V hosts
 or VMware ESX hosts.

 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -VLANEnabled
 Enables a virtual LAN (a VLAN) for use by virtual machines on a Hyper-V
 or VMware ESX host.
 Example format for a single VLAN:
 -VLANEnabled -VLANMode "Access" -VLANID 35
 Example format for multiple VLANs:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 -VLANID <Int32>
 Assigns a numerical identifier in the range 1-4094 to a virtual network
 adapter on a virtual machine or to a physical network adapter on a Hyp
 er-V or VMware ESX host.
 Configure a VLANID on a Hyper-V or VMware ESX host:
 * On an externally bound physical network adapter.
 Configure a VLANID on a virtual network adapter of a virtual machine:
 * Bound to a physical network adapter on the host, or
 * Bound to an internal virtual network on the host.
 Example format:
 -VLANEnabled
 -VLANMode "Access" -VLANID 35

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -VolumeDeviceID <Guid>
 Specifies the device ID of the volume to convert in a physical-to-virtu
 al machine conversion (P2V conversion).

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Convert a physical machine to a virtual machine.

 PS C:\> $Credential = Get-Credential

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"

 PS C:\> New-P2V -SourceComputerName "P2VSource01.Contoso.com" -VMHost $VMHo
 st -Name "VM01" -Path "C:\MyVMs" -MemoryMB 256 -Credential $Credential -Run
 Asynchronously

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are either a local Administrator account
 or a domain account with administrator rights on the computer that you want
 to convert.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following commands use this
 server by default.

 The third command gets from the VMM database the object that represents the
 host named VMHost01 and stores the host object in variable $VMHost.

 The last command performs the following operations:

 * Creates a virtual machine named VM01 from the source physical
 machine named P2VSource01 in the Contoso.com domain.

 * Deploys the new virtual machine on the C: drive of VMHost01
 in the MyVMs folder. In this example, all of the physical disks
 on P2VSource01.Contoso.com will be imaged and attached to
 the new virtual machine.

 * Assigns 256 MB of memory on the host to the new virtual machine.

 * Uses $Credential to provide your credentials to New-P2V.

 * Uses the -RunAsynchronously parameter to return control to the shell
 immediately (before the command completes).

 2: Convert a physical machine to a large-capacity VM with specific network
 settings.

 PS C:\> $Credential = Get-Credential

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02.Contoso.com"

 PS C:\> New-P2V -SourceComputerName "P2VSource02.Contoso.com" -VMHost $VMHo
 st -Name "VM01" -Path "C:\MyVMs" -CPUCount 4 -MemoryMB 4096 -Credential $Cr
 edential -RunAsynchronously -StopAction SaveVM -SourceNetworkConnectionID "
 00:15:5D:BC:42:02" -PhysicalAddress "00:15:5D:BC:42:02" -PhysicalAddressTyp
 e Static -VirtualNetwork "External Network (Network Adapter #2)" -NetworkLo
 cation "Contoso.com"

 The first command uses Get-Credential to prompt you to supply an appropriat
 e user name and password and then stores your credentials in $Credential.

 The second command connects to VMMServer1.

 The third command gets the object that represents the host named VMHost02 a
 nd stores the host object in $VMHost.

 The last command performs the following operations:

 * Creates a virtual machine named VM01 from the source physical
 machine named P2VSource02 (in the Contoso.com domain).

 * Deploys the new virtual machine on the C: drive of VMHost02
 in the MyVMs folder. In this example, all of the physical disks
 on P2VSource02.Contoso.com will be imaged and attached to
 the new virtual machine (this is the default behavior).

 * Assigns 4 CPUs to the new virtual machine.

 * Assigns 4096 MB of memory on the host to the new virtual machine.

 * Uses $Credential to provide your credentials to New-P2V.

 * Specifies that the host should save the virtual machine when
 the hypervisor is stopped (that is, when the host on which the
 virtual machine is deployed is stopped).

 * Specifies the MAC address of the source host
 (-SourceNetworkConnectionID "00:15:5D:BC:42:02").

 * Specifies the MAC address of the new virtual machine
 (-PhysicalAddress "00:15:5D:BC:42:02").

 * Specifies that the MAC address in the new virtual machine is
 static (-PhysicalAddressType Static).

 * Specifies the virtual network (and network adapter) on the host
 that the new virtual machine connects to.

 * Specifies the network location of the new virtual machine as
 Contoso.com.

 * Uses the -RunAsynchronously parameter to return control to the
 shell immediately (before the command completes).

 3: Convert a physical machine to a VM by performing an offline conversion.

 PS C:\> $Credential = Get-Credential

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"

 PS C:\> New-P2V -SourceComputerName "P2VSource01.Contoso.com" -Credential $
 Credential -VMHost $VMHost -Path "D:\vms" -RunAsynchronously -Trigger -Name
 "VM01" -Offline -CPUCount 2 -MemoryMB 1024

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are either a local Administrator account
 or a domain account with administrator rights on the computer that you want
 to convert.

 The second command connects to VMMServer1.

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in $VMHost.

 The last command performs the following operations:

 * Creates a virtual machine named VM01 from the source physical
 machine named P2VSource01 in the Contoso.com domain.

 * Deploys the new virtual machine on the D: drive of VMHost01
 in the VMs folder. In this example, all of the physical disks
 on P2VSource01.Contoso.com will be imaged and attached to
 the new virtual machine.

 * Assigns 1024 MB of memory and 2 virtual CPUs to the new virtual
 machine.

 * Uses $Credential to provide your credentials to New-P2V.

 * Performs the conversion offline (boots source into WINPE).
 Offline is optional for all operating systems except Windows 2000.

 * Uses the -RunAsynchronously parameter to return control to the shell
 immediately (before the command completes).

 4: Convert a physical machine to a VM offline, using a static IP address du
 ring the conversion.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $Credential = get-credential

 PS C:\> New-MachineConfig -SourceComputerName "P2VSource01.Contoso.com" -Cr
 edential $Credential

 PS C:\> $MachineConfig = Get-MachineConfig | where {$_.Name -eq "P2VSource0
 1.Contoso.com"}

 PS C:\> $VMHost = Get-VMHost | where {$_.Name -eq "VMHost01.Contoso.com"}

 PS C:\> New-P2V -Credential $Credential -VMHost $VMHost -Path "D:\VMs" -Own
 er "Contoso\User1" -Trigger -Name "VM01" -MachineConfig $MachineConfig -Off
 line -Shutdown -OfflineIPAddress "192.168.100.100" -OfflineNICMacAddress "0
 0:11:22:33:44:55" -OfflineDefaultGateway "192.168.100.1" -OfflineSubnetMask
 "255.255.255.0" -CPUCount 1 -MemoryMB 1024 -RunAsSystem -StartAction Never
 AutoTurnOnVM -UseHardwareAssistedVirtualization $FALSE -StopAction SaveVM -
 StartVM -RunAsynchronously

 The first command connects to VMMServer1.

 The second command uses Get-Credential to prompt you to supply a user name
 and password and stores your credentials in $Credential. The required crede
 ntials for this operation are either a local Administrator account or a dom
 ain account with administrator rights on the computer that you want to conv
 ert.

 The third command gathers the machine configuration information from the ph
 ysical source machine called P2VSource01 (in the Contoso.com domain), using
 $Credential to verify your credentials, and stores the resulting machine c
 onfiguration object for P2VSource01 in the VMM database.

 The fourth command gets the machine configuration object created by the pre
 ceding command and stores the returned object in $MachineConfig.

 The fifth command gets the object that represents the host named VMHost01 a
 nd stores the returned object in $VMHost.

 The last command performs the following operations:

 * Uses $Credential to provide your credentials to New-P2V.

 * Deploys the new virtual machine on the D: drive of VMHost01 in the
 "VMs" folder. In this example, all of the physical disks on
 P2VSource01.Contoso.com will be imaged and attached to the new
 virtual machine.

 * Specifies an owner for the virtual machine created by New-P2V.

 * Creates a virtual machine named VM01 from the source physical machine
 named P2VSource01.

 * Performs the conversion offline (that is, boots the source computer
 into Windows PE). The IP address, subnet mask, and gateway used by
 Windows PE are specified, as is the MAC address of the physical
 network adapter to which the IP address will be bound. VMM turns off
 the source computer after the conversion is complete.

 NOTE: An offline conversion is an available option for all operating
 systems except Windows 2000.

 * Assigns 1024 MB of memory and 2 virtual CPUs to the new virtual
 machine.

 * Uses the -RunAsynchronously parameter to return control to the
 command shell immediately (before the command completes).

REMARKS
 For more information, type: "get-help New-P2V -detailed".
 For technical information, type: "get-help New-P2V -full".

[bookmark: _Toc225244464]Patch
[bookmark: _Toc225244465]Add-Patch

SYNOPSIS
 Adds information about patches and binaries to the Virtual Machine Manager
 patch cache.

SYNTAX
 Add-Patch [-JobVariable <String>] [-PatchFilePath <String>] [-PROTipID <Gui
 d>] [-RunAsynchronously] [-VMMServer [<String ServerConnection>]] [<CommonP
 arameters>]

DETAILED DESCRIPTION
 Adds information about patches and binaries to the Virtual Machine Manager
 patch cache. Patches are required for physical-to-virtual machine conversio
 ns (P2V conversions) as well as for virtual-to-virtual machine conversions
 (V2V conversions).

 The Add-Patch cmdlet:

 * Updates the Virtual Machine Manager database with information
 about patches.

 * Extracts required binaries to:
 <C>:\Program Files\Microsoft System Center Virtual Machine Manager 2008\
 VMMData

 To determine which patches are required for a particular conversion, run th
 e appropriate cmdlet to gather information about the source:

 * New-MachineConfig, for P2V conversions
 * New-VMXMachineConfig, for V2V conversions

PARAMETERS
 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PatchFilePath <String>
 Specifies the path (to a folder on the file system where VMM is install
 ed or to a network share) where P2V or V2V patch files are located.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add a new patch from the default patch import directory.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Add-Patch

 Before running the commands illustrated in this example, place any patch fi
 les (.cab or .exe files) into the Patch Cache folder located in the VMM ins
 tallation directory on the VMM server. The default location is:

 <C>:\Program Files\Microsoft System Center Virtual Machine Manager 2008\Pat
 ch Import

 The first command connects to VMMServer1 in the Contoso.com domain; the fol
 lowing command uses this server by default.

 The second command extracts any patches found in the Patch Import folder an
 d adds these patches to the VMM patch cache.

 NOTE: The patch files will automatically be deleted from the Patch Import f
 older after they are successfully added to the patch cache.

REMARKS
 For more information, type: "get-help Add-Patch -detailed".
 For technical information, type: "get-help Add-Patch -full".

[bookmark: _Toc225244466]PhysicalAddress
[bookmark: _Toc225244467]New-PhysicalAddress

SYNOPSIS
 Returns the next available physical address (MAC address) if a range of MAC
 addresses has been configured for your Virtual Machine Manager environment
 .

SYNTAX
 New-PhysicalAddress [-Commit] [-VMMServer [<String ServerConnection>]] [<Co
 mmonParameters>]

DETAILED DESCRIPTION
 Returns the next available physical address (MAC address) if a range of MAC
 addresses has been configured for your Virtual Machine Manager environment
 . You can configure a range of MAC addresses by using the Set-VMMServer cmd
 let (or by using the Administrator Console).

 If a range of MAC addresses has been configured on the Virtual Machine Mana
 ger server, these addresses are available for use on:

 * Any virtual network adapter configured on any virtual machine deployed
 on a managed host.

 * Any hardware profile or template stored on any managed library server.

 If you use this cmdlet with the –Commit parameter, you can pass the retriev
 ed MAC address object to the New-VirtualNetworkAdapter cmdlet to assign a u
 nique MAC address to a virtual machine, a template, or a hardware profile.

PARAMETERS
 -Commit
 Allocates the next available physical address (MAC address) for use on
 a virtual network adapter configured on a virtual machine, a template,
 or a hardware profile, and increments the next available address to pre
 vent reuse of the address just allocated.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Obtain a new MAC address from the range specified on the VMM server.

 PS C:\> Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> $MACAddress = New-PhysicalAddress -Commit

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command obtains the physical address (MAC address) from the rang
 e of available addresses configured on the VMM server and stores the MAC ad
 dress object in $MACAddress for later use.

 The command uses the -Commit parameter to commit the allocation so that the
 address is available for use with the New-VirtualNetworkAdapter cmdlet (wh
 ich you can use to assign the MAC address to a virtual network adapter on a
 VM, a template, or a hardware profile). If you use the –Commit parameter w
 ith New-PhysicalAddress, this specific address will not be re-assigned to a
 future request after you have used New-VirtualNetworkAdapter to assign it
 to a virtual network adapter.

 IMPORTANT:

 If the VMM server currently does not have a range of MAC addresses configur
 ed, you can use the Set-VMMServer cmdlet with the -PhysicalAddressRangeStar
 t and -PhysicalAddressRangeEnd parameters to make a range of addresses avai
 lable. For more information, type:

 Get-Help Set-VMMServer -example

 2: Set a MAC address for a virtual network adapter in an existing virtual m
 achine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MACAddress = New-PhysicalAddress -Commit
 PS C:\> $VMHost Get-VMHost -ComputerName "VMHost02.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02" -VMHost $VMHost
 PS C:\> $VirtualNetworkAdapter = Get-VirtualNetworkAdapter -VM $VM
 PS C:\> Set-VirtualNetworkAdapter -VirtualNetworkAdapter $VirtualNetworkAda
 pter -PhysicalAddress $MACAddress -PhysicalAddressType Static

 The first command connects to VMMServer1.

 The second command obtains the physical address (MAC address) from the rang
 e of available addresses configured on the VMM server and stores the MAC ad
 dress object in $MACAddress for later use.

 NOTE: Using the Commit parameter commits the allocation of this
 MAC address so that the address is available for use with the
 Set-VirtualNetworkAdapter cmdlet in the last command. When you use
 the Commit parameter with New-PhysicalAddress, this specific address
 will not be re-assigned to a future request after you have used
 Set-VirtualNetworkAdapter to assign it to a virtual network adapter.

 The third, forth and fifth commands are used to get the virtual network ada
 pter of the specified virtual machine (VM02) from the specified host (VMHos
 t02) and to store the virtual network adapter object in $VirtualNetworkAdap
 ter.

 The last command changes the MAC address type of the virtual network adapte
 r to a static MAC address type and uses the MAC address that was obtained e
 arlier from the address pool by using the New-PhysicalAddress cmdlet.

 IMPORTANT:

 If your VMM server currently does not have a range of MAC addresses configu
 red, you can use the Set-VMMServer cmdlet with the -PhysicalAddressRangeSta
 rt and -PhysicalAddressRangeEnd parameters to make a range of addresses ava
 ilable.

REMARKS
 For more information, type: "get-help New-PhysicalAddress -detailed".
 For technical information, type: "get-help New-PhysicalAddress -full".

[bookmark: _Toc225244468]PROTip
[bookmark: _Toc225244469]Dismiss-PROTip

SYNOPSIS
 Dismisses a PRO tip object that is no longer needed in Virtual Machine Mana
 ger.

SYNTAX
 Dismiss-PROTip [-PROTip] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAs
 ynchronously] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Dismisses a PRO tip object that is no longer needed in Virtual Machine Mana
 ger. You can use this cmdlet to dismiss a PRO tip if, for example, its reco
 mmended action is no longer valid or is out-of-date.

 Virtual Machine Manager dismisses some PRO tips automatically if the condit
 ion that generated the alert, and the resulting PRO tip recommended action,
 is no longer an issue.

PARAMETERS
 -PROTip
 Specifies a PRO tip object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Dismiss the first active PRO tip.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $AllPROTips = Get-PROTip
 PS C:\> Dismiss-PROTip -PROTip $AllPROTips[0]

 The first command connects to VMMServer1 and gets the server object from th
 e VMM database. The following commands use this server by default.

 The second command gets all active PRO tip objects from the VMM database an
 d stores the PRO tip objects in variable $AllPROTips (an object array).

 The last command dismisses the first tip ($AllPROTips[0]).

REMARKS
 For more information, type: "get-help Dismiss-PROTip -detailed".
 For technical information, type: "get-help Dismiss-PROTip -full".

[bookmark: _Toc225244470]Get-PROTip

SYNOPSIS
 Gets Performance and Resource Optimization tip (PRO tip) objects from the V
 irtual Machine Manager database.

SYNTAX
 Get-PROTip -VMHost [<String Host>] [-PROTipID <Guid>] [-VMMServer [<String
 ServerConnection>]] [<CommonParameters>]

 Get-PROTip -VM [<String VM>] [-PROTipID <Guid>] [-VMMServer [<String Server
 Connection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent Performance and Resource Optimizati
 on tip (PRO tip) objects from the Virtual Machine Manager database.

 If PRO is enabled, a PRO tip recommends an action in response to an alert g
 enerated by System Center Operations Manager 2007 for hosts that are member
 s of a host group or for hosts configured in a host cluster, as well as for
 the virtual machines deployed on those hosts. A recommended action might b
 e to move a VM to a new host or to add a CPU to the VM.

 PRO provides workload- and application-aware resource optimization within h
 ost groups or host clusters that are managed by both Virtual Machine Manage
 r and Operations Manager. To receive PRO tips for these hosts, you must fir
 st configure PRO for Virtual Machine Manager. This includes deploying Opera
 tions Manager, which generates the PRO tips based on monitors provided by P
 RO-enabled management packs. PRO tip recommendations are based on policies
 implemented through Operations Manager.

 You can use the Get-PROTip cmdlet (and the other PROTip cmdlets) only on Hy
 per-V or VMware hosts that belong to a host group or that are configured in
 a host cluster.

 If you use the Set-VMHostCluster cmdlet to specify that VMM will implement
 PRO tips automatically:

 * For Hyper-V hosts configured in a host cluster, VMM can use the
 Windows 2008 Cluster Migration feature (sometimes called Quick
 Migration) to move VMs transparently between nodes in the cluster.

 * For VMware hosts configured in a host cluster, VMM can use the VMware
 Live Migration feature (VMotion) to move VMs transparently between
 nodes in the cluster.

 For more information about Operations Manager and PRO tips, type:
 Get-Help about_VMM_2008_Ops_Mgr_Integration

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all active PRO tips for all hosts and all VMs managed by VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-PROTip

 The first command connects to VMMServer1 and gets the server object from th
 e VMM database. The next command uses this server by default.

 The second command gets all active PRO tips from the VMM database and displ
 ays information about them to the user.

 2: Get all active PRO tips for a specific host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02.Contoso.com"
 PS C:\> Get-PROTip -VMHost $VMHost

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost02
 and stores the host object in $VMHost.

 The last command gets all active PRO tips that belong to VMHost02 and displ
 ays information about each tip to the user.

 3: Get all active PRO tips for a VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM03"
 PS C:\> Get-PROTip -VM $VM

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM03 and stores the virtual machine object in variable $VM.

 The last command gets all active PRO tips targeted at VM03 and displays inf
 ormation about them to the user.

REMARKS
 For more information, type: "get-help Get-PROTip -detailed".
 For technical information, type: "get-help Get-PROTip -full".

[bookmark: _Toc225244471]Invoke-PROTip

SYNOPSIS
 Performs the action recommended by a PRO tip. You can use this cmdlet to ma
 nually invoke the action recommended by a PRO tip that is not set to be imp
 lemented automatically.

SYNTAX
 Invoke-PROTip [-PROTip] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsy
 nchronously] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Performs the action recommended by a PRO tip. You can use this cmdlet to ma
 nually invoke the action recommended by a PRO tip that is not set to be imp
 lemented automatically.

 For more information about PRO tips, type:
 Get-Help Get-PROTip -detailed

PARAMETERS
 -PROTip
 Specifies a PRO tip object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Invoke the first active PRO tip.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $AllPROTips = Get-PROTip
 PS C:\> Invoke-PROTip -PROTip $AllPROTips[0]

 The first command connects to VMMServer1 and gets the server object from th
 e VMM database. The following commands use this server by default.

 The second command gets all active PRO tips from the VMM database and store
 s the PRO tip objects in variable $AllPROTips (an object array).

 The last command implements the suggested action from the first tip ($AllPR
 OTips[0]) returned from the preceding command.

REMARKS
 For more information, type: "get-help Invoke-PROTip -detailed".
 For technical information, type: "get-help Invoke-PROTip -full".

[bookmark: _Toc225244472]Set-PROTip

SYNOPSIS
 Sets the status of a PRO tip object.

SYNTAX
 Set-PROTip -PROTipID <Guid> [-ActionDetails <String>] [-ActionDetailsOpsMgr
 String <String[]>] [-ActionScript <String>] [-ActionSummary <String>] [-Act
 ionSummaryOpsMgrString <String>] [-JobVariable <String>] [-LastError <Strin
 g>] [-LastErrorOpsMgrString <String>] [-RunAsynchronously] [-TipStatus] [-V
 MMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Sets the status of a PRO tip object. This cmdlet, which is called by PRO ti
 p implementation actions and is for use in building PRO Packs, is used by V
 irtual Machine Manager to update the status of a PRO tip while performing t
 he action recommended by the PRO tip.

 As shown in the example, you can also use this cmdlet to manually update th
 e status of an individual PRO tip or an array of PRO tips.

 For more information about PRO tips, type:
 Get-Help Get-PROTip -detailed

PARAMETERS
 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -ActionDetails <String>
 Provides a detailed description of what implementing this PRO tip will
 do.

 -ActionDetailsOpsMgrString <String[]>
 Specifies an array of strings used to provide localized ActionDetails t
 ext. The first element of the array should be the GUID of the OpsMgr st
 ring and the following elements should be the parameters for string for
 matting.

 -ActionScript <String>
 Specifies the script that will run by implementing this PRO tip.

 -ActionSummary <String>
 Provides a summary description of what implementing this PRO tip will d
 o.

 -ActionSummaryOpsMgrString <String>
 Specifies an array of strings used to provide localized ActionSummary t
 ext. The first element of the array should be the GUID of the OpsMgr st
 ring and the following elements should be the parameters for string for
 matting.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LastError <String>
 Specifies the error text of a runtime error from a PRO tip script.

 -LastErrorOpsMgrString <String>
 Specifies an array of strings used to provide localized error text. Th
 e first element of the array should be the GUID of the OpsMgr string an
 d the following elements should be the parameters for string formatting
 .

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -TipStatus
 Specifies the current status of a PRO tip object.
 VALID VALUE DESCRIPTION
 ----------- -----------
 Active The user can invoke the tip's recommended action.
 Initialized The tip has been invoked; any incomplete jobs are queued.
 Running The tip has been invoked; its jobs are running
 Resolved The implementation of the tip has completed successfully.
 Failed The implementation of the tip has failed.
 Dismissed The user has chosen to ignore the tip.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Set the status of a PRO tip.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $AllPROTips = Get-PROTip
 PS C:\> Set-PROTip -PROTipID $AllPROTips[0].Id -TipStatus Running

 The first command connects to VMMServer1 and gets the server object from th
 e VMM database. The following commands use this server by default.

 The second command gets all objects that represent active PRO tips from the
 VMM database and stores the PRO tip objects in variable $AllPROTips (an ob
 ject array).

 The last command updates the first tip ($AllPROTips[0]) returned from the p
 receding command to the status "Running".

REMARKS
 For more information, type: "get-help Set-PROTip -detailed".
 For technical information, type: "get-help Set-PROTip -full".

[bookmark: _Toc225244473]Script
[bookmark: _Toc225244474]Get-Script

SYNOPSIS
 Gets script objects from the Virtual Machine Manager library. With appropri
 ate permissions, you can also use Get-Script to view or edit any script, or
 to view, edit, or run a Windows PowerShell script.

SYNTAX
 Get-Script [-ID <Guid>] [-VMMServer [<String ServerConnection>]] [<CommonPa
 rameters>]

 Get-Script [-All] [-VMMServer [<String ServerConnection>]] [<CommonParamete
 rs>]

DETAILED DESCRIPTION
 Gets script objects from the Virtual Machine Manager library. The script fi
 le that a script object represents is stored in the file system on a librar
 y server. Typically, these scripts are either Windows PowerShell scripts or
 answer file scripts (including Sysprep.inf and Unattend.xml files, which c
 ontain the inputs required for the Windows Setup program).

 As illustrated in the examples, you can use Get-Script not only to retrieve
 script objects but also (if you have appropriate permissions) to view the
 contents of a script or to edit a script. In addition, if the script is a W
 indows PowerShell script, if scripting is enabled on your server, and if yo
 u have appropriate permissions, you can also run the script (see the exampl
 es).

 IMPORTANT: For information about enabling Windows PowerShell scripting on y
 our server, type:

 Get-Help about_Signing
 Get-Help Get-ExecutionPolicy -detailed
 Get-Help Set-ExecutionPolicy -detailed

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all scripts stored on all VMM library servers.

 PS C:\> Get-Script -VMMServer VMMServer1.Contoso.com

 Gets from the VMM library on VMMServer1 all objects that represent scripts
 stored in library shares on library servers, and displays information about
 these scripts to the user.

 2: Get the specified information about all scripts on a specific VMM librar
 y server.

 PS C:\> Get-Script -VMMServer VMMServer1.Contoso.com | where { $_.LibrarySe
 rver.Name -eq "FileServer01.Contoso.com" } | Format-List -property Name, Li
 braryServer, SharePath

 Gets from the library on VMMServer1 all objects that represent scripts stor
 ed on library server FileServer01 and displays the specified information (n
 ame, library server, and share path) about these scripts to the user.

 3: Get all scripts with a specific name on any VMM library server.

 PS C:\> Get-Script -VMMServer VMMServer1.Contoso.com | where { $_.Name -eq
 “Sysprep.inf” }

 Gets from the library on VMMServer1 all objects that represent answer file
 scripts named Sysprep.inf that are stored on any library server.

 NOTE: In VMM 2008, by default, the name of a script object in the VMM libra
 ry is the same name (including the file extension) as the name of the actua
 l script file on the library server.

 4: View a script that is stored in the VMM library.

 PS C:\> $SummaryScript = Get-Script | where { $_.Name -eq "SummarizeVMMInfo
 rmation.ps1"}
 PS C:\> Notepad.exe $SummaryScript.SharePath

 The first command gets the object that represents a script named "Summarize
 VMMInformaton.ps1" from the VMM library and stores the script object in $Su
 mmaryScript.

 The second command uses Notepad to open the script so that you can view its
 contents (if you have the appropriate permissions to read the script).

 NOTE: If you have appropriate write permissions, you can also edit the scri
 pt and save the new version.

 5: Run a Windows PowerShell script that is stored in the VMM library.

 PS C:\> $SummaryScript = Get-Script | where { $_.Name -eq "SummarizeVMMInfo
 rmation.ps1" }
 PS C:\> &$SummaryScript.SharePath

 The first command gets the object that represents a script named "Summarize
 VMMInformaton.ps1" from the VMM library and stores the script object in $Su
 mmaryScript.

 The second command uses the "&" operator to run the script stored in $Summa
 ryScript.

 To run a Windows PowerShell script stored in a VMM 2008 library share:

 * You must have read and execute permissons on the script file.

 * You must be a member of the VMM Administrators user role.
 For more information, type: Get-Help Set-VMMUserRole

 * You must have permissions to access the VMM library share.
 For VMM 2008, the default location of the VMM Library share in the
 file system on a server running Windows Server 2008 is:
 <Drive>:\ProgramData\Virtual Machine Manager Library Files

 * If Windows PowerShell scripting is disabled, you must enable it:

 1. Open Windows PowerShell - Virtual Machine manager by
 right-clicking it and then clicking Run as administrator.

 2. Use the Set-ExecutionPolicy cmdlet to set the execution
 policy to the appropriate level for your environment.

 For more information, type:

 Get-Help about_Signing
 Get-Help Get-ExecutionPolicy -detailed
 Get-Help Set-ExecutionPolicy -detailed

REMARKS
 For more information, type: "get-help Get-Script -detailed".
 For technical information, type: "get-help Get-Script -full".

[bookmark: _Toc225244475]Remove-Script

SYNOPSIS
 Removes a script object from Virtual Machine Manager.

SYNTAX
 Remove-Script [-Script] <Script> [-Confirm] [-Force] [-JobVariable <String>
] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes an object that represents one or more scripts from the Virtual Mach
 ine Manager library and deletes the corresponding script file on the librar
 y server.

 If the script is attached to a template or hardware profile (and if you do
 not use the Force parameter), VMM lists the container that contains the scr
 ipt and prompts you to confirm that you want to remove the script:

 * If you reply Yes, VMM removes the association between the script and
 the container to which it is attached, and then deletes the script
 object from VMM.

 * If you reply No, the operation is cancelled.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -Script <Script>
 Specifies a VMM script object.

 -Confirm
 Prompts for confirmation before running the command.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a script object and delete the corresponding script file.

 PS C:\> $Scripts = @(Get-Script -VMMServer VMMServer1.Contoso.com | where {
 $_.LibraryServer.Name -eq “FileServer01.Contoso.com” -and $_.Name -eq "Add
 Host.ps1"})

 PS C:\> $Scripts.Count

 PS C:\> $Scripts | select Name,SharePath | Format-List

 PS C:\> Remove-Script -Script $Scripts[1] -Force

 The first command retrieves from the VMM library on VMMServer1 the object t
 hat represents the script file AddHost.ps1 (stored on library server FileSe
 rver01) and stores the script object in variable $Script. Using the "@" sym
 bol and parentheses ensures that the cmdlet stores the returned script obje
 ct in an array (in case none exists or in case there is only one). More tha
 n one file with the same name might exist if more than one container for sc
 ripts exists on the specified library server.

 The second command counts the number of scripts in $Script and displays the
 results to the user.

 The third command passes each script object in $Script to "select" (the Sel
 ect-Object cmdlet), which selects the name and share path for each script i
 n the array. The command then passes these results to the Format-List cmdle
 t to display each script name, with its share path, to the user.

 The last command uses the Remove-Script cmdlet to delete the second object
 in the array ($Script[1]) and switches on the Force parameter to ensure tha
 t the object that represents the script file is removed from the VMM databa
 se. The command also deletes the corresponding script file from the file sy
 stem on the library server.

 2: Remove multiple scripts from the library.

 PS C:\> $Scripts = Get-Script -VMMServer VMMServer1.Contoso.com | where { $
 _.Name -match “Sysprep” }
 PS C:\> $Scripts | Remove-Script -Confirm

 The first command gets from VMMServer1 all objects that represent scripts w
 hose names include the string “Sysprep” and stores these script objects in
 $Scripts (an object array).

 The second command passes each script object in $Scripts to Remove-Script,
 which removes each script object from the library and deletes each correspo
 nding script file from the file system on the library server on which that
 script is stored.

 The Confirm parameter prompts you to confirm that you do want to remove the
 se scripts. You have the option to confirm the deletion of all scripts at o
 nce ("Yes to All" or "No to All") or to confirm the deletion of each script
 one-by-one ("Yes" or "No").

REMARKS
 For more information, type: "get-help Remove-Script -detailed".
 For technical information, type: "get-help Remove-Script -full".

[bookmark: _Toc225244476]Set-Script

SYNOPSIS
 Changes properties of a script stored in the Virtual Machine Manager librar
 y.

SYNTAX
 Set-Script [-Script] <Script> [-Description <String>] [-Enabled <Boolean>]
 [-JobVariable <String>] [-Name <String>] [-Owner <String>] [-PROTipID <Guid
 >] [-RunAsynchronously] [-SharePath <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a script stored in the Virtual Machine Ma
 nager library.

 Properties that you can change include:

 - Description
 - Enabled
 - Name
 - Owner
 - SharePath

 Script objects represent script files stored in a library share on a librar
 y server. Typically, these scripts are either Windows PowerShell scripts or
 answer files (such as a Sysprep.inf or an Unattend.xml file) that contain
 the inputs required for the Windows Setup program.

 For examples that show how to view, edit, or run a Windows PowerShell scrip
 t stored in the library, type:
 Get-Help Get-Script -example

PARAMETERS
 -Script <Script>
 Specifies a VMM script object.

 -Description <String>
 Specifies a description for the specified object.

 -Enabled <Boolean>
 Enables a library object (when set to TRUE) or disables a library objec
 t (when set to FALSE). For example, if you want to upgrade software on
 a virtual machine template, you can disable the template object in the
 VMM library to temporarily prevent users from using that object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Name <String>
 Specifies the name of a VMM object.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the description of a script.

 PS C:\> $Script = Get-Script -VMMServer VMMServer1.Contoso.com | where { $_
 .LibraryServer.Name -eq “FileServer01.Contoso.com” -and $_.Name -eq "Syspre
 p.inf" }

 PS C:\> Set-Script -Script $Script -Description “Windows Server 2003 Syspre
 p Answer File”

 The first command retrieves from the library on VMMServer1 the object that
 represents the answer file script named Sysprep.inf (whose file is stored o
 n the library server named FileServer01) and stores the script object in va
 riable $Script.

 The second command changes the description of this script object to “Window
 s Server 2003 Sysprep Answer File”.

 2: Disable a Windows PowerShell script stored in the VMM library.

 PS C:\> $Script = Get-Script -VMMServer VMMServer1.Contoso.com | where { $_
 .LibraryServer.Name -eq “FileServer01.Contoso.com” -and $_.Name -eq "AddHos
 t.ps1" }

 PS C:\> Set-Script -Script $Script -Enabled $FALSE

 The first command gets the object that represents the PowerShell script nam
 ed AddHost.ps1 (whose file is stored on the library server named FileServer
 01) and stores the script object in $Script.

 The second command disables the script represented by $Script.

 3: Specify an owner for all scripts with an "Unknown" owner

 PS C:\> Get-Script -VMMServer "VMMServer1.Contoso.com" | where {$_.Owner -e
 q "Unknown"} | Set-Script -Owner "Contoso\FrankZheng"

 Gets all script objects from the VMM library, selects only those scripts wh
 ose owner is "Unknown", and specifies an owner for each script object.

REMARKS
 For more information, type: "get-help Set-Script -detailed".
 For technical information, type: "get-help Set-Script -full".

[bookmark: _Toc225244477]SshPublicKey
[bookmark: _Toc225244478]Get-SshPublicKey

SYNOPSIS
 Gets the public key object from a VMware ESX Server that you want Virtual M
 achine Manager to manage.

SYNTAX
 Get-SshPublicKey [-ComputerName] <String> [-TCPPort <Int32>] [-VMMServer [<
 String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets the Secure Shell (SSH) public key object from a VMware ESX Server that
 you want Virtual Machine Manager to manage. SSH is a network protocol that
 uses public key cryptography to enable secure encrypted communications bet
 ween a local and a remote computer.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -TCPPort <Int32>
 Specifies a numeric value that represents a TCP port.
 Note: In VMM 2007, this parameter, when used with the Get-VMMServer cmd
 let, was named Port.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get the SSH public key from a specific VMware ESX host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $PublicKey = Get-SshPublicKey -ComputerName "nnn.nnn.nnn.nnn"
 PS C:\> $PublicKey

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets the SSH public key object from a VMware ESX Server
 (specified by its IP address, indicated in this example by "nnn.nnn.nnn.nnn
 ") and stores the public key object in variable $PublicKey.

 The last command displays the contents of $PublicKey.

 NOTE: To see an example that uses the public key object to associate an ESX
 Server with Virtual Machine Manager, type: Get-Help Associate-VMHost -exam
 ple

REMARKS
 For more information, type: "get-help Get-SshPublicKey -detailed".
 For technical information, type: "get-help Get-SshPublicKey -full".

[bookmark: _Toc225244479]Step
[bookmark: _Toc225244480]Get-Step

SYNOPSIS
 Gets the steps for the specified job on a Virtual Machine Manager server.

SYNTAX
 Get-Step [-Job] [<String Task>] [-Name <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets the steps for the specified job or jobs on a Virtual Machine Manager s
 erver.

 A job is composed of one or more steps, each of which has its own status. A
 n earlier step must complete or be skipped before the next step runs.

PARAMETERS
 -Job [<String Task>]
 Specifies a VMM job object.

 -Name <String>
 Specifies the name of a VMM object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all steps for the specified job.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Job = Get-Job | where { $_.ResultName -eq "VM01" -and Status -eq "
 Running" }
 PS C:\> Get-Step -Job $Job

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command performs the following operations:

 * Retrieves from the VMM database all objects that represent VMM jobs.

 * Passes these job objects to "where" (the Where-Object cmdlet), which
 selects from the job results only those jobs on VM01 that are
 currently running.

 * Stores the retrieved job objects in variable $Job.

 The last command gets all objects that represent the top-most step objects
 for the jobs stored in $Job and displays information about these steps to t
 he user.

REMARKS
 For more information, type: "get-help Get-Step -detailed".
 For technical information, type: "get-help Get-Step -full".

[bookmark: _Toc225244481]Template
[bookmark: _Toc225244482]Get-Template

SYNOPSIS
 Gets virtual machine template objects from the Virtual Machine Manager libr
 ary.

SYNTAX
 Get-Template [-All] [-VMMServer [<String ServerConnection>]] [<CommonParame
 ters>]

 Get-Template [-ID <Guid>] [-VMMServer [<String ServerConnection>]] [<Common
 Parameters>]

DETAILED DESCRIPTION
 Gets from the Virtual Machine Manager library all objects that represent vi
 rtual machine templates.

 For information about how virtual machine templates are used to create new
 virtual machines, type:
 Get-Help New-Template -detailed

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all templates stored in the library.

 PS C:\> Get-Template -VMMServer VMMServer1.Contoso.com

 Gets all objects that represent templates from the VMM library on VMMServer
 1, and displays information about these templates to the user.

 2: Get all templates stored in the library that have a similar name.

 PS C:\> Get-Template -VMMServer VMMServer1.Contoso.com | where { $_.Name -l
 ike "Windows 2000*" }

 Gets from the VMM library on VMMServer1 all objects that represent template
 s whose name begins with "Windows 2000" and displays information about thes
 e templates to the user.

REMARKS
 For more information, type: "get-help Get-Template -detailed".
 For technical information, type: "get-help Get-Template -full".

[bookmark: _Toc225244483]New-Template

SYNOPSIS
 Creates a virtual machine template used to create virtual machines managed
 by Virtual Machine Manager.

SYNTAX
 New-Template [-Name] <String> [-AdminPasswordCredential <PSCredential>] [-A
 nswerFile <Script>] [-ComputerName <String>] [-CPUCount <Int32>] [-CPUType
 [<ProcessorType String>]] [-Description <String>] [-FullName <String>] [-Gu
 estOSProfile [<GuestOSProfile String>]] [-GuiRunOnceCommands <String[]>] [-
 HardwareProfile <HardwareProfile>] [-HighlyAvailable <Boolean>] [-JobGroup
 <Guid>] [-JobVariable <String>] [-JoinDomain <String>] [-JoinDomainCredenti
 al <PSCredential>] [-JoinWorkgroup <String>] [-MemoryMB <Int32>] [-NoCustom
 ization] [-OperatingSystem <OperatingSystem>] [-OrgName <String>] [-Owner <
 String>] [-ProductKey <String>] [-PROTipID <Guid>] [-RelativeWeight <Int32>
] [-RunAsynchronously] [-TimeZone <Int32>] [-VMMServer [<String ServerConne
 ction>]] [<CommonParameters>]

 New-Template [-Name] <String> -Template [<Template String>] [-AdminPassword
 Credential <PSCredential>] [-AnswerFile <Script>] [-ComputerName <String>]
 [-CPUCount <Int32>] [-CPUType [<ProcessorType String>]] [-Description <Stri
 ng>] [-FullName <String>] [-GuestOSProfile [<GuestOSProfile String>]] [-Gui
 RunOnceCommands <String[]>] [-HardwareProfile <HardwareProfile>] [-HighlyAv
 ailable <Boolean>] [-JobGroup <Guid>] [-JobVariable <String>] [-JoinDomain
 <String>] [-JoinDomainCredential <PSCredential>] [-JoinWorkgroup <String>]
 [-MemoryMB <Int32>] [-OperatingSystem <OperatingSystem>] [-OrgName <String>
] [-Owner <String>] [-ProductKey <String>] [-PROTipID <Guid>] [-RelativeWei
 ght <Int32>] [-RunAsynchronously] [-TimeZone <Int32>] [<CommonParameters>]

 New-Template [-Name] <String> -LibraryServer [<String LibraryServer>] -Shar
 ePath <String> -VM [<String VM>] [-AdminPasswordCredential <PSCredential>]
 [-AnswerFile <Script>] [-BootVirtualHardDisk <Boolean>] [-ComputerName <Str
 ing>] [-CPUCount <Int32>] [-CPUType [<ProcessorType String>]] [-Description
 <String>] [-FullName <String>] [-GuestOSProfile [<GuestOSProfile String>]]
 [-GuiRunOnceCommands <String[]>] [-HardwareProfile <HardwareProfile>] [-Hi
 ghlyAvailable <Boolean>] [-JobGroup <Guid>] [-JobVariable <String>] [-JoinD
 omain <String>] [-JoinDomainCredential <PSCredential>] [-JoinWorkgroup <Str
 ing>] [-MemoryMB <Int32>] [-NoCustomization] [-OperatingSystem <OperatingSy
 stem>] [-OrgName <String>] [-Owner <String>] [-ProductKey <String>] [-PROTi
 pID <Guid>] [-RelativeWeight <Int32>] [-RunAsynchronously] [-SkipRearm] [-T
 imeZone <Int32>] [<CommonParameters>]

 New-Template [-Name] <String> -VirtualHardDisk <VirtualHardDisk> [-AdminPas
 swordCredential <PSCredential>] [-AnswerFile <Script>] [-ComputerName <Stri
 ng>] [-CPUCount <Int32>] [-CPUType [<ProcessorType String>]] [-Description
 <String>] [-FullName <String>] [-GuestOSProfile [<GuestOSProfile String>]]
 [-GuiRunOnceCommands <String[]>] [-HardwareProfile <HardwareProfile>] [-Hig
 hlyAvailable <Boolean>] [-JobGroup <Guid>] [-JobVariable <String>] [-JoinDo
 main <String>] [-JoinDomainCredential <PSCredential>] [-JoinWorkgroup <Stri
 ng>] [-MemoryMB <Int32>] [-NoCustomization] [-OperatingSystem <OperatingSys
 tem>] [-OrgName <String>] [-Owner <String>] [-ProductKey <String>] [-PROTip
 ID <Guid>] [-RelativeWeight <Int32>] [-RunAsynchronously] [-TimeZone <Int32
 >] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a virtual machine template that administrators or self-service user
 s can use easily to create virtual machines managed by Virtual Machine Mana
 ger. A template stores hardware configuration and guest operating system in
 formation so that a specific template can be used repeatedly to create new
 virtual machines. The New-Template cmdlet stores the new template object in
 the Virtual Machine Manager library.

 You can create a template based on an existing virtual hard disk, based on
 an existing template, or from a virtual machine currently deployed on a vir
 tual machine host. If you specify no parameters, Virtual Machine Manager cr
 eates a default template object.

 VMM 2008 TEMPLATE REQUIREMENTS

 The following are the requirements for creating a template in VMM 2008:

 * TEMPLATE FROM VHD. If you create a template from a virtual hard
 disk, the virtual hard disk must meet the following requirements:

 - OS. You must install a supported Windows operating system on the
 virtual hard disk before you use it to create the template.
 Supported operating systems include:

 Windows Server 2008
 Windows Server 2003
 Windows 2000 Server
 Windows 2000 Advanced Server
 Windows Vista
 Windows XP Professional

 - SYSPREP. You must run the System Preparation (Sysprep.exe) tool on
 the virtual hard disk to ensure that every copy of the operating
 system is unique when you distribute it to multiple virtual machines.
 You can find Sysprep on the system CD of the Windows operating
 systems listed earlier. Navigate to the Support\Tools folder, and
 then open Deploy.cab.

 - LOCAL ADMIN PASSWORD. The local Administrator password of the guest
 operating system on a virtual hard disk that will be used to create a
 new template must be blank before you run Sysprep.exe on the virtual
 hard disk. A blank local Administrator password is required to enable
 you to have the option to specify the local Administrator password
 when you customize the guest operating system on the template.

 * TEMPLATE FROM VIRTUAL MACHINE. If you create a template from a virtual
 machine, the virtual machine will be destroyed during the process of
 converting it to a template. If you want to keep the virtual machine
 and also use it to create a template, you can use the New-P2V cmdlet
 (or the "Clone virtual machine" action in the Administrator Console)
 to clone the virtual machine before you create a template.

 * TEMPLATE FOR SELF-SERVICE USERS. If a self-service user role includes
 permission to use a template, the self-service user cannot change any
 hardware profile settings. The only settings that a self-service user
 can change when using a template to create a virtual machine are
 computer name and, if the user has appropriate privileges, password
 and product ID number.

 VMM 2008 SUPPORT FOR CUSTOMIZABLE OR NON-CUSTOMIZABLE TEMPLATES

 Optionally, if you specify the NoCustomization parameter with the New-Templ
 ate cmdlet to create a template from a virtual hard disk, from a virtual ma
 chine, from a template, or from a blank virtual hard disk, you do not need
 to add a guest operating system profile to the template as you create the t
 emplate. Without a guest operating system profile, Virtual Machine Manager
 will not require Sysprep to run within the guest operating system when a vi
 rtual machine that is created by using this template is deployed on a host

 One possible scenario is that you have a manually sysprepped virtual hard d
 isk that contains a non-Windows operating system (or that contains an opera
 ting system that Virtual Machine Manager cannot automatically sysprep) and
 have embedded an answer file in that virtual hard disk that contains the ap
 propriate settings for that operating system. You can use the New-Template
 cmdlet to create a template from this virtual hard disk and specify that th
 e template does not allow customization of the guest operating system. To d
 o so, use the NoCustomization flag when you create the new template.

 In another scenario, you might import a VMware-based template that contains
 a Windows-based operating system into Virtual Machine Manager. By default,
 Virtual Machine Manager imports a VMware-based template as customizable if
 Virtual Machine Manager knows how to customize the guest operating system.
 Otherwise, the template is imported as non-customizable (this is true, for
 example, for Linux guest operating systems). If you want to create a non-c
 ustomizable Windows-based template from this imported, customizable VMware-
 based template, you can use the New-Template cmdlet to create a new templat
 e, point to the disks that are attached to the imported template, and then
 specify the –NoCustomization flag on the new template.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VirtualHardDisk <VirtualHardDisk>
 Specifies a virtual hard disk object.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -AdminPasswordCredential <PSCredential>
 Specifies the password for the local Administrator account. Specifying
 a password (on a new or existing template, on a new or existing guest
 operating system profile, or on a new virtual machine) overrides any ex
 isting Administrator password.

 -AnswerFile <Script>
 Specifies a script object stored in the VMM library to use as an answer
 file. The name of the answer file script depends on the operating syst
 em that you want to install on a virtual machine:
 ANSWER FILE GUEST OS TO INSTALL ON VM
 ----------- -------------------------
 Sysprep.inf Windows XP, Windows Server 2000, or Windows Server 2003
 Unattend.xml Windows Vista or Windows Server 2008
 Note: In VMM 2007, this parameter was named SysPrepFile.

 -BootVirtualHardDisk <Boolean>
 Specifies the virtual hard disk file that contains the operating system
 file to use when you create a new template.

 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -Description <String>
 Specifies a description for the specified object.

 -FullName <String>
 Specifies the name of the person in whose name a virtual machine is reg
 istered.

 -GuestOSProfile [<GuestOSProfile String>]
 Specifies a guest operating system profile object.

 -GuiRunOnceCommands <String[]>
 Specifies one or more commands to add to the [GuiRunOnce] section of an
 unattended answer file (such as SysPrep.inf or Unattend.xml). Use sing
 le quotes around each string enclosed in double quotes.
 Example:
 -GuiRunOnceCommands '"C:\APF\APFPostSysPrepCopy.cmd PARAMS1"', '"C:\APF
 \APFPostSysPrepCopy.cmd PARAMS1"'
 For information about how Windows PowerShell uses quotes, type: Get-Hel
 p about_Quoting_Rules

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -HighlyAvailable <Boolean>
 Specifies that a virtual machine will be placed on a Hyper-V host that
 is part of a host cluster. Configure this setting on a virtual machine,
 or on a template or hardware profile that will be used to create virtu
 al machines.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -JoinDomain <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the do
 main to which you want to join a virtual machine. You can use this para
 meter to override the existing value on a template or on a guest operat
 ing system profile. You can join a VM to a domain only if a virtual net
 work adapter is configured for the VM.

 -JoinDomainCredential <PSCredential>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the user name and
 password of an account with permission to join a virtual machine to the
 domain. A limited rights account should be used for joining machines t
 o the domain.

 -JoinWorkgroup <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the wo
 rkgroup to which you want to join a virtual machine. You can use this p
 arameter to override the existing value on a template or on a guest ope
 rating system profile.

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -NoCustomization
 Specifies that guest operating system settings on this template cannot
 be customized.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -OrgName <String>
 Specifies the name of the organization of the person in whose name a vi
 rtual machine is registered.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -ProductKey <String>
 Specifies the product key to use for the operating system to be install
 ed on a virtual machine. The product key is a 25-digit number that iden
 tifies the product license.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SkipRearm
 Skips running the Windows Software Licensing Rearm program. This progra
 m restores the Windows operating system to its original, out-of-box lic
 ensing state.
 IMPORTANT: Please refer to your licensing agreements with regard to act
 ivation and the Rearm program. Using this parameter might violate your
 licensing agreements.

 -TimeZone <Int32>
 Specifies a number (an "index") that identifies a geographical region t
 hat shares the same standard time. For a list of time zone indexes, see
 "Microsoft Time Zone Index Values" at: http://go.microsoft.com/fwlink/
 ?LinkId=120935. If no time zone is specified, the default time zone use
 d for a virtual machine is the same time zone setting that is on the vi
 rtual machine host.
 Example: To specify the GMT Standard Time zone, type: -TimeZone 085

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a default template from a virtual hard disk.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $OS = Get-OperatingSystem -VMMServer "VMMServer1.Contoso.com" | whe
 re {$_.Name -eq "64-bit Edition of Windows Server 2008 Datacenter"}

 PS C:\> $VHD = Get-VirtualHardDisk -VMMServer VMMServer1.Contoso.com | wher
 e { $_.Name -eq “VHD01” -and $_.LibraryServer.Name -eq "FileServer01.Conto
 so.com” }

 PS C:\> New-Template -Name "NewTemplate1" -VirtualHardDisk $VHD -OperatingS
 ystem $OS -NoCustomization

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents a specific operating sys
 tem (64-bit edition of Windows Server 2008 Datacenter) from the VMM databas
 e and stores the operating system object in variable $OS.

 The third command gets the object that represents the virtual hard disk fil
 e named VHD01 (stored on library server FileServer01) from the VMM library
 and stores the virtual hard disk object in variable $VHD.

 The last command creates a template named NewTemplate1 from VHD01 and speci
 fies the name of the operating system. No customization is made to the oper
 ating system.

 NOTE: This example assumes that VHD01 is a sysprepped virtual hard disk on
 which the 64-bit edition of the Windows Server 2008 Datacenter operating sy
 stem is installed. You can, optionally, install virtualization guest servic
 es (that is, Integration Components on a Hyper-V host or Virtual Machine Ad
 ditions on a Virtual Server host) on the virtual machine, or Virtual Machin
 e Manager will install them automatically when the virtual machine is deplo
 yed on a Windows-based host.

 2: Create a template from an existing virtual machine.

 PS C:\> $LibraryServer = Get-LibraryServer -VMMServer "VMMServer1.Contoso.c
 om" | where {$_.Name -eq "FileServer01.Contoso.com"}

 PS C:\> $VM = Get-VM -VMMServer "VMMServer1.Contoso.com" -Name "VM01" | whe
 re {$_.VMHost.Name -eq "VMHost02.Contoso.com"}

 PS C:\> $OperatingSystem = Get-OperatingSystem -VMMServer "VMMServer1.Conto
 so.com" | where {$_.Name -eq "Windows Vista"}

 PS C:\> New-Template -Name "Template1" -RunAsynchronously -VM $VM -Owner "C
 ontoso\User1" -LibraryServer $LibraryServer -SharePath "\\FileServer01.Cont
 oso.com\MSSCVMMLibrary" -OperatingSystem $OperatingSystem -NoCustomization

 The first command gets the object that represents the library server called
 FileServer01 from VMMServer1 and stores the library server object in $Libr
 aryServer.

 The second command gets the object that represents the virtual machine name
 d VM01 (which is currently deployed on VMHost02) and stores the virtual mac
 hine object in $VM.

 NOTE: VM01, which is the virtual machine that will be converted to a templa
 te, will be destroyed during the conversion process. (If you want to retain
 the virtual machine used to create a template, you can use the New-VM cmdl
 et to clone the virtual machine before you create the template.)

 The fourth command gets the object that represents a specific operating sys
 tem (Windows Vista) and stores the operating system object in $OS.

 The last command creates a template named Template1 from VM01. It specifies
 the owner of the new template; specifies the library server and share wher
 e you want to store the new template; and specfies the name of the operatin
 g system. The -RunAsynchronously parameter returns control to the shell imm
 ediately (before the command completes) without any customization to the op
 erating system.

 3: Create a template from a virtual hard disk with the specified characteri
 stics.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $JobGroupId1 = [Guid]::NewGuid().ToString()

 PS C:\> New-VirtualNetworkAdapter -JobGroup $JobGroupID1 -PhysicalAddressTy
 pe Dynamic -VirtualNetwork "Internal Network"

 PS C:\> New-VirtualSCSIAdapter -JobGroup $JobGroupID1 -AdapterID 6 -Shared
 $FALSE

 PS C:\> New-VirtualDVDDrive -JobGroup $JobGroupID1 -Bus 1 -LUN 0

 PS C:\> New-HardwareProfile -Name "NewProfile1" -Owner "CONTOSO\Nicholas" -
 Description "Temporary hardware profile used to create a VM/Template" -Memo
 ryMB 512 -JobGroup $JobGroupID1

 PS C:\> $JobGroupId2 = [Guid]::NewGuid().ToString()

 PS C:\> $VHD = Get-VirtualHardDisk | where {$_.Location -eq "\\VMHost01Shar
 e\VHDs\Template.vhd"} | where {$_.HostName -eq "VMHost01.Contoso.com"}

 PS C:\> New-VirtualDiskDrive -IDE -Bus 0 -LUN 0 -JobGroup $JobGroupID2 -Vir
 tualHardDisk $VHD

 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "NewProfile1
 " }

 PS C:\> $OS = Get-OperatingSystem | where {$_.Name -eq "Windows Server 2003
 Enterprise x64 Edition"}

 PS C:\> New-Template -Name "NewTemplate2" -Owner "CONTOSO\Nicholas" -Hardwa
 reProfile $HWProfile -JobGroup $JobGroupID2 -ComputerName "*" -JoinWorkgrou
 p "WORKGROUP" -OperatingSystem $OS -RunAsynchronously

 The first command connects to VMMServer1.

 The second command generates a globally unique identifier (GUID) and stores
 the GUID string in variable $JobGroupID1. The job group ID functions as an
 identifier that groups subsequent commands that include $JobGroupID1 into
 a single job group.

 The third command will create a virtual network adapter but uses the JobGro
 up parameter to specify that the network adapter is not created until just
 before the New-HardwareProfile cmdlet runs (in the sixth command). The New-
 VirtualNetworkAdapter cmdlet sets the physical address type (MAC address ty
 pe) to dynamic and specifies that the new virtual network adapter will conn
 ect to a virtual network called "Internal Network."

 The fourth command will create a virtual SCSI adapter but uses the JobGroup
 parameter to specify that the SCSI adapter is not created until just befor
 e the New-HardwareProfile cmdlet runs (in the sixth command). The New-Virtu
 alSCSIAdapter cmdlet sets the adapter ID to 6 and sets the Shared parameter
 to $FALSE so that the adapter will not be shared (as it would have had to
 be if you wanted to use it in guest clustering).

 The fifth command will create a virtual DVD drive but uses the JobGroup par
 ameter to specify that the DVD drive is not created until just before the N
 ew-HardwareProfile cmdlet runs (in the sixth command). The New-VirtualDVDDr
 ive cmdlet specifies Bus 1 and LUN 0 to attach the virtual DVD drive to Sec
 ondary Channel (0) on the IDE bus.

 The sixth command creates a hardware profile named NewProfile1, sets the ow
 ner to Nicholas (whose account is in the Contoso domain), specifies a descr
 iption, and specifies that the amount of memory on the host that a virtual
 machine (created by using this template) will use is 512 MB. The New-Hardwa
 reProfile cmdlet uses the JobGroup parameter to specify that all preceding
 commands that include variable $JobGroupID1 will run just before New-Hardwa
 reProfile creates the new hardware profile. After New-VirtualNetworkAdapter
 , New-VirtualSCSIAdapter, and New-VirtualDVDDrive run, the resulting object
 s that are created are automatically associated with the new hardware profi
 le.

 The seventh command generates a new GUID and stores it in $JobGroupID2. Thi
 s job group ID will be used to identify any subsequent commands that includ
 e this ID and will delay the execution of those commands until just before
 the last command that specifies $JobGroupID2 runs.

 The eighth command uses the Get-VirtualHardDisk cmdlet to get the object th
 at represents the file named Template.vhd (stored in the VHDs folder under
 VMHost01Share on VMHost01) and stores the virtual hard disk object in $VHD.

 The ninth command will create a new virtual disk drive and attach the virtu
 al hard disk stored in $VHD (Template.vhd) to this new virtual disk drive.
 The command specifies Bus 0 and LUN 0 on the IDE Bus so that Template.vhd w
 ill be attached to the first slot (0) of the Primary Channel (0) on the IDE
 bus of the new virtual disk drive. The command uses the JobGroup parameter
 to specify that the new virtual disk drive is not created until just befor
 e the New-Template cmdlet runs (in the eleventh command).

 The tenth command gets the object that represents the hardware profile name
 d "NewProfile1" from the VMM library and stores the hardware profile object
 in $HWProfile.

 The eleventh command gets the object that represents a specific operating s
 ystem (Windows Server 2003 Enterprise x64 Edition) and stores the operating
 system object in variable $OS.

 The last command creates a template named NewTemplate2, sets the owner to N
 icholas (whose account is in the Contoso domain), specifies that this templ
 ate will use the hardware profile named NewProfile1, sets the computer name
 to be randomly generated (indicated by the asterisk “*”), and specifies th
 at any virtual machine created by using this template will be joined to the
 workgroup called WORKGROUP. The New-Template cmdlet uses the JobGroup para
 meter to specify that all preceding commands that include variable $JobGrou
 pID2 will run before New-Template creates the new template. After Add-Virtu
 alHardDisk (the only command before this command that includes $JobGroupID2
) runs, the resulting virtual hard disk object that is created is automatic
 ally associated with the new template.

REMARKS
 For more information, type: "get-help New-Template -detailed".
 For technical information, type: "get-help New-Template -full".

[bookmark: _Toc225244484]Remove-Template

SYNOPSIS
 Removes a template object from Virtual Machine Manager and deletes all file
 s associated with this template.

SYNTAX
 Remove-Template [-Template] [<Template String>] [-Confirm] [-Force] [-JobVa
 riable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters
 >]

DETAILED DESCRIPTION
 Removes an object that represents a template from the Virtual Machine Manag
 er library and deletes all files associated with this template.

 The types of file that can be associated with a template include virtual ha
 rd disk files (Windows-based .vhd files or VMware-based .vmdk files), virtu
 al floppy disk files (Windows-based .vfd files or VMware-based .flp files),
 and script files (Windows PowerShell .ps1 script files or answer file scri
 pts, including Sysprep.inf and Unattend.xml files).

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -Confirm
 Prompts for confirmation before running the command.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific templateobject from the library and delete the corresp
 onding files on the library server.

 PS C:\> $Template = Get-Template -VMMServer VMMServer1.Contoso.com | where
 { $_.Name -eq "Template1" }
 PS C:\> Remove-Template -Template $Template

 The first command gets the object that represents the template named Templa
 te1 from the library on VMMServer1 and stores the template object in variab
 le $Template.

 The second command removes the Template1 object from the library and delete
 s all files associated with this template from the file system on the libra
 ry server.

 2: Remove all templates from the library.

 PS C:\> $Templates = Get-Template -VMMServer VMMServer1.Contoso.com
 PS C:\> $Templates | Remove-Template -Confirm

 The first command gets all the template objects from VMMServer1 and stores
 the template objects in $Templates (an object array).

 The second command passes each template object in $Templates to Remove-Temp
 late, which removes each template object from the VMM library. The command
 also deletes all files associated with each template from the file system o
 n the library server on which that template is stored. The Confirm paramete
 r prompts you to confirm whether you want to delete each template.

REMARKS
 For more information, type: "get-help Remove-Template -detailed".
 For technical information, type: "get-help Remove-Template -full".

[bookmark: _Toc225244485]Set-Template

SYNOPSIS
 Changes properties of a template used in Virtual Machine Manager.

SYNTAX
 Set-Template [-Template] [<Template String>] -JobGroup <Guid> [-AdminPasswo
 rdCredential <PSCredential>] [-AnswerFile <Script>] [-BootOrder <BootDevice
 []>] [-ComputerName <String>] [-CostCenter <String>] [-CPUCount <Int32>] [-
 CPUMax <Int32>] [-CPUReserve <Int32>] [-CPUType [<ProcessorType String>]] [
 -Custom1 <String>] [-Custom10 <String>] [-Custom2 <String>] [-Custom3 <Stri
 ng>] [-Custom4 <String>] [-Custom5 <String>] [-Custom6 <String>] [-Custom7
 <String>] [-Custom8 <String>] [-Custom9 <String>] [-Description <String>] [
 -DiskIO <Int32>] [-Enabled <Boolean>] [-ExcludeFromPRO <Boolean>] [-Expecte
 dCPUUtilization <Int32>] [-FullName <String>] [-GuiRunOnceCommands <String[
]>] [-HighlyAvailable <Boolean>] [-JobVariable <String>] [-JoinDomain <Stri
 ng>] [-JoinDomainCredential <PSCredential>] [-JoinWorkgroup <String>] [-Lim
 itCPUFunctionality <Boolean>] [-MemoryMB <Int32>] [-Name <String>] [-Networ
 kUtilization <Int32>] [-NumLock] [-OperatingSystem <OperatingSystem>] [-Org
 Name <String>] [-Owner <String>] [-ProductKey <String>] [-PROTipID <Guid>]
 [-QuotaPoint <Int32>] [-RelativeWeight <Int32>] [-RunAsynchronously] [-Tag
 <String>] [-TimeZone <Int32>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a template used in a Virtual Machine Mana
 ger environment.

 Properties that you can change include settings for the name of the templat
 e, its description, owner, organization name, time zone, operating system,
 and product key; BIOS boot order; CPU number and characteristics; the amoun
 t memory on the host that is assigned to a virtual machine; the amount of b
 andwidth on the host's network available to a virtual machine; whether or n
 ot a virtual machine created with this template will be highly available (t
 hat is, deployed on a host that is part of a host cluster); values for doma
 in or workgroup as well as domain credentials; an optional point quota that
 specifies how many new virtual machines self-service users can create; cus
 tom fields, and other options.

 Changes that you make to a template affect only the template. Changes do no
 t affect any existing virtual machines that were created earlier by using t
 his template.

 If you want to change the properties of a a virtual disk drive, virtual flo
 ppy drive, virtual DVD drive, virtual network adapter, virtual SCSI adapter
 or virtual COM port associated with a specific template, you can use Set-V
 irtualDiskDrive, Set-VirtualFloppyDrive, Set-VirtualDVDDrive, Set-VirtualNe
 tworkAdapter, Set-VirtualSCSIAdapter, or Set-VirtualCOMPort, respectively.

 For more information about templates, type:
 Get-Help New-Template -detailed

PARAMETERS
 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -AdminPasswordCredential <PSCredential>
 Specifies the password for the local Administrator account. Specifying
 a password (on a new or existing template, on a new or existing guest
 operating system profile, or on a new virtual machine) overrides any ex
 isting Administrator password.

 -AnswerFile <Script>
 Specifies a script object stored in the VMM library to use as an answer
 file. The name of the answer file script depends on the operating syst
 em that you want to install on a virtual machine:
 ANSWER FILE GUEST OS TO INSTALL ON VM
 ----------- -------------------------
 Sysprep.inf Windows XP, Windows Server 2000, or Windows Server 2003
 Unattend.xml Windows Vista or Windows Server 2008
 Note: In VMM 2007, this parameter was named SysPrepFile.

 -BootOrder <BootDevice[]>
 Specifies the order of devices that a virtual machine on a Hyper-V host
 uses to start up.
 Valid values: CD, IDEHardDrive, PXEBoot, or Floppy.
 Example: -BootOrder PXEBoot,IDEHardDrive,CD,Floppy

 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -CostCenter <String>
 Specifies the cost center for a virtual machine so that you can collect
 data about the allocation of virtual machines (or resources allocated
 to virtual machines) to make use of in your billing system.

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUMax <Int32>
 Specifies the highest percentage of the total resources of a single CPU
 on the host that can be used by a specific virtual machine at any give
 n time.
 Example: -CPUMax 80 (to specify 80 per cent)

 -CPUReserve <Int32>
 Specifies the minimum percentage of the resources of a single CPU on th
 e host to allocate to a virtual machine. The percentage of CPU capacity
 that is available to the virtual machine is never less than this perce
 ntage.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -Custom1 <String>
 Specifies a custom property on a VMM object.

 -Custom10 <String>
 Specifies a custom property on a VMM object.

 -Custom2 <String>
 Specifies a custom property on a VMM object.

 -Custom3 <String>
 Specifies a custom property on a VMM object.

 -Custom4 <String>
 Specifies a custom property on a VMM object.

 -Custom5 <String>
 Specifies a custom property on a VMM object.

 -Custom6 <String>
 Specifies a custom property on a VMM object.

 -Custom7 <String>
 Specifies a custom property on a VMM object.

 -Custom8 <String>
 Specifies a custom property on a VMM object.

 -Custom9 <String>
 Specifies a custom property on a VMM object.

 -Description <String>
 Specifies a description for the specified object.

 -DiskIO <Int32>
 Specifies the number of disk input/output operations per second (IOPS)
 on the host that can be used by a specific virtual machine.
 Example: -DiskIO 1500 (to specify 1500 IOPS).

 -Enabled <Boolean>
 Enables a library object (when set to TRUE) or disables a library objec
 t (when set to FALSE). For example, if you want to upgrade software on
 a virtual machine template, you can disable the template object in the
 VMM library to temporarily prevent users from using that object.

 -ExcludeFromPRO <Boolean>
 Excludes (when set to TRUE) this virtual machine from being changed by
 implementing host-targeted PRO tips.

 -ExpectedCPUUtilization <Int32>
 Specifies (as a percentage) the amount of CPU on the host that you expe
 ct this virtual machine to use. This value is used only when VMM determ
 ines a suitable host for the virtual machine.

 -FullName <String>
 Specifies the name of the person in whose name a virtual machine is reg
 istered.

 -GuiRunOnceCommands <String[]>
 Specifies one or more commands to add to the [GuiRunOnce] section of an
 unattended answer file (such as SysPrep.inf or Unattend.xml). Use sing
 le quotes around each string enclosed in double quotes.
 Example:
 -GuiRunOnceCommands '"C:\APF\APFPostSysPrepCopy.cmd PARAMS1"', '"C:\APF
 \APFPostSysPrepCopy.cmd PARAMS1"'
 For information about how Windows PowerShell uses quotes, type: Get-Hel
 p about_Quoting_Rules

 -HighlyAvailable <Boolean>
 Specifies that a virtual machine will be placed on a Hyper-V host that
 is part of a host cluster. Configure this setting on a virtual machine,
 or on a template or hardware profile that will be used to create virtu
 al machines.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -JoinDomain <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the do
 main to which you want to join a virtual machine. You can use this para
 meter to override the existing value on a template or on a guest operat
 ing system profile. You can join a VM to a domain only if a virtual net
 work adapter is configured for the VM.

 -JoinDomainCredential <PSCredential>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the user name and
 password of an account with permission to join a virtual machine to the
 domain. A limited rights account should be used for joining machines t
 o the domain.

 -JoinWorkgroup <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the wo
 rkgroup to which you want to join a virtual machine. You can use this p
 arameter to override the existing value on a template or on a guest ope
 rating system profile.

 -LimitCPUFunctionality <Boolean>
 Enables running an older operating system (such as Windows NT 4.0) on a
 virtual machine deployed on a Hyper-V host or on a VMware ESX host by
 providing only limited CPU functionality for the virtual machine.

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -Name <String>
 Specifies the name of a VMM object.

 -NetworkUtilization <Int32>
 Specifies, in megabits per second (Mb/s), the amount of bandwidth on th
 e host's network that can be used by a specific virtual machine.
 Example: -NetworkUtilization 10 (to specify 10 Mb/s)

 -NumLock
 Enables the BIOS value for NumLock on a virtual machine (or on a templa
 te or hardware profile that is used to create virtual machines) on a Hy
 per-V host. This parameter does not apply to virtual machines on Virtua
 l Server hosts or on VMware ESX hosts.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -OrgName <String>
 Specifies the name of the organization of the person in whose name a vi
 rtual machine is registered.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -ProductKey <String>
 Specifies the product key to use for the operating system to be install
 ed on a virtual machine. The product key is a 25-digit number that iden
 tifies the product license.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -QuotaPoint <Int32>
 Specifies a quota that limits the number of virtual machines self-servi
 ce users can create.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -Tag <String>
 Associates a word or phrase with a virtual machine (or a template used
 to create virtual machines) so that you can search for all virtual mach
 ines with that tag as a set.

 -TimeZone <Int32>
 Specifies a number (an "index") that identifies a geographical region t
 hat shares the same standard time. For a list of time zone indexes, see
 "Microsoft Time Zone Index Values" at: http://go.microsoft.com/fwlink/
 ?LinkId=120935. If no time zone is specified, the default time zone use
 d for a virtual machine is the same time zone setting that is on the vi
 rtual machine host.
 Example: To specify the GMT Standard Time zone, type: -TimeZone 085

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Specify an amount of memory for an existing template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where {$_.Name -eq "NewTemplate1"}
 PS C:\> Set-Template -Template $Template -MemoryMB 1024

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the template named NewTemplate1 from the VMM librar
 y and stores the template object in variable $Template.

 The last command changes the memory value for NewTemplate1 to 1024 MB. This
 is the amount of memory on the host that a virtual machine (created by usi
 ng this template) will use.

 2: Specify a new owner for multiple highly available templates.

 PS C:\> Get-VMMServer "VMMServer01.contoso.com"

 PS C:\> $Templates = Get-Template | where {$_.IsHighlyAvailable}

 PS C:\> foreach ($Template in $Templates) {Set-Template $Template -Owner "C
 ontoso\<NewOwnerUserName>"}

 The first command connects to VMMServer1.

 The second command gets a list of template objects that match the search cr
 iteria (in this example, highly available templates) and stores the templat
 e objects in $Templates (an object array).

 The third command uses a foreach loop to specify a new owner for each of th
 e templates in the array.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

 3: Specify an owner for all templates with an "Unknown" owner.

 PS C:\> Get-Template -VMMServer "VMMServer1.Contoso.com" | where {$_.Owner
 -eq "Unknown"} | Set-Template -Owner "Contoso\DavidYalovsky"

 Gets all template objects from the VMM library, selects only those objects
 whose owner is "Unknown," and specifies an owner for each template object.

REMARKS
 For more information, type: "get-help Set-Template -detailed".
 For technical information, type: "get-help Set-Template -full".

[bookmark: _Toc225244486]V2V
[bookmark: _Toc225244487]New-V2V

SYNOPSIS
 Converts a virtual machine created on a VMware ESX Server host to a virtual
 machine deployed on a Windows-based host (Hyper-V or Virtual Server) manag
 ed by Virtual Machine Manager.

SYNTAX
 New-V2V -VMHost [<String Host>] -VMXMachineConfig <VMXMachineConfig> [-CPUC
 ount <Int32>] [-CPUType [<ProcessorType String>]] [-DelayStart <Int32>] [-D
 escription <String>] [-JobGroup <Guid>] [-JobVariable <String>] [-LibrarySe
 rver [<String LibraryServer>]] [-MemoryMB <Int32>] [-Name <String>] [-Netwo
 rkLocation <String>] [-NetworkTag <String>] [-NoConnection] [-OverridePatch
 Path <String>] [-Owner <String>] [-Path <String>] [-PhysicalAddress <String
 >] [-PhysicalAddressType <String>] [-PROTipID <Guid>] [-RelativeWeight <Int
 32>] [-RunAsSystem] [-RunAsUserCredential <PSCredential>] [-RunAsynchronous
 ly] [-SkipInstallVirtualizationGuestServices] [-SourceNetworkConnectionID <
 String>] [-StartAction <String>] [-StartVM] [-StopAction <String>] [-Trigge
 r] [-UseHardwareAssistedVirtualization] [-VirtualNetwork <VirtualNetwork>]
 [-VirtualNetworkAdapter <VirtualNetworkAdapter>] [-VLANEnabled] [-VLANID <I
 nt32>] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-V2V -VM [<String VM>] -VMHost [<String Host>] [-CPUCount <Int32>] [-CPU
 Type [<ProcessorType String>]] [-DelayStart <Int32>] [-Description <String>
] [-JobGroup <Guid>] [-JobVariable <String>] [-MemoryMB <Int32>] [-Name <St
 ring>] [-NetworkLocation <String>] [-NetworkTag <String>] [-NoConnection] [
 -OverridePatchPath <String>] [-Owner <String>] [-Path <String>] [-PhysicalA
 ddress <String>] [-PhysicalAddressType <String>] [-PROTipID <Guid>] [-Relat
 iveWeight <Int32>] [-RunAsSystem] [-RunAsUserCredential <PSCredential>] [-R
 unAsynchronously] [-SkipInstallVirtualizationGuestServices] [-SourceNetwork
 ConnectionID <String>] [-StartAction <String>] [-StartVM] [-StopAction <Str
 ing>] [-Trigger] [-UseHardwareAssistedVirtualization] [-VirtualNetwork <Vir
 tualNetwork>] [-VirtualNetworkAdapter <VirtualNetworkAdapter>] [-VLANEnable
 d] [-VLANID <Int32>] [-VMMServer [<String ServerConnection>]] [<CommonParam
 eters>]

 New-V2V -VMHost [<String Host>] -VMXPath <String> [-CPUCount <Int32>] [-CPU
 Type [<ProcessorType String>]] [-DelayStart <Int32>] [-Description <String>
] [-JobGroup <Guid>] [-JobVariable <String>] [-LibraryServer [<String Libra
 ryServer>]] [-MemoryMB <Int32>] [-Name <String>] [-NetworkLocation <String>
] [-NetworkTag <String>] [-NoConnection] [-OverridePatchPath <String>] [-Ow
 ner <String>] [-Path <String>] [-PhysicalAddress <String>] [-PhysicalAddres
 sType <String>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsSystem]
 [-RunAsUserCredential <PSCredential>] [-RunAsynchronously] [-SkipInstallVi
 rtualizationGuestServices] [-SourceNetworkConnectionID <String>] [-StartAct
 ion <String>] [-StartVM] [-StopAction <String>] [-Trigger] [-UseHardwareAss
 istedVirtualization] [-VirtualNetwork <VirtualNetwork>] [-VirtualNetworkAda
 pter <VirtualNetworkAdapter>] [-VLANEnabled] [-VLANID <Int32>] [-VMMServer
 [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Converts a virtual machine created on a VMware ESX Server host to a virtual
 machine deployed on a Windows-based host (Hyper-V or Virtual Server) manag
 ed by Virtual Machine Manager. You cannot specify a VMware ESX host as the
 destination host for the new virtual machine.

 VMM 2008 V2V CONVERSION REQUIREMENTS

 A V2V conversion requires that the host on which the new virtual machine wi
 ll be deployed is a computer running either Windows Server 2008 with the Hy
 per-V server role enabled, or a Windows-based server (typically, a computer
 running Windows Server 2003) on which Virtual Server 2005 R2 SP1 version 1
 .1.629.0 or later is installed. (For more information about virtual machine
 hosts in VMM 2008, type "Get-Help Add-VMHost -detailed".)

 The source for a V2V conversion of a VMware virtual machine performed by th
 e New-V2V cmdlet is a set of files that you must store in the Virtual Machi
 ne Manager library before you perform the conversion:

 * A .vmx file, which is a VMware virtual machine configuration file.
 A .vmx file is approximately similar in function to the virtual
 machine configuration file (.vmc file) used for a Windows-based
 virtual machine.

 A .vmx file is a text file that describes the properties and
 structure of a virtual machine, including name, memory, disk
 assignments, network parameters, and so on.

 * One or more .vmdk files. A .vmdk file is a VMware virtual hard
 disk file, which is similar to the virtual hard disk file (.vhd
 file) used for a Windows-based virtual machine.

 The .vmdk files are not passed directly as input to the New-V2V
 cmdlet but are listed in the .vmx file. A .vmdk file contains the
 virtual machine's guest operating system, applications, and data.

 Supported VMware virtual hard disk formats include:

 - monolithicSparse
 - monolithicFlat
 - vmfs
 - twoGbMaxExtentSparse
 - twoGbMaxExtentFlat

 VMM 2008 V2V CONVERSION PROCESS

 During the conversion process, the New-V2V cmdlet converts the .vmdk files
 to .vhd files and makes the operating system on the new virtual machine com
 patible with Microsoft virtualization technologies. The virtual machine cre
 ated by New-V2V matches VMware virtual machine properties, including name,
 description, memory, disk-to-bus assignment, and so on, unless these settin
 gs are explicitly overridden by specifying different values for these setti
 ngs. By default, the conversion process does not preserve network adapter s
 ettings; however, you can explicitly set adapter settings on the target vir
 tual machine.

 VMM 2008 V2V CONVERSION OF THESE GUEST OPERATING SYSTEMS
 --
 New-V2V supports the conversion of VMware virtual machines that are running
 any of the following guest operating systems:

 * Microsoft Windows 2000 Server with Service Pack 4 (SP4) or later
 * Windows Server 2003 SP1 or later
 * Windows Server 2003 R2 or later
 * Windows Server 2008
 * Windows XP SP1 or later
 * Windows Vista

 Some conversions of a VMware-based virtual machine whose guest operating sy
 stem is Windows might require that additional system files and drivers be a
 dded to the internal cache. You can use the Add-Patch cmdlet to add the req
 uired files to the cache. To determine what patches you need to add, run Ne
 w-V2V and let the cmdlet convert the .vmdk file to a .vhd file. If you need
 patches, this process will put the V2V conversion into a failed state and
 will produce a list of required patches. Next, use the Add-Patch cmdlet to
 add the patches to the internal cache, and then restart the failed V2V job.
 The V2V process will continue and will not need to re-do the disk conversi
 on.

 If you use New-V2V to convert a VMware-based virtual machine running any ot
 her operating system to a Hyper-V or Virtual Server-based virtual machine,
 the virtual machine might not start up or might not function correctly. To
 ensure a successful conversion, you must first modify the guest operating s
 ystem to one of the listed supported operating systems.

 FOR MORE INFORMATION

 * About how Virtual Machine Manager can convert VMDK files directly, type:
 Get-Help Copy-VMDK

 * About how to add required files to the internal cache, type:
 Get-Help Add-Patch

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -VMXMachineConfig <VMXMachineConfig>
 Specifies a VMX machine configuration for a VMware-based virtual machin
 e. VMX machine configuration includes information about the virtual mac
 hine's hardware, disks, and operating system.
 Note: In VMM 2007, this parameter, when used with the New-V2V and Remov
 e-VMXMachineConfig cmdlets, was named MachineConfig.

 -VMXPath <String>
 Specifies the full UNC path to the .vmx file of a VMware virtual machin
 e.
 Example format: \\ServerName\VolumeName\DirectoryName\VMwareVM.vmx

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -DelayStart <Int32>
 Specifies the number of seconds to wait after the virtualization servic
 e starts before automatically starting a virtual machine. Used to stagg
 er the startup time of multiple virtual machines to help reduce the dem
 and on the physical computer’s resources. A typical setting might be 30
 to 60 seconds.
 TYPE OF HOST MAXIMUM CONFIGURABLE DELAY
 ------------ --------------------------------
 Hyper-V 1000000000 seconds (277777 hours)
 Virtual Server 86400 seconds (24 hours)
 VMware ESX 65535 seconds (18 hours)

 -Description <String>
 Specifies a description for the specified object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -Name <String>
 Specifies the name of a VMM object.

 -NetworkLocation <String>
 Specifies the network location for a physical network adapter or for a
 virtual network adapter, or changes the default network location of a h
 ost's physical network adapter.
 Example formats:
 -NetworkLocation $NetLoc ($NetLoc might contain "Corp.Contoso.com")
 -OverrideNetworkLocation $TRUE –NetworkLocation "HostNICNewLocation.Co
 ntoso.com"

 -NetworkTag <String>
 Specifies a word or phrase to associate with a virtual network adapter
 that is configured to connect to a specific internal or external networ
 k on the host. The NetworkTag identifies all VMs with the same NetworkT
 ag as members of the same network. VMM uses a NeworkTag (if one exists)
 when it evaluates hosts as possible candidates on which to deploy a VM
 . If the host does not include VMs on the network with the same Network
 Tag as the VM to be placed, the host receives zero stars in the placeme
 nt process.

 -NoConnection
 Disconnects a virtual network adapter from a virtual network.

 -OverridePatchPath <String>
 For internal use only (not for use in your code).

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -PhysicalAddress <String>
 Specifies the physical address (MAC address) of a physical or virtual n
 etwork adapter.
 Note: In VMM 2007, this parameter was named EthernetAddress.

 -PhysicalAddressType <String>
 Specifies the type of physical address (MAC address) to use for a virtu
 al network adapter:
 Valid values: Static, Dynamic
 Note: In VMM 2007, this parameter was named EthernetAddressType.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RunAsSystem
 Specifies that a virtual machine on a Virtual Server host will run unde
 r the local system account. If specified, Virtual Server will not autom
 atically start the virtual machine when the Virtual Server service star
 ts. (This parameter does not apply to virtual machines on Hyper-V or VM
 ware ESX hosts because Hyper-V and VMware run a virtual machine under t
 he local system account by default; you cannot change this setting on t
 hose virtualization platforms.)

 -RunAsUserCredential <PSCredential>
 Specifies the guest account (domain\account) that a virtual machine on
 a Virtual Server host runs under. If specified, Virtual Server will aut
 omatically start a virtual machine when the Virtual Server service star
 ts. For enhanced security, create a special account with limited permis
 sions:
 FILE TYPE MINIMUM REQUIRED PERMISSIONS FOR GUEST ACCOUNT
 ----------- --
 .vmc file Read Data, Write Data, Execute File
 .vmc folder List Folder, Write/Create File (required to save VM state)
 .vhd file Read Data, Read Attributes, Read Extended Attributes,
 Write Data
 .vnc file Execute File, Read Data, Read Attributes, Read
 (required if VM connects to a virtual network)
 Note: This parameter does not apply to virtual machines on Hyper-V or V
 Mware ESX hosts.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SkipInstallVirtualizationGuestServices
 Skips the installation of virtualization guest services on a Windows-ba
 sed virtual machine. By default, this parameter is set to FALSE and
 VMM installs the appropriate virtualization guest service automatically
 . For a virtual machine on a Hyper-V host, the virtualization guest ser
 vice is called Integration Components (VMGuest.iso). For a virtual mach
 ine on a Virtual Server host, the virtualization guest service is calle
 d Virtual Machine Additions (VMAdditions.iso). Virtual machines on a VM
 ware ESX host do not use a virtualization guest service.

 -SourceNetworkConnectionID <String>
 Specifies the MAC address or network name of the physical network adapt
 er to be converted into a virtual network adapter in the virtual machin
 e.

 -StartAction <String>
 Specifies the behavior of a virtual machine when the virtualization ser
 vice (Hyper-V, Virtual Server, or VMware) starts. To specify that a vir
 tual machine deployed on a Virtual Server host starts automatically, us
 e the -RunAsUserCredential parameter to specify an account with appropr
 iate permissions (otherwise, the StartAction reverts to NeverAutoTurnOn
 VM).
 Valid values: AlwaysAutoTurnOnVM, NeverAutoTurnOnVM, TurnOnVMIfRunningW
 henVSStopped

 -StartVM
 Specifies that the virtual machine starts when it arrives at the destin
 ation host.

 -StopAction <String>
 Specifies the behavior of the virtual machine when the virtualization s
 ervice (Hyper-V, Virtual Server, or VMware) stops.
 Valid values: SaveVM, TurnOffVM, ShutdownGuestOS

 -Trigger
 Starts the execution a job group for a physical-to-virtual (P2V) conver
 sion, a virtual-to-virtual (V2V) conversion, or the conversion of a phy
 sical hard disk to a virtual hard disk.

 -UseHardwareAssistedVirtualization
 Specifies that, for a virtual machine deployed on a Virtual Server host
 , hardware-assisted virtualization is used if it is available (when set
 to TRUE). The Virtual Server host must support AMD Virtualization (AMD
 -V) or Intel Virtualization Technology (Intel-VT) hardware virtualizati
 on. This parameter does not apply to virtual machines on Hyper-V hosts
 or VMware ESX hosts.

 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -VirtualNetworkAdapter <VirtualNetworkAdapter>
 Specifies a virtual network adapter object for a virtual machine.
 TYPE OF HOST NUMBER OF VIRTUAL NETWORK ADAPTERS
 ------------ ----------------------------------
 Virtual Server Up to 4 emulated adapters per VM.
 Hyper-V Up to 4 emulated adapters per VM.
 Up to 8 synthetic adapters per VM.
 (Exception: no driver available for an emulated
 network adapter on a Windows Server 2003 x64 guest.)
 VMware ESX Up to 4 emulated adapters per VM.

 -VLANEnabled
 Enables a virtual LAN (a VLAN) for use by virtual machines on a Hyper-V
 or VMware ESX host.
 Example format for a single VLAN:
 -VLANEnabled -VLANMode "Access" -VLANID 35
 Example format for multiple VLANs:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 -VLANID <Int32>
 Assigns a numerical identifier in the range 1-4094 to a virtual network
 adapter on a virtual machine or to a physical network adapter on a Hyp
 er-V or VMware ESX host.
 Configure a VLANID on a Hyper-V or VMware ESX host:
 * On an externally bound physical network adapter.
 Configure a VLANID on a virtual network adapter of a virtual machine:
 * Bound to a physical network adapter on the host, or
 * Bound to an internal virtual network on the host.
 Example format:
 -VLANEnabled
 -VLANMode "Access" -VLANID 35

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Convert a VMware-based VM deployed on an ESX host to a VM deployed on a
 Windows-based host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $ESXHost = Get-VMHost -ComputerName "ESXHost01"

 PS C:\> $VMHost = Get-VMHost -ComputerName "HyperVHost01.Contoso.com"

 PS C:\> $VM = Get-VM -VMHost $ESXHost –Name "SourceVM"

 PS C:\> New-V2V -VM $VM -VMHost $VMHost -Name "DestinationVM" -Path "C:\MyV
 Ms" -MemoryMB 256 –RunAsynchronously

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database; the following commands use t
 his server by default.

 The second command gets the object that represents the host named ESXHost01
 from the VMM database and stores the host object in variable $ESXHost.

 The third command gets the object that represents the host named HyperVHost
 01 (in the Contoso.com domain) and stores the host object in variable $VMHo
 st.

 The fourth command gets the object that represents the VM named SourceVM on
 ESXHost01 and stores the VM object in variable $VM.

 In the last command, New-V2V performs the following operations:

 * Creates a Windows-based virtual machine named DestinationVM from
 the source VMware virtual machine named SourceVM. The command
 deploys the new virtual machine, now named DestinationVM, onto
 HyperVHost01, storing the virtual machine files in the folder C:\MyVMs
 on HyperVHost01.

 * Assigns 256 MB of memory on HyperVHost01 for use by the new
 virtual machine.

 * Uses the -RunAsynchronously parameter to return control to the
 command shell immediately (before the command completes).

 All of the virtual disks on the source virtual machine will be converted an
 d attached to the new virtual machine.

 2: Convert a VMware-based VM stored in the VMM library to a VM deployed on
 a Windows-based host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $LibServ = Get-LibraryServer -ComputerName "FileServer02.Contoso.co
 m"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VirtualServerHost02.Contoso.com
 "

 PS C:\> New-V2V -LibraryServer $LibServ -VMXPath "\\FileServer02\MSSCVMMLib
 rary\VMware\VMSource.vmx" -VMHost $VMHost -Name "VM02" -Path "C:\MyVMs" -Me
 moryMB 256 -RunAsynchronously

 The first command connects to VMMServer1.

 The second command gets the object that represents the library server named
 FileServer02 and stores the library server object in $LibServ.

 The third command gets the object that represents the host named VirtualSer
 verHost02 and stores the host object in $VMHost.

 In the last command, New-V2V performs the following operations:

 * Creates a Windows-based virtual machine named VM02 from
 the source VMware file (VMSource.vmx) stored at the
 specified path on FileServer02, and then deploys the new
 virtual machine (VM02) onto VirtualServerHost02. The command
 stores the virtual machine files in the folder C:\MyVMs on
 VirtualServerHost02.

 * Assigns 256 MB of memory on VirtualServerHost02 for use by the new
 virtual machine.

 * Uses the -RunAsynchronously parameter to return control to the
 command shell immediately (before the command completes).

REMARKS
 For more information, type: "get-help New-V2V -detailed".
 For technical information, type: "get-help New-V2V -full".

[bookmark: _Toc225244488]VirtualCOMPort
[bookmark: _Toc225244489]Get-VirtualCOMPort

SYNOPSIS
 Gets Virtual Machine Manager virtual communication (COM) port objects from
 a virtual machine, template, or hardware profile.

SYNTAX
 Get-VirtualCOMPort -VM [<String VM>] [<CommonParameters>]

 Get-VirtualCOMPort -HardwareProfile <HardwareProfile> [<CommonParameters>]

 Get-VirtualCOMPort -All [-VMMServer [<String ServerConnection>]] [<CommonPa
 rameters>]

 Get-VirtualCOMPort -Template [<Template String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or both objects that represent Virtual Machine Manager virtual COM
 ports from a virtual machine object, from a template object, or from a har
 dware profile object.

 A virtual COM port can connect to a physical port on a virtual machine host
 server, to a text file, or to a named pipe. Each virtual machine, template
 , and hardware profile contains exactly two COM ports.

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get COM ports from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> Get-VirtualCOMPort -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database; the following commands use t
 his server by default.

 The second command gets from the VMM database the object that represents th
 e virtual machine named VM01 and stores the virtual machine object in varia
 ble $VM.

 The last command retrieves both objects that represent virtual COM ports on
 VM01 and displays information about these virtual COM ports to the user.

 2: Get COM ports from a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template1" }
 PS C:\> Get-VirtualCOMPort -Template $Template

 The first command connects to VMMServer1.

 The second command gets the object that represents the template named Templ
 ate1 and stores the template object in $Template.

 The last command gets both objects that represent virtual COM ports on Temp
 late1 and displays information about these virtual COM ports to the user.

 3: Get COM ports from a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file1" }
 PS C:\> Get-VirtualCOMPort -HardwareProfile $HWProfile

 The first command connects to VMMServer1.

 The second command gets the object that represents the hardware profile nam
 ed HardwareProfile and stores the hardware profile object in $HWProfile.

 The last command gets both objects that represent virtual COM ports on Hard
 wareProfile1 and displays information about these virtual COM ports to the
 user.

REMARKS
 For more information, type: "get-help Get-VirtualCOMPort -detailed".
 For technical information, type: "get-help Get-VirtualCOMPort -full".

[bookmark: _Toc225244490]Set-VirtualCOMPort

SYNOPSIS
 Changes properties of a virtual COM port associated with a virtual machine,
 template, or hardware profile used in Virtual Machine Manager.

SYNTAX
 Set-VirtualCOMPort [-VirtualCOMPort] <VirtualCOMPort> -NoAttach [-JobGroup
 <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<C
 ommonParameters>]

 Set-VirtualCOMPort -GuestPort <Byte> -NamedPipe <String> [-JobGroup <Guid>]
 [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServe
 r [<String ServerConnection>]] [<CommonParameters>]

 Set-VirtualCOMPort -GuestPort <Byte> -VMHostCOMPort <Int32> [-JobGroup <Gui
 d>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMSe
 rver [<String ServerConnection>]] [-WaitForModem <Boolean>] [<CommonParamet
 ers>]

 Set-VirtualCOMPort [-VirtualCOMPort] <VirtualCOMPort> -VMHostCOMPort <Int32
 > [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynch
 ronously] [-WaitForModem <Boolean>] [<CommonParameters>]

 Set-VirtualCOMPort [-VirtualCOMPort] <VirtualCOMPort> -TextFile <String> [-
 JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchrono
 usly] [<CommonParameters>]

 Set-VirtualCOMPort -GuestPort <Byte> -NoAttach [-JobGroup <Guid>] [-JobVari
 able <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String
 ServerConnection>]] [<CommonParameters>]

 Set-VirtualCOMPort [-VirtualCOMPort] <VirtualCOMPort> -NamedPipe <String> [
 -JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchron
 ously] [<CommonParameters>]

 Set-VirtualCOMPort -GuestPort <Byte> -TextFile <String> [-JobGroup <Guid>]
 [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer
 [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual communications (COM) port assoc
 iated with a virtual machine, template, or hardware profile used in a Virtu
 al Machine Manager environment.

 CONNECTING A VIRTUAL COM PORT

 Depending on the type of host on which a virtual machine is (or will be) de
 ployed, you can use this cmdlet to connect a virtual COM port to a physical
 COM port on a host server, to a text file, or to a named pipe, or you can
 use it to disconnect a virtual COM port. Connecting a virtual COM port on a
 virtual machine to a physical COM port on its host lets the virtual machin
 e use the physical COM port for input and output.

 Type of Host Available Virtual COM Port Connection Types
 ------------ ---
 Hyper-V Connects to a named pipe only
 Virtual Server Connects to a physical COM port, text file, or named pipe
 VMware ESX Connects to a physical COM port, text file, or named pipe

 HOW THE WAITFORMODEM PARAMETER WORKS

 You can use the Set-VirtualCOMPort cmdlet with the WaitForModem parameter t
 o specify whether a virtual COM port on a virtual machine will connect imme
 diately to a physical COM port on the host when the virtual machine starts,
 or not.

 If WaitForModem is set to TRUE, the virtual machine attempts to capture (co
 nnect to) the physical COM port on the host only when a program running on
 the virtual machine sends a modem command to the physical COM port. If the
 COM port on the host is already connected, the virtual machine cannot conne
 ct to it. If the virtual machine successfully connects to the physical COM
 port, the virtual machine will later release the physical COM port back to
 the host operating system if the program on the virtual machine that uses t
 he COM port stops using the COM port.

 If WaitForModem is set to FALSE, the virtual machine attempts to capture th
 e physical COM port on the host as soon as the virtual machine starts. If t
 he COM port on the host is already captured, the virtual machine cannot con
 nect to it (same behavior for TRUE or FALSE). If the virtual machine succes
 sfully connects to the physical COM port, the virtual machine will not rele
 ase the physical COM port back to the host operating system until the virtu
 al machine is shut down (behavior for FALSE differs from behavior for TRUE)
 .

 PARAMETER SETS THAT USE VIRTUALCOMPORT VERSUS GUEST PORT
 --
 In VMM 2008, the Set-VirtalCOMPort cmdlet uses the VirtualCOMPort parameter
 and the GuestPort parameter as follows:

 * -VirtualCOMPort<VirtualCOMPort>

 Used with four parameter sets of Set-VirtualCOMPort to specify
 a VirtualCOMPort object.

 * -GuestPort<Byte>

 Used with four other parameters sets of Set-VirtualCOMPort to specify
 a virtual COM port by ID (0 or 1).

 Review the SYNTAX information for Set-VirtualCOMPort to see which parameter
 sets use the VirtualCOMPort parameter and which use the GuestPort paramete
 r.

PARAMETERS
 -VirtualCOMPort <VirtualCOMPort>
 Specifies a virtual COM port object. VMM supports configuring two COM p
 orts on a virtual machine, template, or hardware profile.
 Note: In VMM 2007, the VirtualCOMPort parameter was named GuestPort. In
 VMM 2008, the GuestPort parameter is used to specify a virtual COM por
 t by a numerical identifier (0 or 1).

 -GuestPort <Byte>
 Specifies a virtual COM port on a virtual machine by a numerical identi
 fier.
 Valid values: 0 or 1.

 -NamedPipe <String>
 Specifies a named pipe to which to connect a virtual COM port. Typical
 uses include creating a connection between a virtual machine and a debu
 gging program on the host (if the debugger supports the use of named pi
 pes), or creating a virtual null modem cable between two virtual machin
 es.
 Example named pipe path: \\.\Contoso\Pipe\PipeName

 -NoAttach
 Specifies that no physical COM port on a host, named pipe, or file will
 be connected to a virtual COM port; or disconnects a virtual COM port
 that is already connected to a physical COM port, to a named pipe, or t
 o a text file.

 -TextFile <String>
 Specifies a text file on the host to which to connect a virtual COM por
 t on a virtual machine so that output from the virtual COM port can be
 sent to that text file. The text file can be on any valid disk drive on
 the host.
 Example format: -TextFile "D:\ComPort.txt"

 -VMHostCOMPort <Int32>
 Specifies a physical COM port object on a host server to which you can
 connect a virtual COM port.
 Note: In VMM 2007, this parameter was named HostPort.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -WaitForModem <Boolean>
 Specifies that a virtual COM port will wait to connect to a physical CO
 M port on the host (when set to TRUE), or that the virtual COM port wil
 l connect immediately to a physical COM port on the host as soon as the
 virtual machine starts (when set to FALSE). For more information, type
 : Get-Help Set-VirtualCOMPort.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Connect a virtual COM port to a physical COM port.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Set-VirtualCOMPort -VirtualCOMPort $VM.VirtualCOMPorts[0] -VMHostCO
 MPort 1 -WaitForModem $FALSE

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The last command connects the first virtual COM port on VM01 ($VM.VirtualCO
 MPorts[0]) to the specified physical COM port (COM1) on the host. Setting t
 he WaitForModem parameter to $FALSE connects the host COM port as soon as t
 he virtual machine starts.

 2: Connect a virtual COM port to a named pipe.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> $COM1 = Get-VirtualCOMPort -VM $VM | where {$_.Name -eq "COM1"}
 PS C:\> Set-VirtualCOMPort -VirtualCOMPort $COM1 -NamedPipe "\\Contoso\Pipe
 \PipeName"

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third commands gets the virtual COM port named COM1 from VM02 and store
 s the virtual COM port object in $COM1.

 The last command connects the virtual COM port to the named pipe \\Contoso\
 Pipe\PipeName.

 3: Connect a virtual COM port to a text file.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM03"
 PS C:\> Set-VirtualCOMPort -VirtualCOMPort $VM.VirtualCOMPorts[0] -TextFile
 "D:\ComPort.txt

 The first command connects to VMMServer1.

 The second command gets the object that represents VM03 and stores it in $V
 M.

 The last command connects the first virtual COM port on VM03 ($VM.VirtualCO
 MPorts[0]) to the text file D:\ComPort.txt on the host.

 4: Disconnect a virtual COM port.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM04"
 PS C:\> $COM1 = Get-VirtualCOMPort -VM $VM | where {$_.Name -eq "COM1"}
 PS C:\> Set-VirtualCOMPort -VirtualCOMPort $COM1 -NoAttach

 The first command connects to VMMServer1.

 The second command gets the object that represents VM04 and stores it in $V
 M.

 The third command gets the virtual COM port on VM04 named COM1 and stores t
 he virtual COM port object in $COM1.

 The last command disconnects the virtual COM port object in $ComPort by spe
 cifying the NoAttach parameter.

 NOTE: You can use this command to disconnect a virtual COM port that is cur
 rently connected to a physical COM port on a host, to a named pipe, or to a
 text file.

 5: Specify settings for each virtual COM port on a new VM, configure other
 settings, and store the new VM in the VMM library.

 PS C:\> $JobGroupId = [Guid]::NewGuid().ToString()

 PS C:\> Set-VirtualCOMPort -TextFile "D:\text" -VMMServer VMMServer1.Contos
 o.com -GuestPort 1 -JobGroup $JobGroupId

 PS C:\> Set-VirtualCOMPort -NamedPipe "\\.\pipe\name" -GuestPort 2 -JobGrou
 p $JobGroupId

 PS C:\> $CPUType = Get-CPUType | where {$_.Name -eq "1.20 GHz Athlon MP"}

 PS C:\> New-HardwareProfile -Owner "Contoso\User1" -CPUType $CPUType -Name
 "Profile1" -Description "" -CPUCount 1 -MemoryMB 512 -ExpectedCPUUtilizatio
 n 20 -DiskIO 0 -NetworkUtilization 10 -RelativeWeight 100 -HighlyAvailable
 $FALSE -NumLock $FALSE -BootOrder CD,IdeHardDrive,PxeBoot,Floppy -LimitCPUF
 unctionality $FALSE -JobGroup $JobGroupId

 PS C:\> $VHD = Get-VirtualHardDisk | where {$_.Location -eq "\\FileServer1.
 Contoso.com\MSSCVMMLibrary\VHDs\Large.vhd"} | where {$_.HostName -eq "FileS
 erver1.Contoso.com"}

 PS C:\> New-VirtualDiskDrive -IDE -Bus 0 -LUN 0 -JobGroup $JobGroupId -Virt
 ualHardDisk $VHD -Filename "VM01_Large.vhd"

 PS C:\> $LibraryServer = Get-LibraryServer | where {$_.Name -eq "FileServer
 1.Contoso.com"}

 PS C:\> $HardwareProfile = Get-HardwareProfile | where {$_.Name -eq "Profil
 e1"}

 PS C:\> New-VM -Name "VM05" -Description "" -Owner "Contoso\User1" -Library
 Server $LibraryServer -SharePath "\\FileServer1.Contoso.com\VMs" -HardwareP
 rofile $HardwareProfile -JobGroup $JobGroupId -RunAsynchronously -RunAsSyst
 em -StartAction NeverAutoTurnOnVM -UseHardwareAssistedVirtualization $FALSE
 -StopAction SaveVM

 The first command generates a globally unique identifier (GUID) and stores
 the GUID string in $JobGroupID. The job group ID functions as an identifier
 that groups subsequent commands that include this identifier into a single
 job group.

 The second command connects to VMMServer1 and specifies that the first virt
 ual COM port (for the virtual machine to be created in the last command) wi
 ll use a text file. Using $JobGroupID specifies that the virtual COM port i
 s not created until just before the New-VM cmdlet runs in the last command.

 The third command specifies that the second virtual COM port (for the virtu
 al machine to be created in the last command) will use a named pipe. The co
 mmmand uses $JobGroupID to delay the execution of this cmdlet until just be
 fore the New-VM cmdlet runs in the last command.

 The fourth command gets a specific CPU type by name and stores the CPU type
 object in $CPUType.

 The fifth command will create a new hardware profile but uses $JobGroupID t
 o specify that the hardware profile is not created until just before the Ne
 w-VM cmdlet (in the last command) runs. The New-HardwareProfile cmdlet name
 s the hardware profile "Profile1" and specifies an owner; sets the specifie
 d values for CPU, memory,disk, and network settings; specifies that a virtu
 al machine created from this hardware profile is not highly available (that
 is, will not be placed on a host in a host cluster); disables NumLock and
 sets limited CPU functionality to FALSE (to indicate that the operating sys
 tem on a virtual machine created from this hardware profile is not an older
 operating system that requires limited CPU functionality); and specifies t
 he BIOS boot order for a virtual machine created from this hardware profile
 .

 The sixth command gets an existing VHD called Large.vhd from the library an
 d stores the VHD object in $VHD.

 The seventh command will create a new virtual disk drive and will attach th
 e virtual hard disk object retrieved in the preceding command to the first
 slot of the first IDE channel on the new virtual disk drive but uses $JobGr
 oupID to delay the execution of this cmdlet until just before the New-VM cm
 dlet runs in the last command.

 The eighth command gets the object that represents the library server (File
 Server1) on which the VM will be stored and stores the library server objec
 t in $LibraryServer.

 The ninth command gets the hardware profile object named Profile1 created i
 n an earlier step and stores the hardware profile object in $HardwareProfil
 e.

 The last command uses the New-VM cmdlet, and the commands grouped into a se
 t by $JobGroupID, to create a new VM named VM05. The command specifies an o
 wner for the virtual machine and a share in the library where the new VM wi
 ll be stored; specifies that the command will run asynchronously, that the
 virtual machine will run under the local system account (which indicates th
 at the virtual machine will be deployed on a Virtual Server host), and that
 hardware-assisted virtualization is not used (which indicates that the vir
 tual machine will be deployed on a Virtual Server that does not support eit
 her AMD-V) or Intel-VT hardware virtualization); and specifies start and st
 op actions for the virtual machine.

REMARKS
 For more information, type: "get-help Set-VirtualCOMPort -detailed".
 For technical information, type: "get-help Set-VirtualCOMPort -full".

[bookmark: _Toc225244491]VirtualDiskDrive
[bookmark: _Toc225244492]Compress-VirtualDiskDrive

SYNOPSIS
 Compresses a dynamically expanding virtual hard disk attached to a virtual
 disk drive object on a stopped virtual machine on a Windows-based host mana
 ged by Virtual Machine Manager to reduce the size of the virtual hard disk.

 NOTE: In VMM 2007, this cmdlet was named Compact-VirtualHardDisk.

SYNTAX
 Compress-VirtualDiskDrive [-VirtualDiskDrive] <VirtualDiskDrive> [-JobGroup
 <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<
 CommonParameters>]

DETAILED DESCRIPTION
 Compresses a dynamically expanding virtual hard disk attached to a virtual
 disk drive object on a virtual machine on a Windows-based host managed by V
 irtual Machine Manager to reduce the size of the virtual hard disk. The vir
 tual machine must be stopped before you can compress the virtual hard disk.

 You can use the Compress-VirtualDiskDrive cmdlet to compress only a Windows
 -based virtual hard disk file (a .vhd file) attached to a virtual disk driv
 e object on a virtual machine that is deployed on a Hyper-V host or on a Vi
 rtual Server host.

 A VMware-based virtual hard disk file (a .vmdk file) on a virtual machine d
 eployed on an ESX Server 3.0 or 3.5 host is fixed (not dynamic), and you ca
 nnot compress a fixed virtual hard disk.

PARAMETERS
 -VirtualDiskDrive <VirtualDiskDrive>
 Specifies a virtual disk drive object. You can attach either a virtual
 hard disk (for a virtual machine on any host) or a pass-through disk (f
 or a virtual machine on a Hyper-V host or an ESX host) to a virtual dis
 k drive object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Compress a virtual hard disk attached to a virtual disk drive on a VM de
 ployed on a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VDD = Get-VirtualDiskDrive -VM (Get-VM -Name "VM01")
 PS C:\> Compress-VirtualDiskDrive -VirtualDiskDrive $VDD

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual disk drive a
 ttached to a virtual machine named VM01 from the VMM database and stores th
 e virtual disk drive object in variable $VDD.

 NOTE: This example assumes the virtual machine has only one virtual disk dr
 ive and that the virtual hard disk attached to the virtual disk drive is, c
 urrently, a dynamic virtual hard disk.

 The third command compresses the dynamically expanding virtual hard disk th
 at is attached to the virtual disk drive on VM01.

 NOTE: You can use the Compress-VirtualDiskDrive cmdlet to compress only a W
 indows-based virtual hard disk file (a .vhd file) attached to a virtual dis
 k drive on a virtual machine deployed on a Hyper-V host or on a Virtual Ser
 ver host. A VMware-based virtual hard disk file (a .vmdk file) on a virtual
 machine deployed on an ESX Server 3.0 or 3.5 host is fixed (not dynamic),
 and you cannot compress a fixed virtual hard disk.

REMARKS
 For more information, type: "get-help Compress-VirtualDiskDrive -detailed".
 For technical information, type: "get-help Compress-VirtualDiskDrive -full"
 .

[bookmark: _Toc225244493]Convert-VirtualDiskDrive

SYNOPSIS
 Converts an existing virtual hard disk attached to a virtual disk drive obj
 ect from dynamic to fixed or from fixed to dynamic; or converts a pass-thro
 ugh disk attached to a virtual disk drive object to a virtual hard disk.

SYNTAX
 Convert-VirtualDiskDrive [-VirtualDiskDrive] <VirtualDiskDrive> -Dynamic [-
 FileName <String>] [-JobGroup <Guid>] [-JobVariable <String>] [-Path <Strin
 g>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Convert-VirtualDiskDrive [-VirtualDiskDrive] <VirtualDiskDrive> -Fixed [-Fi
 leName <String>] [-JobGroup <Guid>] [-JobVariable <String>] [-Path <String>
] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Converts an existing virtual hard disk attached to a virtual disk drive obj
 ect from dynamic to fixed or from fixed to dynamic; or converts a pass-thro
 ugh disk attached to a virtual disk drive object to a virtual hard disk.

 CONVERTING A VIRTUAL HARD DISK FROM DYNAMIC TO FIXED, OR VICE VERSA
 --
 You can use the Convert-VirtualDiskDrive cmdlet to convert a virtual hard d
 isk, which is attached to a virtual disk drive object on a virtual machine,
 from a fixed disk format to a dynamic disk format, or vice versa. The virt
 ual machine on which the virtual hard disk is configured must be stopped be
 fore you can convert the virtual hard disk from one format to the other.

 You can convert the disk format of a Windows-based virtual hard disk file (
 a .vhd file) on a virtual machine deployed on a Hyper-V host or on a Virtua
 l Server host.

 A VMware-based virtual hard disk file (a .vmdk file) on a virtual machine t
 hat is deployed on an ESX Server 3.0 or 3.5 host is fixed in format and can
 not be converted to a dynamic format.

 CONVERTING A PASS-THROUGH DISK TO A VIRTUAL HARD DISK
 --
 You can use the Convert-VirtualDiskDrive cmdlet to convert a pass-through d
 isk attached to a virtual disk drive on a virtual machine on a Hyper-V host
 to a virtual hard disk. The virtual machine must be stopped before you can
 convert the pass-through disk to a virtual hard disk.

 A pass-through disk is a physical hard disk on the host that a virtual mach
 ine can use instead of using a virtual hard disk.

PARAMETERS
 -VirtualDiskDrive <VirtualDiskDrive>
 Specifies a virtual disk drive object. You can attach either a virtual
 hard disk (for a virtual machine on any host) or a pass-through disk (f
 or a virtual machine on a Hyper-V host or an ESX host) to a virtual dis
 k drive object.

 -Dynamic
 Specifies that a virtual hard disk can expand dynamically.

 -Fixed
 Specifies that a virtual hard disk is fixed in size.

 -FileName <String>
 Specifies the file name to use when you rename a virtual hard disk file
 as you add it to a virtual machine.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Convert a pass-through disk on a virtual disk drive on a VM to a virtual
 hard disk.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $VDD = Get-VirtualDiskDrive -VM $VM
 PS C:\> Convert-VirtualDiskDrive $VDD -Fixed -Path "C:\"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM. This example assumes that VM01 is currently configured to use a pa
 ss-through disk and that the virtual machine has only one passthrough disk.

 The third command gets the virtual disk drive object on VM01 and stores thi
 s object in variable $VDD.

 The last command converts the pass-through disk drive represented in $VDD t
 o a fixed virtual hard disk and moves the virtual hard disk to the destinat
 ion folder "C:\".

 NOTE: You can convert a pass-through disk attached to a virtual disk drive
 on a virtual machine on a Hyper-V host to a virtual hard disk. This functio
 nality does not apply to Virtual Server or Hyper-V hosts.

 2: Convert one of several pass-through disks on a virtual disk drive on a V
 M to a VHD.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> $VDD = Get-VirtualDiskDrive -VM $VM
 PS C:\> $VDD[2] | Convert-VirtualDiskDrive -Dynamic -Path "D:\"

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM. This example assumes
 that VM02 has three virtual disk drive objects and that the first virtual d
 isk drive is bound to a virtual hard drive whereas both the second and thir
 d virtual disk drives are bound to pass-through disks.

 The third command gets all virtual disk drive objects on VM02 and stores th
 em in $VDD (an object array).

 The last command converts the third pass-through disk ($VDD[2]) to a dynami
 cally expanding virtual hard disk and moves this new virtual hard disk to t
 he destination folder "D:\".

 3: Convert a dynamic VHD attached to a virtual disk drive object on a VM to
 a fixed format.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VDD = Get-VirtualDiskDrive -VM (Get-VM -Name "VM01")
 PS C:\> Convert-VirtualDiskDrive -VirtualDiskDrive $VDD -Fixed

 The first command connects to VMMServer1.

 The second command gets the object that represents the only virtual disk dr
 ive that is attached to a virtual machine named VM01 and stores the virtual
 disk drive object in $VDD.

 NOTE: This example assumes that the virtual machine has only one virtual di
 sk drive object and that the virtual hard disk attached to the virtual disk
 drive is, currently, a dynamic virtual hard disk.

 The last command converts the virtual hard disk attached to the virtual dis
 k drive object stored in $VDD to a fixed disk.

 NOTE: You can use the Convert-VirtualDiskDrive cmdlet to convert only a Win
 dows-based virtual hard disk file (a .vhd file) on a virtual machine deploy
 ed on a Hyper-V host or on a Virtual Server host. A VMware-based virtual ha
 rd disk file (a .vmdk file) on a virtual machine deployed on an ESX Server
 3.0 or 3.5 host is fixed (not dynamic) and cannot be converted to dynamic.

REMARKS
 For more information, type: "get-help Convert-VirtualDiskDrive -detailed".
 For technical information, type: "get-help Convert-VirtualDiskDrive -full".

[bookmark: _Toc225244494]Expand-VirtualDiskDrive

SYNOPSIS
 Expands a virtual hard disk attached to a virtual disk drive object on a st
 opped virtual machine deployed on a host managed by Virtual Machine Manager
 .

SYNTAX
 Expand-VirtualDiskDrive [-VirtualDiskDrive] <VirtualDiskDrive> -Size <Int32
 > [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynch
 ronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Expands a virtual hard disk attached to a virtual disk drive object on a vi
 rtual machine deployed on a host managed by Virtual Machine Manager in orde
 r to increase the total capacity of the virtual hard disk. The virtual mach
 ine must be stopped before you can expand the virtual hard disk.

 You can use the Expand-VirtualDiskDrive cmdlet to expand a Windows-based vi
 rtual hard disk file (a .vhd file) attached to a virtual disk drive object
 on a virtual machine deployed on a Hyper-V host. You can also use this cmdl
 et to expand a VMware-based virtual hard disk file (a .vmdk file) on a virt
 ual machine deployed on an ESX Server 3.0 or 3.5 host. You cannot use this
 cmdlet to expand a virtual hard disk on a virtual machine deployed on a Vir
 tual Server host.

PARAMETERS
 -VirtualDiskDrive <VirtualDiskDrive>
 Specifies a virtual disk drive object. You can attach either a virtual
 hard disk (for a virtual machine on any host) or a pass-through disk (f
 or a virtual machine on a Hyper-V host or an ESX host) to a virtual dis
 k drive object.

 -Size <Int32>
 Specifies, in megabytes (MB), the size of a fixed virtual hard disk fil
 e or the maximum possible size of a dynamically expanding virtual hard
 disk file.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1. Expand a virtual hard disk attached to a virtual disk drive on a virtual
 machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $VDD = Get-VirtualDiskDrive -VM $VM | where {$_.Bus -eq 0 -and $_.L
 un -eq 0}
 PS C:\> Expand-VirtualDiskDrive -VirtualDiskDrive $VDD -Size 45

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VM01 and stores the virt
 ual machine object in variable $VM.

 The third command gets the virtual disk drive located on the first controll
 er ($_.Bus -eq 0) and first slot of that controller ($_.Lun -eq 0) of VM01,
 and it stores the virtual disk drive object in variable $VDD.

 The last command expands the size of the virtual hard disk attached to the
 virtual disk drive to 45 GB.

REMARKS
 For more information, type: "get-help Expand-VirtualDiskDrive -detailed".
 For technical information, type: "get-help Expand-VirtualDiskDrive -full".

[bookmark: _Toc225244495]Get-VirtualDiskDrive

SYNOPSIS
 Gets virtual disk drive objects on templates or on virtual machines managed
 by Virtual Machine Manager.

SYNTAX
 Get-VirtualDiskDrive -Template [<Template String>] [<CommonParameters>]

 Get-VirtualDiskDrive -VM [<String VM>] [<CommonParameters>]

 Get-VirtualDiskDrive -All [-VMMServer [<String ServerConnection>]] [<Common
 Parameters>]

DETAILED DESCRIPTION
 Gets one or more Virtual Machine Manager virtual disk drive objects configu
 red on templates stored in the library or configured on virtual machines (e
 ither deployed on a host or stored in the library).

 For more information about virtual disk drive objects, type:
 Get-Help New-VirtualDiskDrive -detailed

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get a list of all available virtual disk drives in your VMM environment.

 PS C:\> Get-VirtualDiskDrive -VMMServer VMMServer1.Contoso.com -All

 Gets a list of all virtual disk drives bound to all virtual machines regist
 ered to VMM from the VMM database on VMMServer1 . The command displays info
 rmation about each virtual disk drive to the user.

 2: Get virtual disk drives for a specific virtual machine.

 PS C:\> $VM = Get-VM -VMMServer VMMServer1.Contoso.com | where {$_.Name -eq
 "VM02"}
 PS C:\> $VDD = Get-VirtualDiskDrive -VM $VM
 PS C:\> $VDD

 The first command gets the object that represents the virtual machine named
 VM02 and stores the virtual machine object in $VM.

 The second command gets all objects that represent virtual disk drives on V
 M02 and stores the virtual disk drive objects in $VDD. If, as this example
 assumes, a virtual machine contains multiple virtual disk drives, each virt
 ual disk drive has connected to it either a virtual hard disk or a pass-thr
 ough disk.

 The last command displays the properties of each virtual disk drive on VM02
 to the user, including the name of any virtual hard disks and the path to
 the physical drive on the host for any pass-through disks.

 3. Count all virtual disk drives (except pass-through disks) on the second
 slot for both IDE channels.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VDD = @(Get-VirtualDiskDrive -ALL | where {$_.BusType -eq 'IDE' -a
 nd $_.PassThroughDisk -eq $null -and $_.LUN -eq 1 -and ($_.Bus -eq 0 -or $_
 .Bus -eq 1)})
 PS C:\> $VDD.Count

 The first command connects to VMMServer1.

 The second command gets the objects that represent all virtual disk drives
 (excluding pass-through disks) that are connected to the second slot of eit
 her IDE channel. Using the '@' symbol and parentheses ensures that the comm
 and stores the results in an array (in case the command returns a single ob
 ject or a null value).

 The last command counts the number of virtual disk drive objects that match
 the filter criteria and displays the results to the user.

 4: Get virtual disk drives for a specific template.

 PS C:\> Get-VMMServer "VMMServer1.Contoso.com"
 PS C:\> $Template = @(Get-Template)
 PS C:\> $Template | ForEach-Object {Get-VirtualDiskDrive -Template $_ | whe
 re {$_.BusType -eq "IDE"}} | Format-List Name,BusType,Bus,LUN

 The first command connects to VMMServer1.

 The second command gets all objects that represent templates and stores the
 template objects in $Template. Using the "@" symbol and parentheses ensure
 s that the command stores the results in an array (in case the command retu
 rns a single object or a null value).

 The last command performs the following operations:

 * Passes each template object in $Template to the ForEach-Object cmdlet.
 * Gets all virtual disk drive objects for each template in $Template.
 * Passes all virtual disk drive objects to the "where" filter (the
 Where-Object cmdlet).
 * Selects only those virtual disk drive objects with an IDE bus type.
 * Displays the values for Name, BusType, Bus, and LUN for each selected
 virtual disk drive.

 NOTE: For more information about the standard Windows PowerShell ForEach-Ob
 ject cmdlet (which uses "foreach" as its alias but is not the same as the W
 indows PowerShell foreach loop statement), type: Get-Help ForEach-Object

REMARKS
 For more information, type: "get-help Get-VirtualDiskDrive -detailed".
 For technical information, type: "get-help Get-VirtualDiskDrive -full".

[bookmark: _Toc225244496]New-VirtualDiskDrive

SYNOPSIS
 Creates a virtual disk drive object on a virtual machine deployed on a host
 managed by Virtual Machine Manager, or on a template in the Virtual Machin
 e Manager library.

SYNTAX
 New-VirtualDiskDrive -AnyHostDisk -Bus <Int32> -IDE <Boolean> -JobGroup <Gu
 id> -LUN <Int32> [-BootVolume] [-JobVariable <String>] [-PROTipID <Guid>] [
 -RunAsynchronously] [-SystemVolume] [-VMMServer [<String ServerConnection>]
] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -HostDisk <HostDisk> -IDE <Boolean> -LUN
 <Int32> -VM [<String VM>] [-BootVolume] [-JobVariable <String>] [-PROTipID
 <Guid>] [-RunAsynchronously] [-SystemVolume] [-VMMServer [<String ServerCon
 nection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -Fixed -IDE <Boolean> -LUN <Int32> -Size
 <Int32> -VM [<String VM>] [-BootVolume] [-FileName <String>] [-JobVariable
 <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-System
 Volume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -AnyHostDisk -Bus <Int32> -JobGroup <Guid> -LUN <Int32
 > -SCSI <Boolean> [-BootVolume] [-JobVariable <String>] [-PROTipID <Guid>]
 [-RunAsynchronously] [-SystemVolume] [-VMMServer [<String ServerConnection>
]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -Fixed -JobGroup <Guid> -LUN <Int32> -SCS
 I <Boolean> -Size <Int32> [-BootVolume] [-FileName <String>] [-JobVariable
 <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-System
 Volume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -HostDisk <HostDisk> -LUN <Int32> -SCSI <
 Boolean> -VM [<String VM>] [-BootVolume] [-FileName <String>] [-JobVariable
 <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Syste
 mVolume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -Fixed -IDE <Boolean> -JobGroup <Guid> -L
 UN <Int32> -Size <Int32> [-BootVolume] [-FileName <String>] [-JobVariable <
 String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-SystemV
 olume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -JobGroup <Guid> -LUN <Int32> -SCSI <Bool
 ean> -VirtualHardDisk <VirtualHardDisk> [-BootVolume] [-FileName <String>]
 [-JobVariable <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchrono
 usly] [-SystemVolume] [-VMMServer [<String ServerConnection>]] [<CommonPara
 meters>]

 New-VirtualDiskDrive -Bus <Int32> -Dynamic -IDE <Boolean> -LUN <Int32> -Siz
 e <Int32> -VM [<String VM>] [-BootVolume] [-FileName <String>] [-JobVariabl
 e <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Syst
 emVolume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -IDE <Boolean> -LUN <Int32> -Template [<T
 emplate String>] -VirtualHardDisk <VirtualHardDisk> [-BootVolume] [-JobVari
 able <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-SystemVolume] [-VM
 MServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -LUN <Int32> -SCSI <Boolean> -Template [<
 Template String>] -VirtualHardDisk <VirtualHardDisk> [-BootVolume] [-JobVar
 iable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-SystemVolume] [-V
 MMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -IDE <Boolean> -LUN <Int32> -VirtualHardD
 isk <VirtualHardDisk> -VM [<String VM>] [-BootVolume] [-FileName <String>]
 [-JobVariable <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchrono
 usly] [-SystemVolume] [-VMMServer [<String ServerConnection>]] [<CommonPara
 meters>]

 New-VirtualDiskDrive -Bus <Int32> -LUN <Int32> -SCSI <Boolean> -VirtualHard
 Disk <VirtualHardDisk> -VM [<String VM>] [-BootVolume] [-FileName <String>]
 [-JobVariable <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchron
 ously] [-SystemVolume] [-VMMServer [<String ServerConnection>]] [<CommonPar
 ameters>]

 New-VirtualDiskDrive -Bus <Int32> -Fixed -LUN <Int32> -SCSI <Boolean> -Size
 <Int32> -VM [<String VM>] [-BootVolume] [-FileName <String>] [-JobVariable
 <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Syste
 mVolume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -HostDisk <HostDisk> -IDE <Boolean> -JobG
 roup <Guid> -LUN <Int32> [-BootVolume] [-JobVariable <String>] [-PROTipID <
 Guid>] [-RunAsynchronously] [-SystemVolume] [-VMMServer [<String ServerConn
 ection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -Dynamic -LUN <Int32> -SCSI <Boolean> -Si
 ze <Int32> -VM [<String VM>] [-BootVolume] [-FileName <String>] [-JobVariab
 le <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Sys
 temVolume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -Dynamic -IDE <Boolean> -JobGroup <Guid>
 -LUN <Int32> -Size <Int32> [-BootVolume] [-FileName <String>] [-JobVariable
 <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Syste
 mVolume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -HostDisk <HostDisk> -JobGroup <Guid> -LU
 N <Int32> -SCSI <Boolean> [-BootVolume] [-FileName <String>] [-JobVariable
 <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-System
 Volume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -Dynamic -JobGroup <Guid> -LUN <Int32> -S
 CSI <Boolean> -Size <Int32> [-BootVolume] [-FileName <String>] [-JobVariabl
 e <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Syst
 emVolume] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualDiskDrive -Bus <Int32> -IDE <Boolean> -JobGroup <Guid> -LUN <Int
 32> -VirtualHardDisk <VirtualHardDisk> [-BootVolume] [-FileName <String>] [
 -JobVariable <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronou
 sly] [-SystemVolume] [-VMMServer [<String ServerConnection>]] [<CommonParam
 eters>]

DETAILED DESCRIPTION
 CCreates a virtual disk drive object on a virtual machine deployed on a hos
 t managed by Virtual Machine Manager, or creates a virtual disk drive objec
 t on a template in the Virtual Machine Manager library.

 VMM 2008 introduces support for virtual disk drives, which were not used in
 VMM 2007. You can attach a virtual hard disk or a pass-through disk (also
 new in VMM 2008) to a virtual disk drive object on a virtual machine or on
 a template that is used to create virtual machines.

 A virtual hard disk file (a Windows-based .vhd file or a VMware-based.vmdk
 file) that is stored on a Virtual Machine Manager library share, but is not
 attached to a virtual disk drive, exists as a standalone object in the lib
 rary.

 A pass-through disk is a disk on a Hyper-V or VMware ESX host that a virtua
 l machine on that host can use as an alternative to using a virtual hard di
 sk. The corresponding term used by VMware for a pass-through disk is Raw De
 vice Mapping, or RDM. The host disk can be either a hard disk on the host o
 r a logical unit on a Storage Area Network (SAN). VMM lets the virtual mach
 ine bypass the host's file system and access the pass-through disk directly
 .

 TYPE OF HOST PASS-THROUGH DISK SUPPORT
 ------------ -------------------------
 Hyper-V Supports pass-through disks
 Hyper-V Supports converting a pass-through disk to a VHD
 Virtual Server Does not support pass-through disks
 VMware ESX Supports pass-through disks (RDP), but not
 disk conversion

 NOTE: You cannot create a checkpoint (snapshot) of a pass-through disk beca
 use checkpoint creation is designed to work with virtual hard disks.

 For more information about VMM 2008 support for virtual disk drives, type:
 Get-Help about_VMM_2008_Disk_and_DVD_Enhancements

PARAMETERS
 -AnyHostDisk
 Identifies a placeholder parameter that is used to indicate the creatio
 n of pass-through disks within a new virtual machine job group.

 -Bus <Int32>
 Specifies the IDE bus to which to attach a virtual disk drive or virtua
 l DVD drive, or the SCSI bus to which to attach a virtual disk drive.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter. For more information about how VMM 2008 impleme
 nts IDE and SCSI buses, type: Get-Help about_VMM_2008_Disk_and_DVD_Enha
 ncements.

 -Dynamic
 Specifies that a virtual hard disk can expand dynamically.

 -Fixed
 Specifies that a virtual hard disk is fixed in size.

 -HostDisk <HostDisk>
 Specifies a disk on a Hyper-V or VMware ESX host that a virtual machine
 on that host can use instead of using a virtual hard disk. This disk i
 s referrred to as a pass-through disk (the corresponding VMware term is
 Raw Device Mapping, or RDM). The host disk is either a local hard disk
 or a logical unit on a Storage Area Network (SAN). VMM lets the virtua
 l machine bypass the host's file system and access the pass-through dis
 k directly.
 TYPE OF HOST PASS-THROUGH DISK SUPPORT
 ------------ -------------------------
 Hyper-V Supports pass-through disks
 Supports converting a pass-through disk to a VHD
 VMware ESX Supports pass-through disks (RDP), but not disk conversi
 on
 Virtual Server Does not support pass-through disks

 -IDE <Boolean>
 Specifies IDE as the bus type to which to attach a virtual disk drive o
 bject or a virtual DVD drive object configured on a virtual machine or
 on a template. (For more information about how VMM 2008 implements the
 IDE bus, type: Get-Help about_VMM_2008_Disk_and_DVD_Enhancements.)
 Example format: -IDE –Bus 0 –LUN 1

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -LUN <Int32>
 Specifies the logical unit number (LUN) for a virtual disk drive object
 or for a virtual DVD drive object on an IDE bus, or for a virtual disk
 drive object on a SCSI bus.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1

 -SCSI <Boolean>
 Specifies SCSI as the bus type to which to attach a virtual disk drive
 object configured on a virtual machine or on a template.
 Example format: -SCSI -Bus 0 -LUN 0
 For information about the number of devices per controller on a SCSI bu
 s that VMM 2008 supports for each virtualization platform (Hyper-V, Vir
 tual Server, or VMware), type: Get-Help about_VMM_2008_Disk_and_DVD_Enh
 ancements.

 -Size <Int32>
 Specifies, in megabytes (MB), the size of a fixed virtual hard disk fil
 e or the maximum possible size of a dynamically expanding virtual hard
 disk file.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VirtualHardDisk <VirtualHardDisk>
 Specifies a virtual hard disk object.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -BootVolume
 Indicates that the volume attached to the VirtualDiskDrive is a boot vo
 lume.

 -FileName <String>
 Specifies the file name to use when you rename a virtual hard disk file
 as you add it to a virtual machine.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SystemVolume
 Indicates that the volume attached to the VirtualDiskDrive is a system
 volume.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a new virtual disk drive on a template and attach an existing vir
 tual hard disk to the virtual disk drive.

 PS C:\> Get-VMMServer -Computername "VMMServer1.contoso.com"

 PS C:\> $VHD = Get-VirtualHardDisk | where {$_.Name -eq "Blank Disk - Small
 "}

 PS C:\> $Template = Get-Template | where {$_.Name -eq "Template01"}

 PS C:\> New-VirtualDiskDrive -Template $Template -IDE -Bus 1 -Lun 1 -Virtua
 lHardDisk $VHD

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command gets a virtual hard disk object from the VMM library by
 name and stores the virtual hard disk object in variable $VHD.

 The third command gets a template object from the library by name and store
 s the template object in variable $Template.

 The last command creates a new virtual disk drive on Template01 and attache
 s the existing virtual hard disk represented by $VHD to the second channel
 in the second slot of the IDE bus on the virtual disk drive.

 2: Create a new virtual disk drive and add it to an existing virtual machin
 e.

 PS C:\> Get-VMMServer -Computername "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> New-VirtualDiskDrive -VM $VM -Dynamic -Filename "Test" -IDE -Size 2
 00000 -Bus 0 -LUN 1

 The first command connects to VMMServer1.

 The second command gets the object for a virtual machine named VM02 and sto
 res the virtual machine object in $VM.

 The last command creates a new dynamic virtual disk drive on the first IDE
 channel in the second slot of the virtual machine and specifies its size as
 200 GB .

 3: Create a new virtual disk drive from an existing VHD and attach it to a
 new virtual machine.

 PS C:\> $JobGroupID1 = [Guid]::NewGuid().ToString()

 PS C:\> $VHD = Get-VirtualHardDisk -VMMServer VMMServer1.Contoso.com | wher
 e {$_.Location -eq "\\LibraryServer01.Contoso.com\MSSCVMMLibrary\VHDs\Blank
 Disk - Large.vhd"}

 PS C:\> New-VirtualDiskDrive -IDE -Bus 0 -LUN 1 -JobGroup $JobGroupId1 -Vir
 tualHardDisk $VHD

 PS C:\> $HwProfile = Get-HardwareProfile | where {$_.Name -match "ServerPro
 file"}

 PS C:\> $VMHost = Get-VMHost | where {$_.Name -match "VMHost03"}

 PS C:\> New-VM -Name "VM10" -Description "New Server VM10" -Owner "Contoso\
 VMAdmin" -VMHost $VMHost -Path "D:\VMs" -HardwareProfile $HwProfile -JobGro
 up $JobGroupID1 -RunAsynchronously -RunAsSystem -StartAction NeverAutoTurnO
 nVM -UseHardwareAssistedVirtualization $FALSE -StopAction SaveVM

 The first command generates a new globally unique identifier (GUID) and sto
 res the GUID string in variable $JobGroupID1. The job group ID functions as
 an identifier that groups subsequent commands that include $JobGroupID1 in
 to a single job group.

 The second command gets the object that represents a virtual hard disk from
 the VMM library (saved in the file system at the location \\LibraryServer0
 1.Contoso.com\MSSCVMMLibrary\VHDs\Blank Disk - Large.vhd) and stores the vi
 rtual hard disk object in variable $VHD.

 The third command performs the following operations:

 * Creates a new virtual disk drive object.

 * Attaches the virtual hard disk represented by $VHD to the new
 virtual disk drive object.

 * Assigns the new virtual disk drive object to IDE Bus 0 and LUN 1.

 * Associates the new virtual disk drive object with JobGroupID1
 (created in the first command).

 The fourth command gets the object that represents an existing hardware pro
 file (that contains the string "ServerProfile" in its name) and stores the
 hardware profile object in $HwProfile.

 The fifth command gets the object that represents a host named VMHost03 and
 stores the host object in $VMHost.

 The last command performs the following operations:

 * Creates a new VM named VM10 and deploys it on VMHost03.

 * Gives the new VM the hardware settings stored in $HwProfile, and
 specifies a name, a description, an owner, and the path used to
 store VM files.

 * Uses the -JobGroup parameter to specify that, before the New-VM
 cmdlet creates the new virtual machine, any preceding cmdlet that
 specifies the JobGroup GUID is executed. In this example,
 New-VirtualDiskDrive will execute, and the resulting object is
 automatically associated with the new VM.

 * Uses the -RunAsynchronously parameter to return control to the shell
 immediately (before the command completes).

 * Uses the -RunAsSystem parameter to specify that the VM runs under the
 local system account (it is only necessary to specify this for a VM on
 a Virtual Server host because Hyper-V and VMware run a VM under the
 local system account by default).

 * Specifies that the VM is not started automatically when the host starts
 and that the VM is put into a saved state when the virtualization
 service stops.

 * Sets hardware-assisted virtualization to an off state.

 4. Create a new virtual disk drive using a host disk and attach it to an ex
 isting VM.

 clsPS C:\> Get-VMMServer "VMMServer1.Contoso.com"

 PS C:\> $VM = Get-VM -Name "VM04"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost04.Contoso.com"

 PS C:\> $HostDisk = @(Get-VMHostDisk -VMHost $VMHost | where {$_.IsPassThro
 ughCapable -eq $TRUE})

 PS C:\> New-VirtualDiskDrive -VM $VM -HostDisk $HostDisk[0] -SCSI -Bus 0 -L
 UN 1

 The first command connects to VMMServer1.

 The second command gets a virtual machine object by name (VM04) and stores
 the virtual machine object in $VM.

 The third command gets a host object by name and stores the host object in
 $VMHost.

 The fourth command gets from VMHost04 all objects that represents a host ha
 rd disk drive that are pass-through capable and stores the hard disk drive
 objects in $HostDisk. Using the "@" symbol and parentheses ensures that the
 command stores the results in an array (in case the command returns a sing
 le object or a null value).

 The last command creates a new virtual disk drive object that is connected
 to a physical host disk on VMHost04. The virtual disk drive is attached to
 the second slot of the first SCSI bus on VM04. This example assumes the vir
 tual machine already has a SCSI controller.

REMARKS
 For more information, type: "get-help New-VirtualDiskDrive -detailed".
 For technical information, type: "get-help New-VirtualDiskDrive -full".

[bookmark: _Toc225244497]Remove-VirtualDiskDrive

SYNOPSIS
 Removes a virtual disk drive object from a virtual machine or from a templa
 te in a Virtual Machine Manager environment.

SYNTAX
 Remove-VirtualDiskDrive [-VirtualDiskDrive] <VirtualDiskDrive> [-Force] [-J
 obGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronou
 sly] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more virtual disk drive objects from a virtual machine or fr
 om a template in a Virtual Machine Manager environment.

PARAMETERS
 -VirtualDiskDrive <VirtualDiskDrive>
 Specifies a virtual disk drive object. You can attach either a virtual
 hard disk (for a virtual machine on any host) or a pass-through disk (f
 or a virtual machine on a Hyper-V host or an ESX host) to a virtual dis
 k drive object.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove the second virtual disk drive object from the specified virtual m
 achine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.contoso.com"

 PS C:\> $VM = Get-VM | where { $_.VMHost.Name -eq "VMHost01.Contoso.com" -a
 nd $_.Name -eq "VM01" }

 PS C:\> $VDD = @(Get-VirtualDiskDrive -VM $VM)

 PS C:\> if($VDD.Count -gt 1){Remove-VirtualDiskDrive -VirtualDiskDrive $VDD
 [1]}

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object from the VMM database that represents th
 e VM named VM01 (deployed on VMHost01) and stores the VM object in variable
 $VM.

 The third command gets all virtual disk drive objects on VM01 and stores th
 e retrieved objects in variable $VDD. Using the '@' symbol and parentheses
 ensures that the command stores the results in an array (in case the comman
 d returns a single object or a null value).

 The last command returns the number of virtual disk drives associated with
 the virtual machine and then, if more than one exists, the command removes
 the second ([1]) virtual disk drive from the virtual machine.

 2: Remove all pass-through disks attached to a VM.

 PS C:\> $VMM = Get-VMMServer -ComputerName "VMMServer1.contoso.com"

 PS C:\> $VM = Get-VM | where {$_.Name -eq "VM02"}

 PS C:\> $VDDs = @(Get-VirtualDiskDrive -VM $VM | where {$_.IsVHD -eq $FALSE
 })

 PS C:\> if($VDDs.Count -gt 0){foreach($VDD in $VDDs){Remove-VirtualDiskDriv
 e -Force -VirtualDiskDrive $VDD}}

 The first command connects to VMMServer1.

 The second command gets the object that represents a VM named VM02 and stor
 es the VM object in $VM.

 The third command gets all objects that represent virtual disk drives attac
 hed to VM02 that are not virtual hard disks (that is, only objects that rep
 resent pass-through disks are retrieved) and stores the pass-through disk o
 bjects in variable $VDDs (an object array).

 The last command uses an if statement to determine whether at least one pas
 s-through virtual disk drive exists. If the result is one or more, the comm
 and then uses the foreach statement to remove each virtual disk drive from
 the object array. Using the Force parameter ensures the removal of each vir
 tual disk drive from its virtual machine even if other VMM objects depend o
 n that virtual disk drive.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

 3: Remove virtual disk drives attached to a VM by name.

 PS C:\> Get-VMMServer -Computername "VMMServer1.contoso.com"

 PS C:\> $VMs = @(Get-VM | where {$_.Name -match "WebSrvLOB"})

 PS C:\> foreach($VM in $VMs){$VDDs = Get-VirtualDiskDrive -VM $VM; foreach(
 $VDD in $VDDs){if($VDD.Name -match "LOBData"){Remove-VirtualDiskDrive -Virt
 ualDiskDrive $VDD}}}

 The first command connects to VMMServer1.

 The second command gets all objects that represent VMs whose name match a s
 pecific string (in this case, the command gets all Line of Business Web ser
 vers, indicated by the name "WebSrvLOB"). The command stores the retrieved
 VM objects in $VM (an object array).

 The last command uses "foreach" (the ForEach-Object cmdlet) to iterate thro
 ugh the array of VMs returned in the second command and performs the follow
 ing operations:

 * Gets all virtual disk drive objects from each VM in the $VM object
 array and stores these virtual disk drive objects in the object
 array $VDDs.

 * Uses a second foreach loop to select all virtual disk drive objects
 stored in $VDDs whose name contains the string LOBData, and then
 uses the Remove-VirtualDiskDrive cmdlet to delete these objects
 from the VMM database.

REMARKS
 For more information, type: "get-help Remove-VirtualDiskDrive -detailed".
 For technical information, type: "get-help Remove-VirtualDiskDrive -full".

[bookmark: _Toc225244498]Set-VirtualDiskDrive

SYNOPSIS
 Modifies settings on a virtual disk drive object on a virtual machine or on
 a template in a Virtual Machine Manager environment.

SYNTAX
 Set-VirtualDiskDrive -VirtualDiskDrive <VirtualDiskDrive> [-Bus <Int32>] [-
 IDE <Boolean>] [-JobGroup <Guid>] [-JobVariable <String>] [-LUN <Int32>] [-
 PROTipID <Guid>] [-RunAsynchronously] [-SCSI <Boolean>] [<CommonParameters>
]

DETAILED DESCRIPTION
 Modifies settings on a virtual disk drive object on a virtual machine or on
 a template in a Virtual Machine Manager environment. You can use this cmdl
 et to change the Bus type (IDE or SCSI), or to change the Bus and LUN setti
 ngs to connect a virtual disk drive to a different location on the bus.

 For more information about VMM 2008 support for virtual disk drives, type:
 Get-Help about_VMM_2008_Disk_and_DVD_Enhancements

PARAMETERS
 -VirtualDiskDrive <VirtualDiskDrive>
 Specifies a virtual disk drive object. You can attach either a virtual
 hard disk (for a virtual machine on any host) or a pass-through disk (f
 or a virtual machine on a Hyper-V host or an ESX host) to a virtual dis
 k drive object.

 -Bus <Int32>
 Specifies the IDE bus to which to attach a virtual disk drive or virtua
 l DVD drive, or the SCSI bus to which to attach a virtual disk drive.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter. For more information about how VMM 2008 impleme
 nts IDE and SCSI buses, type: Get-Help about_VMM_2008_Disk_and_DVD_Enha
 ncements.

 -IDE <Boolean>
 Specifies IDE as the bus type to which to attach a virtual disk drive o
 bject or a virtual DVD drive object configured on a virtual machine or
 on a template. (For more information about how VMM 2008 implements the
 IDE bus, type: Get-Help about_VMM_2008_Disk_and_DVD_Enhancements.)
 Example format: -IDE –Bus 0 –LUN 1

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LUN <Int32>
 Specifies the logical unit number (LUN) for a virtual disk drive object
 or for a virtual DVD drive object on an IDE bus, or for a virtual disk
 drive object on a SCSI bus.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SCSI <Boolean>
 Specifies SCSI as the bus type to which to attach a virtual disk drive
 object configured on a virtual machine or on a template.
 Example format: -SCSI -Bus 0 -LUN 0
 For information about the number of devices per controller on a SCSI bu
 s that VMM 2008 supports for each virtualization platform (Hyper-V, Vir
 tual Server, or VMware), type: Get-Help about_VMM_2008_Disk_and_DVD_Enh
 ancements.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the IDE bus and LUN settings for a virtual disk drive on a virtua
 l machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where {$_.Name -eq "VM01"}
 PS C:\> $VDD = @(Get-VirtualDiskDrive -VM $VM)
 PS C:\> if($VDD.Count -eq 1 -and $VDD[0].Bus -eq 0 -and $VDD[0].Lun
 -eq 1){Set-VirtualDiskDrive -VirtualDiskDrive $VDD[0] -Bus 0 -LUN 0}

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command gets the virtual machine object VM01 and stores it in va
 riable $VM.

 The third command gets the object that represents the virtual disk drive on
 VM01 and stores the virtual disk drive object in variable $VDD. Using the
 '@' symbol and parentheses ensures that the command stores the results in a
 n array (in case the command returns a single object or a null value).

 The last command sets the Bus value to 0 and sets the LUN value to 0 for th
 e virtual disk drive on VM01 if the VM only has one virtual disk drive and
 is located on the second slot of the first IDE channel.

 2: Change the bus type for a virtual disk drive from SCSI to IDE.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> $VDDs = Get-VirtualDiskDrive -VM $VM
 PS C:\> Set-VirtualDiskDrive -VirtualDiskDrive $VDDs[1] -IDE -Bus 0 -LUN 1

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third command gets all objects that represent virtual disk drives confi
 gured for this virtual machine and stores the virtual disk drive objects in
 $VDDs (an object array). This example assumes that the virtual disk drive
 is on a SCSI bus.

 The last command sets the Bus type to IDE and connects the second virtual d
 isk drive (specified by $VDDs[1]) to Primary Channel (1) and slot 2 (specif
 ied by -Bus 0 and LUN 1).

REMARKS
 For more information, type: "get-help Set-VirtualDiskDrive -detailed".
 For technical information, type: "get-help Set-VirtualDiskDrive -full".

[bookmark: _Toc225244499]VirtualDVDDrive
[bookmark: _Toc225244500]Get-VirtualDVDDrive

SYNOPSIS
 Gets Virtual Machine Manager virtual DVD drive objects from a virtual machi
 ne, template, or hardware profile.

SYNTAX
 Get-VirtualDVDDrive -Template [<Template String>] [<CommonParameters>]

 Get-VirtualDVDDrive -All [-VMMServer [<String ServerConnection>]] [<CommonP
 arameters>]

 Get-VirtualDVDDrive -HardwareProfile <HardwareProfile> [<CommonParameters>]

 Get-VirtualDVDDrive -VM [<String VM>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual DVD drives in a Virtual Mac
 hine Manager environment from a virtual machine object, from a template obj
 ect, or from a hardware profile object.

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get virtual DVD drives from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Get-VirtualDVDDrive -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The last command gets all objects that represent virtual DVD drives on VM01
 and displays information about these virtual DVD drives to the user.

 2: Get virtual DVD drives from a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template1" }
 PS C:\> Get-VirtualDVDDrive -Template $Template

 The first command connects to VMMServer1.

 The second command selects from all template objects stored in the VMM libr
 ary the one named Template1 and stores this template object in $Template.

 The last command gets all objects that represent virtual DVD drives on Temp
 late1 and displays information about these virtual DVD drives to the user.

 3: Get virtual DVD drives from a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file1" }
 PS C:\> Get-VirtualDVDDrive -HardwareProfile $HWProfile

 The first command connects to VMMServer1.

 The second command selects from all hardware profile objects in the VMM lib
 rary the one named HardwareProfile1 and stores this hardware profile object
 in $HWProfile.

 The last command gets the objects that represent all virtual DVD drives on
 HardwareProfile1 and displays information about these virtual DVD drives to
 the user.

REMARKS
 For more information, type: "get-help Get-VirtualDVDDrive -detailed".
 For technical information, type: "get-help Get-VirtualDVDDrive -full".

[bookmark: _Toc225244501]New-VirtualDVDDrive

SYNOPSIS
 Creates a virtual DVD drive on a virtual machine, template, or hardware pro
 file used in Virtual Machine Manager.

SYNTAX
 New-VirtualDVDDrive -Bus <Int32> -JobGroup <Guid> -LUN <Int32> [-AnyHostDri
 ve] [-HostDrive <String>] [-ISO <ISO>] [-JobVariable <String>] [-Link] [-PR
 OTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String ServerConnection>]
] [<CommonParameters>]

 New-VirtualDVDDrive -Bus <Int32> -LUN <Int32> -VM [<String VM>] [-AnyHostDr
 ive] [-HostDrive <String>] [-ISO <ISO>] [-JobVariable <String>] [-Link] [-P
 ROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 New-VirtualDVDDrive -Bus <Int32> -HardwareProfile <HardwareProfile> -LUN <I
 nt32> [-AnyHostDrive] [-HostDrive <String>] [-ISO <ISO>] [-JobVariable <Str
 ing>] [-Link] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 New-VirtualDVDDrive -Bus <Int32> -LUN <Int32> -Template [<Template String>]
 [-AnyHostDrive] [-HostDrive <String>] [-ISO <ISO>] [-JobVariable <String>]
 [-Link] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a virtual DVD drive on a virtual machine, template, or hardware pro
 file used in a Virtual Machine Manager environment.

 By default, the virtual DVD drive created by using New-VirtualDVDDrive is n
 ot connected to any media. You can use the Set-VirtualDVDDrive cmdlet to co
 nnect a virtual DVD drive (which you created by using New-VirtualDVDDrive)
 to a physical DVD drive on a virtual machine host or to connect it to an IS
 O image.

 NOTE: You can connect a virtual DVD drive to an IDE device on a virtual mac
 hine but you cannot connect a virtual DVD drive to a SCSI adapter on a virt
 ual machine.

 For more information about how to connect a virtual DVD drive, type:
 Get-Help Set-VirtualDVDrive -detailed

PARAMETERS
 -Bus <Int32>
 Specifies the IDE bus to which to attach a virtual disk drive or virtua
 l DVD drive, or the SCSI bus to which to attach a virtual disk drive.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter. For more information about how VMM 2008 impleme
 nts IDE and SCSI buses, type: Get-Help about_VMM_2008_Disk_and_DVD_Enha
 ncements.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -LUN <Int32>
 Specifies the logical unit number (LUN) for a virtual disk drive object
 or for a virtual DVD drive object on an IDE bus, or for a virtual disk
 drive object on a SCSI bus.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -AnyHostDrive
 Specifies that a virtual DVD or floppy drive will be connected to any c
 orresponding physical drive on a host when you deploy a stored virtual
 machine on a host, or when you use a template or hardware profile to cr
 eate and deploy a virtual machine on a host.

 -HostDrive <String>
 Specifies a drive on a virtual machine host.
 Example formats:
 Hard Drive Floppy Drive
 ---------- ------------
 Windows-based host "C:" "A:"
 VMware ESX host "/dev/tools" "/dev/sda"

 -ISO <ISO>
 Specifies an ISO object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Link
 Specifies that a resource should be linked to instead of copied.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a virtual DVD drive on a VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> New-VirtualDVDDrive -VM $VM -Bus 1 -LUN 1

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VM01 from the VMM databa
 se and stores the virtual machine object in variable $VM.

 The last command creates a virtual DVD drive on VM01 and attaches the virtu
 al DVD drive to Secondary Channel (1) by specifying IDE Bus 1 and LUN 1.

 2: Create a virtual DVD drive on a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template1" }
 PS C:\> New-VirtualDVDDrive -Template $Template -Bus 1 -LUN 1

 The first command connects to VMMServer1.

 The second command gets the object that represents Template1 and stores the
 template object in $Template.

 The last command creates a virtual DVD drive on Template1 that, when the te
 mplate is used to create a virtual machine, will attach the virtual DVD dri
 ve to Secondary Channel (1) on the IDE bus.

 3: Create a virtual DVD drive on a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file1" }
 PS C:\> New-VirtualDVDDrive -HardwareProfile $HWProfile -Bus 1 -LUN 1

 The first command connects to VMMServer1.

 The second command gets the object that represents HardwareProfile1 and sto
 res the hardware profile object in $HWProfile.

 The last command creates a virtual DVD drive on HardwareProfile1 that, when
 the hardware profile is used to create a virtual machine, will attach the
 virtual DVD drive to Secondary Channel (1) on the IDE bus.

 4. Create a VM with a virtual DVD drive that connects to any available phys
 ical DVD drive on the host.

 PS C:\> $JobGroupId = [Guid]::NewGuid().ToString()

 PS C:\> New-VirtualDVDDrive -VMMServer "VMMServer1.contoso.com" -JobGroup $
 JobGroupId -Bus 1 -LUN 0 -AnyHostDrive

 PS C:\> $VMHost = Get-VMHost | where {$_.Name -match "VMHost04"}

 PS C:\> New-VM -Name "VM04" -Description "This is my new VM with a DVD driv
 e" -Owner "Contoso\User1" -VMHost $VMHost -Path "F:\" -StartVM -JobGroup $J
 obGroupId

 The first command creates a new GUID string and stores it to variable $JobG
 roupID. This GUID is a job group ID that functions as an identifier that gr
 oups subsequent commands that include this identifier into a single job gro
 up.

 The second command creates a new virtual DVD drive object and specifies tha
 t this new virtual DVD drive can use any available physical DVD drive. The
 command will attach the new virtual DVD drive to the first slot of the seco
 nd IDE channel (IDE is the only bus type that a virtual DVD drive can be at
 tached to). Using the job group ID specifies that that this command will no
 t run until just before the final command that includes "–JobGroup $JobGrou
 pID" runs.

 The third command gets a host object by name and stores the host object in
 $VMHost.

 The last command creates a virtual machine, names it VM04, provides a descr
 iption, assigns an owner, and specifies the path on the host to the locatio
 n where the virtual machine will be stored. The command uses the job group
 ID to run the New-VirtualDVDDrive command just before the New-VM command r
 uns; the resulting virtual DVD drive object will be associated with the new
 virtual machine.

 5. Add a new virtual DVD drive to an existing VM and attach an ISO from the
 library to it.

 PS C:\> Get-VMMServer "VMMServer01.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM05"
 PS C:\> $ISO = Get-ISO | where {$_.Name -eq "Windows Server 2003.iso"}
 PS C:\> New-VirtualDVDDrive -VM $VM -ISO $ISO -Bus 1 -LUN 1

 The first command connects to VMMServer1.

 The second command gets the object that represents VM05 and stores the obje
 ct in $VM.

 The third command gets the object for an ISO that contains the Windows Serv
 er 2003 operating system and stores the ISO object in $ISO.

 The last command creates a new virtual DVD drive on VM05 and attaches it to
 the specified location on the IDE bus.

REMARKS
 For more information, type: "get-help New-VirtualDVDDrive -detailed".
 For technical information, type: "get-help New-VirtualDVDDrive -full".

[bookmark: _Toc225244502]Remove-VirtualDVDDrive

SYNOPSIS
 Removes a virtual DVD drive object from Virtual Machine Manager.

SYNTAX
 Remove-VirtualDVDDrive [-VirtualDVDDrive] <VirtualDVDDrive> [-JobGroup <Gui
 d>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<Commo
 nParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent virtual DVD drives from a hardwa
 re profile, virtual machine, or template used in a Virtual Machine Manager
 environment. The cmdlet also deletes from the file system on the library se
 rver any .iso file that the virtual DVD drive uses.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VirtualDVDDrive <VirtualDVDDrive>
 Specifies a virtual DVD drive object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific virtual DVD drive from a VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $DVDDrive = Get-VirtualDVDDrive -VM $VM | where { $_.Bus –eq 0 -and
 $_.LUN –eq 1 }
 PS C:\> Remove-VirtualDVDDrive -VirtualDVDDrive $DVDDrive

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command gets the object that represents the virtual DVD drive tha
 t is located on Primary Channel 1 (specified by –Bus 0 and –LUN 1) on the I
 DE bus on VM01. The command stores the virtual DVD drive object in variable
 $DVDDrive.

 The last command removes the virtual DVD drive object stored in $DVDDrive f
 rom VM01 and deletes any .iso file that this virtual DVD drive uses from th
 e file system on the library server.

 2: Remove the third virtual DVD drive from a VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> $DVDDrive = Get-VirtualDVDDrive -VM $VM
 PS C:\> $DVDDrive[2] | Remove-VirtualDVDDrive

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02and stores the virtual machine object in $VM.

 The third command gets all objects that represent virtual DVD drives connec
 ted to VM02 and stores each virtual DVD drive object in $DVDDrive (an objec
 t array). This example assumes that VM02 has three virtual DVD drives and t
 herefore the array contains three elements (counting 0 to 2).

 The last command passes the third virtual DVD drive (object [2]) stored in
 $DVDDrive to the Remove-VirtualDVDDrive cmdlet, which removes this virtual
 DVD drive object from VM01 and deletes any .iso file used by this virtual D
 VD drive from the file system on the library server.

REMARKS
 For more information, type: "get-help Remove-VirtualDVDDrive -detailed".
 For technical information, type: "get-help Remove-VirtualDVDDrive -full".

[bookmark: _Toc225244503]Set-VirtualDVDDrive

SYNOPSIS
 Changes properties of a virtual DVD drive associated with a virtual machine
 , template, or hardware profile used in Virtual Machine Manager.

SYNTAX
 Set-VirtualDVDDrive [-VirtualDVDDrive] <VirtualDVDDrive> -NoMedia <Boolean>
 [-Bus <Int32>] [-JobGroup <Guid>] [-JobVariable <String>] [-LUN <Int32>] [
 -PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Set-VirtualDVDDrive [-VirtualDVDDrive] <VirtualDVDDrive> -HostDrive <String
 > [-Bus <Int32>] [-JobGroup <Guid>] [-JobVariable <String>] [-LUN <Int32>]
 [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Set-VirtualDVDDrive [-VirtualDVDDrive] <VirtualDVDDrive> [-AnyHostDrive] [-
 Bus <Int32>] [-JobGroup <Guid>] [-JobVariable <String>] [-LUN <Int32>] [-PR
 OTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Set-VirtualDVDDrive [-VirtualDVDDrive] <VirtualDVDDrive> -ISO <ISO> [-Bus <
 Int32>] [-JobGroup <Guid>] [-JobVariable <String>] [-Link] [-LUN <Int32>] [
 -PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Set-VirtualDVDDrive [-VirtualDVDDrive] <VirtualDVDDrive> [-Bus <Int32>] [-J
 obGroup <Guid>] [-JobVariable <String>] [-LUN <Int32>] [-PROTipID <Guid>] [
 -RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual DVD drive associated with a vir
 tual machine, template, or hardware profile used in a Virtual Machine Manag
 er environment.

 You can use this cmdlet to connect the virtual DVD drive to a physical DVD
 drive on a virtual machine host server, to a different location on the IDE
 bus, to an ISO image, or you can use it to disconnect the virtual DVD drive
 .

 Most settings that you can configure for a virtual DVD drive on a virtual m
 achine are the same regardless of whether the virtualization platform of th
 e host is Virtual Server, Hyper-V, or VMware. All support:

 * Connecting a virtual DVD drive to a primary or secondary channel on
 a host.

 * Capturing information from a physical CD or DVD drive on the host
 without specifying a drive letter.

 * Capturing information from an image file (FileName.iso) stored in
 the VMM library.

 * Capturing "no media" (used to disconnect a virtual DVD drive from
 the host drive or from an ISO to which it was connected earlier).

 The only setting for a virtual machine managed by VMM that does vary for th
 is cmdlet depending on the virtualization platform of the host is whether o
 r not an ISO file can be used directly from the VMM library:

 * Virtual Server or Hyper-V host. If you configure a connection to an
 ISO file in the VMM library, you can, optionally, choose to use the
 ISO directly from the library instead of copying it to the host.

 * VMware ESX host. If you configure a connection to an ISO file in the
 VMM library, you cannot use the ISO directly from the library but must
 instead accept the default, which copies the ISO file to the host.

 Note: If the virtual DVD drive is configured on a virtual machine that was
 created by using the Virtual Machine wizard in the Hyper-V Manager Console
 rather than in the VMM Administrator Console, you must specify a drive lett
 er. That drive letter will appear in the Properties for that virtual machin
 e in the VMM Administrator Console.

 For more information about VMM 2008 support for virtual DVD drives, type:
 Get-Help about_VMM_2008_Disk_and_DVD_Enhancements

PARAMETERS
 -VirtualDVDDrive <VirtualDVDDrive>
 Specifies a virtual DVD drive object.

 -HostDrive <String>
 Specifies a drive on a virtual machine host.
 Example formats:
 Hard Drive Floppy Drive
 ---------- ------------
 Windows-based host "C:" "A:"
 VMware ESX host "/dev/tools" "/dev/sda"

 -ISO <ISO>
 Specifies an ISO object.

 -NoMedia <Boolean>
 Disconnects a virtual DVD drive from the host drive or ISO to which it
 was connected, or disconnects a virtual floppy drive from the host driv
 e or virtual floppy disk to which it was connected.

 -AnyHostDrive
 Specifies that a virtual DVD or floppy drive will be connected to any c
 orresponding physical drive on a host when you deploy a stored virtual
 machine on a host, or when you use a template or hardware profile to cr
 eate and deploy a virtual machine on a host.

 -Bus <Int32>
 Specifies the IDE bus to which to attach a virtual disk drive or virtua
 l DVD drive, or the SCSI bus to which to attach a virtual disk drive.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter. For more information about how VMM 2008 impleme
 nts IDE and SCSI buses, type: Get-Help about_VMM_2008_Disk_and_DVD_Enha
 ncements.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Link
 Specifies that a resource should be linked to instead of copied.

 -LUN <Int32>
 Specifies the logical unit number (LUN) for a virtual disk drive object
 or for a virtual DVD drive object on an IDE bus, or for a virtual disk
 drive object on a SCSI bus.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Connect a virtual DVD drive to a physical DVD drive.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $DVDDrive = Get-VirtualDVDDrive -VM $VM | where { $_.Bus -eq 1 -and
 $_.LUN -eq 0 }
 PS C:\> Set-VirtualDVDDrive -VirtualDVDDrive $DVDDrive -HostDrive "D:"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command gets the object that represents the virtual DVD drive tha
 t is located on Secondary Channel 0 (specified by -Bus 1 and -LUN 0) on the
 IDE bus on VM01. The command stores the virtual DVD drive object in variab
 le $DVDDrive.

 The last command connects the virtual DVD drive whose object is stored in $
 DVDDrive to a physical drive on the host (the D: drive). It also deletes an
 y ISO file that the virtual DVD drive used earlier if no other virtual mach
 ine currently uses that ISO file.

 2: Connect a virtual DVD drive to a different location on the IDE bus.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> $DVDDrive = Get-VirtualDVDDrive -VM $VM | where { $_.Bus -eq 1 -and
 $_.LUN -eq 0 }
 PS C:\> Set-VirtualDVDDrive -VirtualDVDDrive $DVDDrive -Bus 1 -LUN 1

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third command gets the object that represents the virtual DVD drive tha
 t is located on Secondary Channel 0 (specified by -Bus 1 and -LUN 0) on the
 IDE bus on VM02. The command stores the virtual DVD drive object in $DVDDr
 ive.

 The last command connects the virtual DVD drive whose object is stored in $
 DVDDrive to a different position on the IDE bus by setting the logical unit
 number (LUN) to 1.

 3: Disconnect a virtual DVD drive.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM03"
 PS C:\> $DVDDrive = Get-VirtualDVDDrive -VM $VM | where { $_.Bus -eq 1 -and
 $_.LUN -eq 0 }
 PS C:\> Set-VirtualDVDDrive -VirtualDVDDrive $DVDDrive -NoMedia

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM03 and stores the virtual machine object in $VM.

 The third command gets the object that represents the virtual DVD drive tha
 t is located on Secondary Channel 0 (specified by -Bus 1 and -LUN 0) on the
 IDE bus on VM03. The command stores the virtual DVD drive object in $DVDDr
 ive.

 The last command uses the NoMedia parameter to disconnect the virtual DVD d
 rive whose object is stored in $DVDDrive from any host drive or ISO to whic
 h it was connected earlier. It also deletes any ISO file that the virtual
 DVD drive used earlier if no other virtual machine currently uses that ISO
 file.

 4. Connect a virtual DVD drive on an existing VM to any available physical
 DVD drive.

 PS C:\> Get-VMMServer "VMMServer01.contoso.com"
 PS C:\> $VM = Get-VM -Name "VM04"
 PS C:\> Set-VirtualDVDDrive -AnyHostDrive -VirtualDVDDrive (Get-VirtualDVDD
 rive -VM $VM | where {$_.Bus -eq 1 -and $_.Lun -eq 0})

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM04 and stores the virtual machine object in $VM.

 The last command gets the object that represents the virtual DVD drive that
 is located on the first slot of the Secondary Channel (specified by -Bus 1
 and -LUN 0) on the IDE bus on VM04. The command uses the Set-VirtualDVDDri
 ve cmdlet with the AnyHostDrive parameter to connect the virtual DVD drive
 to any available physical DVD drive on the host.

REMARKS
 For more information, type: "get-help Set-VirtualDVDDrive -detailed".
 For technical information, type: "get-help Set-VirtualDVDDrive -full".

[bookmark: _Toc225244504]VirtualFloppyDisk
[bookmark: _Toc225244505]Get-VirtualFloppyDisk

SYNOPSIS
 Gets virtual floppy disk objects from the Virtual Machine Manager library.

SYNTAX
 Get-VirtualFloppyDisk [-All] [-VMMServer [<String ServerConnection>]] [<Com
 monParameters>]

 Get-VirtualFloppyDisk [-ID <Guid>] [-VMMServer [<String ServerConnection>]]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Gets from the Virtual Machine Manager library one or more objects that repr
 esent Virtual Machine Manager virtual floppy disk files (either a Windows-b
 ased .vfd file or a VMware-based .flp file). The virtual floppy disk file t
 hat a virtual floppy disk object represents is stored on a library server.

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all virtual floppy disks on all VMM library servers.

 PS C:\> Get-VirtualFloppyDisk -VMMServer VMMServer1.Contoso.com

 Gets all objects that represent virtual floppy disk files from the VMM libr
 ary and displays information about these virtual floppy disk objects to the
 user. The virtual floppy disk files themselves (which the objects represen
 t) are stored in library shares on library servers.

 2: Get all virtual floppy disks on a specific VMM library server.

 PS C:\> Get-VirtualFloppyDisk –VMMServer VMMServer1.Contoso.com | where { $
 _.LibraryServer.Name –eq "FileServer01.Contoso.com" }

 Gets all objects that represent virtual floppy disks stored on library serv
 er FileServer01 and displays information about these virtual floppy disks t
 o the user.

 3: Get all virtual floppy disks with a specific name on any VMM library ser
 ver.

 PS C:\> Get-VirtualFloppyDisk | where { $_.Name -eq "BootFloppy.vfd" }

 Gets all objects that represent virtual floppy disks named BootFloppy.vfd t
 hat are stored on any library server managed by VMM and displays informatio
 n about these virtual floppy disk objects to the user.

 NOTE: In VMM 2008, by default, the name of a virtual floppy disk object in
 the library is the same name (including the extension) as the name of the a
 ctual virtual floppy disk file on the library server.

REMARKS
 For more information, type: "get-help Get-VirtualFloppyDisk -detailed".
 For technical information, type: "get-help Get-VirtualFloppyDisk -full".

[bookmark: _Toc225244506]Remove-VirtualFloppyDisk

SYNOPSIS
 Removes a virtual floppy disk object from Virtual Machine Manager.

SYNTAX
 Remove-VirtualFloppyDisk [-VirtualFloppyDisk] <VirtualFloppyDisk> [-Confirm
] [-Force] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Removes an object that represents a virtual floppy disk from the Virtual Ma
 chine Manager library and deletes the corresponding virtual floppy disk fil
 e (a Windows-based .vfd file or a VMware-based .flp file) from the library
 server.

 If the virtual floppy disk is attached to a virtual machine, template, or h
 ardware profile (and if you do not use the Force parameter), VMM lists the
 container that contains the virtual floppy disk and prompts you to confirm
 that you want to remove the virtual floppy disk:

 * If you reply Yes, VMM removes the association between the virtual
 floppy disk and the container to which it is attached, and then
 deletes the virtual floppy disk object from VMM.

 * If you reply No, the operation is cancelled.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VirtualFloppyDisk <VirtualFloppyDisk>
 Specifies a virtual floppy disk object.

 -Confirm
 Prompts for confirmation before running the command.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a virtual floppy disk object from the library and delete the corr
 esponding file.

 PS C:\> $Vfd = Get-VirtualFloppyDisk -VMMServer VMMServer1.Contoso.com | w
 here { $_.Name -eq “BootFloppy1.vfd” -and $_.LibraryServer.Name -eq “FileSe
 rver01.Contoso.com” }
 PS C:\> Remove-VirtualFloppyDisk -VirtualFloppyDisk $Vfd

 The first command gets the object that represents the virtual floppy disk f
 ile named BootFloppy1.vfd (stored on library server FileServer01) and store
 s the virtual floppy disk object in variable $Vfd.

 The second command removes the BootFloppy1.vfd object from the library and
 deletes the corresponding virtual floppy disk file from the library server.
 In this example, the virtual floppy disk is a .vfd file rather than an .fl
 p file.

 NOTE: This example assumes that only one virtual floppy disk object named B
 ootFloppy1.vfd exists. For an example that illustrates how to remove multip
 le virtual floppy disk objects, see Example 2.

 2: Remove multiple virtual floppy disks and their files.

 PS C:\> $Vfds = Get-VirtualFloppyDisk -VMMServer VMMServer1.Contoso.com | w
 here { $_.Name -match “Boot” }
 PS C:\> $Vfds | Remove-VirtualFloppyDisk

 The first command gets all objects that represent virtual floppy disk files
 whose names include the string “Boot” and stores these virtual floppy disk
 objects in $Vfds (an object array).

 The second command passes each virtual floppy disk object in $Vfds to Remov
 e-VirtualFloppyDisk, which removes each virtual floppy disk object from the
 library. The command also deletes each corresponding file (a .vfd file or
 a .flp file) from the library server on which that virtual floppy disk is s
 tored.

REMARKS
 For more information, type: "get-help Remove-VirtualFloppyDisk -detailed".
 For technical information, type: "get-help Remove-VirtualFloppyDisk -full".

[bookmark: _Toc225244507]Set-VirtualFloppyDisk

SYNOPSIS
 Changes properties of a virtual floppy disk used in Virtual Machine Manager
 .

SYNTAX
 Set-VirtualFloppyDisk [-VirtualFloppyDisk] <VirtualFloppyDisk> [-Descriptio
 n <String>] [-Enabled <Boolean>] [-JobVariable <String>] [-Name <String>] [
 -Owner <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-SharePath <Strin
 g>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual floppy disk used in a Virtual M
 achine Manager environment. A virtual floppy disk file used in VMM 2008 is
 either a Windows-based .vfd file or a VMware-based .flp file.

 Properties that you can change include:

 - Description
 - Enabled
 - Name
 - Owner
 - SharePath

 You can store a virtual floppy disk file in the Virtual Machine Manager lib
 rary, or you can add the virtual floppy disk to a virtual machine.

PARAMETERS
 -VirtualFloppyDisk <VirtualFloppyDisk>
 Specifies a virtual floppy disk object.

 -Description <String>
 Specifies a description for the specified object.

 -Enabled <Boolean>
 Enables a library object (when set to TRUE) or disables a library objec
 t (when set to FALSE). For example, if you want to upgrade software on
 a virtual machine template, you can disable the template object in the
 VMM library to temporarily prevent users from using that object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Name <String>
 Specifies the name of a VMM object.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the description of a virtual floppy disk.

 PS C:\> $Vfd = Get-VirtualFloppyDisk -VMMServer VMMServer1.Contoso.com | w
 here { $_.Name -eq “BootFloppy.vfd” -and $_.LibraryServer.Name -eq “FileSer
 ver01.Contoso.com” }

 PS C:\> Set-VirtualFloppyDisk -VirtualFloppyDisk $Vfd -Description “Latest
 Boot Floppy”

 The first command gets from the VMM library on VMMServer1 the object that r
 epresents the virtual floppy disk named BootFloppy.vfd whose file is stored
 on the library server named FileServer01. The command stores the virtual f
 loppy disk object in variable $Vfd.

 The second command changes the description of this virtual floppy disk obje
 ct to "Latest Boot Floppy."

 2: Disable a virtual floppy disk.

 PS C:\> $Vfd = Get-VirtualFloppyDisk -VMMServer VMMServer1.Contoso.com | wh
 ere { $_.Name -eq “BootFloppy.vfd” -and $_.LibraryServer.Name -eq “FileServ
 er01.Contoso.com” }

 PS C:\> Set-VirtualFloppyDisk -VirtualFloppyDisk $Vfd -Enabled $FALSE

 The first command gets the object that represents the virtual floppy disk n
 amed BootFloppy.vfd (whose file is stored on the library server named FileS
 erver01) and stores the virtual floppy disk object in $Vfd.

 The second command disables the virtual floppy disk in $Vfd.

 3: Change the name of the object that represents a VMware-based virtual flo
 ppy disk.

 PS C:\> $FLP = Get-VirtualFloppyDisk -VMMServer VMMServer1.Contoso.com | wh
 ere { $_.Name -eq “ESXBootFloppy.flp” -and $_.LibraryServer.Name -eq “FileS
 erver01.Contoso.com” }

 PS C:\> Set-VirtualFloppyDisk -VirtualFloppyDisk $FLP -Name “ESXBootFloppy-
 Beta.flp”

 The first command gets the object that represents the virtual floppy disk n
 amed ESXBootFloppy.flp on library server FileServer01. The command stores t
 he virtual floppy disk object in variable $FLP.

 The second command changes the name of this virtual floppy disk object to E
 SXBootFloppy-Beta.flp.

 NOTE: In VMM 2008, by default, the name of a virtual floppy disk object in
 the library is the same name (including the extension) as the name of the a
 ctual virtual floppy disk file on the library share (in this case, ESXBootF
 loppy.flp). Changing the name of the virtual floppy disk object in the libr
 ary to ESXBootFloppy-Beta.flp does not change the name of the actual virtua
 l floppy disk file (ESXBootFloppy.flp) stored on FileServer01.

 4: Specify an owner for all virtual floppy disks with an "Unknown" owner.

 PS C:\> Get-VirtualFloppyDisk -VMMServer "VMMServer1.Contoso.com" | where {
 $_.Owner -eq "Unknown"} | Set-VirtualFloppyDisk -Owner "Contoso\IsabelMarti
 ns"

 Gets all virtual floppy disk objects from the VMM library, selects only tho
 se virtual floppy disks whose owner is "Unknown," and specifies an owner fo
 r each virtual floppy disk object.

REMARKS
 For more information, type: "get-help Set-VirtualFloppyDisk -detailed".
 For technical information, type: "get-help Set-VirtualFloppyDisk -full".

[bookmark: _Toc225244508]VirtualFloppyDrive
[bookmark: _Toc225244509]Get-VirtualFloppyDrive

SYNOPSIS
 Gets Virtual Machine Manager virtual floppy drive objects from a virtual ma
 chine, template, or hardware profile.

SYNTAX
 Get-VirtualFloppyDrive -HardwareProfile <HardwareProfile> [<CommonParameter
 s>]

 Get-VirtualFloppyDrive -All [-VMMServer [<String ServerConnection>]] [<Comm
 onParameters>]

 Get-VirtualFloppyDrive -VM [<String VM>] [<CommonParameters>]

 Get-VirtualFloppyDrive -Template [<Template String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual floppy drives in a Virtual
 Machine Manager environment from a virtual machine object, from a template
 object, or from a hardware profile object.

 In Virtual Machine Manager, each virtual machine, template, or hardware pro
 file has one floppy drive. You cannot remove this floppy drive or add any a
 dditional floppy drives.

 By default, the virtual floppy drive is configured as attached to no media.
 You can use the Set-VirtualFloppyDrive cmdlet to configure the virtual flo
 ppy drive to use the physical floppy drive on the virtual machine host (typ
 ically, drive A:) in order to read physical floppy disks. Alternatively, yo
 u can configure the virtual floppy drive to read an existing virtual floppy
 disk.

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get the virtual floppy drive from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> Get-VirtualFloppyDrive -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command selects from all virtual machine objects in the VMM data
 base the object that represents VM01 and stores this object in variable $VM
 .

 The last command gets the virtual floppy drive object on VM01 and displays
 information about this drive to the user.

 2: Get the virtual floppy drive from a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template1" }
 PS C:\> Get-VirtualFloppyDrive -Template $Template

 The first command connects to VMMServer1.

 The second command selects from all template objects in the VMM library the
 object that represents Template1 and stores this object in variable $Templ
 ate.

 The last command gets the virtual floppy drive object on Template1 and disp
 lays information about this drive to the user.

 3: Get the virtual floppy drive from a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file1" }
 PS C:\> Get-VirtualFloppyDrive -HardwareProfile $HWProfile

 The first command connects to VMMServer1.

 The second command selects from all hardware profile objects in the VMM lib
 rary the object that represents HardwareProfile1 and stores this object in
 variable $HWProfile.

 The last command gets the virtual floppy drive object on HardwareProfile1 a
 nd displays information about this drive to the user.

REMARKS
 For more information, type: "get-help Get-VirtualFloppyDrive -detailed".
 For technical information, type: "get-help Get-VirtualFloppyDrive -full".

[bookmark: _Toc225244510]Set-VirtualFloppyDrive

SYNOPSIS
 Changes properties of a virtual floppy drive associated with a virtual mach
 ine, template, or hardware profile used in Virtual Machine Manager.

SYNTAX
 Set-VirtualFloppyDrive -AnyHostDrive [-JobGroup <Guid>] [-JobVariable <Stri
 ng>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String ServerCon
 nection>]] [<CommonParameters>]

 Set-VirtualFloppyDrive -HostDrive <String> [-JobGroup <Guid>] [-JobVariable
 <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String Ser
 verConnection>]] [<CommonParameters>]

 Set-VirtualFloppyDrive -NoMedia <Boolean> [-JobGroup <Guid>] [-JobVariable
 <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String Serv
 erConnection>]] [<CommonParameters>]

 Set-VirtualFloppyDrive [-VirtualFloppyDrive] <VirtualFloppyDrive> -VirtualF
 loppyDisk <VirtualFloppyDisk> [-JobGroup <Guid>] [-JobVariable <String>] [-
 PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Set-VirtualFloppyDrive -VirtualFloppyDisk <VirtualFloppyDisk> [-JobGroup <G
 uid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMM
 Server [<String ServerConnection>]] [<CommonParameters>]

 Set-VirtualFloppyDrive [-VirtualFloppyDrive] <VirtualFloppyDrive> -AnyHostD
 rive [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsy
 nchronously] [<CommonParameters>]

 Set-VirtualFloppyDrive [-VirtualFloppyDrive] <VirtualFloppyDrive> -HostDriv
 e <String> [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-
 RunAsynchronously] [<CommonParameters>]

 Set-VirtualFloppyDrive [-VirtualFloppyDrive] <VirtualFloppyDrive> -NoMedia
 <Boolean> [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-R
 unAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual floppy drive associated with a
 virtual machine, template, or hardware profile used in a Virtual Machine Ma
 nager environment.

 You can use the Set-VirtualFloppyDrive cmdlet to configure the virtual flop
 py drive to:

 * Use a physical floppy drive (typically, drive A:) in
 order to read physical floppy disks.
 * Read an existing virtual floppy disk.
 * Disconnect the virtual floppy disk.

PARAMETERS
 -VirtualFloppyDrive <VirtualFloppyDrive>
 Specifies a virtual floppy drive object.

 -AnyHostDrive
 Specifies that a virtual DVD or floppy drive will be connected to any c
 orresponding physical drive on a host when you deploy a stored virtual
 machine on a host, or when you use a template or hardware profile to cr
 eate and deploy a virtual machine on a host.

 -HostDrive <String>
 Specifies a drive on a virtual machine host.
 Example formats:
 Hard Drive Floppy Drive
 ---------- ------------
 Windows-based host "C:" "A:"
 VMware ESX host "/dev/tools" "/dev/sda"

 -NoMedia <Boolean>
 Disconnects a virtual DVD drive from the host drive or ISO to which it
 was connected, or disconnects a virtual floppy drive from the host driv
 e or virtual floppy disk to which it was connected.

 -VirtualFloppyDisk <VirtualFloppyDisk>
 Specifies a virtual floppy disk object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Connect a virtual floppy drive to a physical floppy drive.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VM = Get-VM -Name "VM01"

 PS C:\> $FloppyDrive = @(Get-VirtualFloppyDrive -VM $VM)

 PS C:\> trap{"Fail: Cannot set virtual floppy drive to the physical host fl
 oppy drive for VM: $VM";continue} Set-VirtualFloppyDrive -VirtualFloppyDriv
 e $FloppyDrive[0] -HostDrive "A:"

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command gets the object that represents the virtual floppy drive
 on VM01 and stores the drive object in variable $FloppyDrive. Using the "@"
 symbol and parentheses ensures that the command stores the results in an a
 rray (in case the command returns a single object, which is likely for a vi
 rtual floppy drive, or returns a null value).

 The last command connects the virtual floppy drive object in $FloppyDrive t
 o a physical drive (in this example, to the A: drive) on the host. The comm
 and uses the trap statement to catch terminating exceptions. If the Set-Vir
 tualFloppyDrive command fails, the string in the trap statement is displaye
 d. Continue is used in the trap statement to continue execution instead of
 exiting.

 2: Connect a virtual floppy drive to a virtual floppy disk.

 PS C:\> $FloppyDisk = Get-VirtualFloppyDisk -VMMServer VMMServer1.Contoso.c
 om | where {$_.Name -eq "BootDisk.vfd"}

 PS C:\> $VM = Get-VM -Name VM02

 PS C:\> $FloppyDrive = @(Get-VirtualFloppyDrive -VM $VM)

 PS C:\> Set-VirtualFloppyDrive -VirtualFloppyDrive $FloppyDrive[0] -Virtual
 FloppyDisk $FloppyDisk

 The first command gets the virtual floppy disk named BootDisk.vfd from VMMS
 erver1 and stores the virtual floppy disk object in $FloppyDisk.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third command gets the object that represents the virtual floppy drive
 on VM02 and stores the virtual floppy drive object in $FloppyDrive.

 The last command connects BootDisk.vfd ($FloppyDisk) to the first virtual f
 loppy drive (FloppyDrive[0]) on VM02.

 3: Disconnect a virtual floppy drive.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM03"
 PS C:\> $FloppyDrive = @(Get-VirtualFloppyDrive -VM $VM)
 PS C:\> Set-VirtualFloppyDrive -VirtualFloppyDrive $FloppyDrive -NoMedia

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM03 and stores the virtual machine object in $VM.

 The third command gets the object that represents the virtual floppy drive
 on VM03 and stores the drive object in $FloppyDrive.

 The last command disconnects the virtual floppy drive whose object is store
 d in $FloppyDrive from any host drive or virtual floppy disk to which it wa
 s connected by specifying the NoMedia parameter. This command also deletes
 any virtual floppy disk that the virtual floppy drive used earlier if no ot
 her virtual machine currently uses that virtual floppy disk.

REMARKS
 For more information, type: "get-help Set-VirtualFloppyDrive -detailed".
 For technical information, type: "get-help Set-VirtualFloppyDrive -full".

[bookmark: _Toc225244511]VirtualHardDisk
[bookmark: _Toc225244512]Get-VirtualHardDisk

SYNOPSIS
 Gets virtual hard disk objects from a virtual machine, from a template, or
 as a standalone file stored in the Virtual Machine Manager library.

SYNTAX
 Get-VirtualHardDisk [-All] [-VMMServer [<String ServerConnection>]] [<Commo
 nParameters>]

 Get-VirtualHardDisk -Template [<Template String>] [<CommonParameters>]

 Get-VirtualHardDisk -VM [<String VM>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets objects that represent virtual hard disks from a virtual machine, from
 a template, or as a standalone file stored in the Virtual Machine Manager
 library.

 In VMM 2008, a virtual hard disk can be a Windows-based .vhd file or a VMwa
 re-based.vmdk file. A virtual hard disk might be stored as a standalone obj
 ect in the Virtual Machine Manager library; attached to a virtual disk driv
 e on a template; or attached to a virtual disk drive on a deployed or store
 d virtual machine.

PARAMETERS
 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get a virtual hard disk object from the library.

 PS C:\> $VHD = Get-VirtualHardDisk -VMMServer VMMServer1.Contoso.com | wher
 e { $_.Name -eq “VHD01.vhd” -and $_.LibraryServer.Name -eq "FileServer01.C
 ontoso.com” }

 Selects the object for the virtual hard disk named VHD01.vhd (stored on the
 library server FileServer01) and stores its object in variable $VHD.

 2: Get a virtual hard disk object from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VHD = Get-VM -Name "VM01" | Get-VirtualHardDisk | where { $_.Name
 -match "DataDisk" }

 The first command connects to VMMServer1.

 The second command gets the object for VM01, selects all virtual hard disks
 on VM01 whose name includes the string "DataDisk," and stores the returned
 virtual hard disk objects in $VHD.

 3: Get a virtual hard disk object from a specific template.

 PS C:\> Get-Template -VMMServer "VMMServer1.Contoso.com" | where {$_.Name -
 eq "Template03"} | Get-VirtualHardDisk

 Gets the object that represents Template03 from the library and displays al
 l virtual hard disk objects on that template to the user.

REMARKS
 For more information, type: "get-help Get-VirtualHardDisk -detailed".
 For technical information, type: "get-help Get-VirtualHardDisk -full".

[bookmark: _Toc225244513]Move-VirtualHardDisk

SYNOPSIS
 Moves a Windows-based virtual hard disk file (a .vhd file) from one locatio
 n to another on the same host.

SYNTAX
 Move-VirtualHardDisk -Bus <Int32> -JobGroup <Guid> -LUN <Int32> -Path <Stri
 ng> -SCSI <Boolean> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchr
 onously] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 Move-VirtualHardDisk -Bus <Int32> -IDE <Boolean> -JobGroup <Guid> -LUN <Int
 32> -Path <String> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchro
 nously] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

 Move-VirtualHardDisk [-VirtualHardDisk] <VirtualHardDisk> -JobGroup <Guid>
 -Path <String> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronous
 ly] [<CommonParameters>]

DETAILED DESCRIPTION
 Moves a Windows-based virtual hard disk file (a .vhd file) from one locatio
 n to another on the same host.

 For example:

 * If the host has multiple physical disk drives and the virtual machine
 has two virtual hard disks (one might store the operating system and
 the other might contain data), you can use this cmdlet to put one of
 the virtual hard disks onto a different physical hard drive in order
 to improve performance for both virtual hard disks.

 * If the virtual machine has one dynamically expanding virtual hard disk
 and you discover that the virtual hard disk has grown so large that it
 uses most of the space on its current physical hard disk on the host,
 you can use this cmdlet to move the expanded virtual hard disk to a
 larger physical hard disk if a larger physical hard disk is available
 on the host.

 The Move-VirtualHardDisk cmdlet moves a Windows-based .vhd file used by a v
 irtual machine to another location on a Windows-based host (a Hyper-V or Vi
 rtual Server host). You cannot use this cmdlet to move a VMware-based .vmdk
 file to another location on an ESX host.

PARAMETERS
 -VirtualHardDisk <VirtualHardDisk>
 Specifies a virtual hard disk object.

 -Bus <Int32>
 Specifies the IDE bus to which to attach a virtual disk drive or virtua
 l DVD drive, or the SCSI bus to which to attach a virtual disk drive.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter. For more information about how VMM 2008 impleme
 nts IDE and SCSI buses, type: Get-Help about_VMM_2008_Disk_and_DVD_Enha
 ncements.

 -IDE <Boolean>
 Specifies IDE as the bus type to which to attach a virtual disk drive o
 bject or a virtual DVD drive object configured on a virtual machine or
 on a template. (For more information about how VMM 2008 implements the
 IDE bus, type: Get-Help about_VMM_2008_Disk_and_DVD_Enhancements.)
 Example format: -IDE –Bus 0 –LUN 1

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -LUN <Int32>
 Specifies the logical unit number (LUN) for a virtual disk drive object
 or for a virtual DVD drive object on an IDE bus, or for a virtual disk
 drive object on a SCSI bus.
 Example format: -IDE -Bus 1 -LUN 0
 Example format: -SCSI -Bus 0 -LUN 1

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -SCSI <Boolean>
 Specifies SCSI as the bus type to which to attach a virtual disk drive
 object configured on a virtual machine or on a template.
 Example format: -SCSI -Bus 0 -LUN 0
 For information about the number of devices per controller on a SCSI bu
 s that VMM 2008 supports for each virtualization platform (Hyper-V, Vir
 tual Server, or VMware), type: Get-Help about_VMM_2008_Disk_and_DVD_Enh
 ancements.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Move a virtual hard disk file from one location to another on the same h
 ost.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $VHD = $VM.VirtualHardDisks[0]
 PS C:\> Move-VirtualHardDisk -VirtualHardDisk $VHD -Path "C:\Test"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command stores the object for the first virtual hard disk on VM01
 ($VM.VirtualHardDisks[0]) in $VHD.

 The last command (which assumes that a directory named "Test" already exist
 s on volume "C:\") moves the virtual hard disk represented by $VHD to the f
 older "C:\Test".

REMARKS
 For more information, type: "get-help Move-VirtualHardDisk -detailed".
 For technical information, type: "get-help Move-VirtualHardDisk -full".

[bookmark: _Toc225244514]Remove-VirtualHardDisk

SYNOPSIS
 Removes a virtual hard disk object from a virtual machine or template or fr
 om the Virtual Machine Manager library.

SYNTAX
 Remove-VirtualHardDisk [-VirtualHardDisk] <VirtualHardDisk> [-Confirm] [-Fo
 rce] [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsy
 nchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes an object that represents a virtual hard disk from a virtual machin
 e or template or from the Virtual Machine Manager library. The Remove-Virtu
 alHardDisk cmdlet also deletes the corresponding virtual hard disk file (a
 Windows-based .vhd file or a VMware-based .vmdk file) on the library server
 .

 If the virtual hard disk is attached to a virtual disk drive on a virtual m
 achine or template (and if you do not use the Force parameter), VMM lists t
 he container that contains the virtual hard disk and prompts you to confirm
 that you want to remove the virtual hard disk:

 * If you reply Yes, VMM removes the association between the virtual hard
 disk and the container to which it is attached, and then deletes the
 virtual hard disk object from VMM.

 * If you reply No, the operation is cancelled.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VirtualHardDisk <VirtualHardDisk>
 Specifies a virtual hard disk object.

 -Confirm
 Prompts for confirmation before running the command.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a virtual hard disk object from the library.

 PS C:\> $VHD = Get-VirtualHardDisk -VMMServer VMMServer1.Contoso.com | wher
 e { $_.Name -eq “VHD01.vhd” -and $_.LibraryServer.Name -eq "FileServer01.C
 ontoso.com” }
 PS C:\> Remove-VirtualHardDisk -VirtualHardDisk $VHD

 The first command gets the virtual hard disk object for the file VHD01.vhd
 (stored on library server FileServer01) and stores the returned object in v
 ariable $VHD.

 The second command removes the VHD01 object from the library and deletes th
 e corresponding file (a .vhd file or a .vmdk file) from the file system on
 the library server.

 2: Remove a virtual hard disk from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VHD = Get-VM -Name "VM01" | Get-VirtualHardDisk | where { $_.Name
 -match "DataDisk" }
 PS C:\> $VHD | Remove-VirtualHardDisk

 The first command connects to VMMServer1.

 The second command gets the object for the virtual machine named VM01, gets
 all virtual hard disks on VM01 whose name includes the string "DataDisk",
 and stores these virtual hard disk objects in $VHD (an object array).

 The third command removes each virtual hard disk object from the virtual ma
 chine and deletes each corresponding file (a .vhd file or a .vmdk file) fro
 m the file system on the library server.

REMARKS
 For more information, type: "get-help Remove-VirtualHardDisk -detailed".
 For technical information, type: "get-help Remove-VirtualHardDisk -full".

[bookmark: _Toc225244515]Set-VirtualHardDisk

SYNOPSIS
 Changes properties of a virtual hard disk object used in Virtual Machine Ma
 nager.

SYNTAX
 Set-VirtualHardDisk [-VirtualHardDisk] <VirtualHardDisk> [-Description <Str
 ing>] [-Enabled <Boolean>] [-JobGroup <Guid>] [-JobVariable <String>] [-Nam
 e <String>] [-OperatingSystem <OperatingSystem>] [-Owner <String>] [-PROTip
 ID <Guid>] [-RunAsynchronously] [-SharePath <String>] [-VirtualizationPlatf
 orm <VirtualizationPlatform>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual hard disk object used in a Virt
 ual Machine Manager environment. A virtual hard disk file used in VMM 2008
 is either a Windows-based .vhd file or a VMware-based .vmdk file.

 Properties that you can change include:

 - Description
 - Enabled
 - Name
 - Operating System
 - Owner
 - SharePath

 A virtual hard disk file might be stored in the VMM library, or it might be
 attached to a virtual disk drive on a virtual machine or template.

 NOTE: In VMM 2007, the Set-VirtualHardDisk cmdlet was used to change the lo
 cation of a virtual hard disk on a virtual machine by changing the Bus and
 LUN settings on an IDE bus or SCSI bus. By contrast, in VMM 2008, a virtual
 hard disk is attached to a virtual disk drive. If you want to change the B
 us and LUN settings for a virtual disk drive, use the Set-VirtualDiskDrive
 cmdlet.

PARAMETERS
 -VirtualHardDisk <VirtualHardDisk>
 Specifies a virtual hard disk object.

 -Description <String>
 Specifies a description for the specified object.

 -Enabled <Boolean>
 Enables a library object (when set to TRUE) or disables a library objec
 t (when set to FALSE). For example, if you want to upgrade software on
 a virtual machine template, you can disable the template object in the
 VMM library to temporarily prevent users from using that object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Name <String>
 Specifies the name of a VMM object.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 -VirtualizationPlatform <VirtualizationPlatform>
 Specifies the virtualization platform of a virtual machine host managed
 by VMM.
 Valid values: VirtualServer, Hyper-V, or VMwareESX.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the description of a virtual hard disk.

 PS C:\> $VHD = Get-VirtualHardDisk -VMMServer VMMServer1.Contoso.com | wher
 e { $_.LibraryServer.Name -eq “FileServer01.Contoso.com” -and $_.Name -eq "
 WindowsServer2003BootVHD.vhd"}

 PS C:\> Set-VirtualHardDisk -VirtualHardDisk $VHD -Description “Latest Wind
 ows Server 2003 Boot VHD”

 The first command retrieves from the library on VMMServer1 the object that
 represents the virtual hard disk named "WindowsServer2003BootVHD.vhd", whos
 e file is stored on library server FileServer01. The command stores the vir
 tual hard disk object in variable $VHD.

 The second command changes the description of this virtual hard disk object
 to "Latest Windows Server 2003 Boot VHD".

 2: Enable a VMware-based virtual hard disk in the library.

 PS C:\> $VMDK = Get-VirtualHardDisk -VMMServer VMMServer1.Contoso.com | whe
 re { $_.LibraryServer.Name -eq “FileServer01.Contoso.com” -and $_.Name -eq
 "WindowsServer2003.vmdk"}

 PS C:\> Set-VirtualHardDisk -VirtualHardDisk $VMDK -Enabled $TRUE

 The first command gets the object that represents the virtual hard disk nam
 ed WindowsServer2003.vmdk (whose file is stored on library server FileServe
 r01) and stores the virtual hard disk object in $VMDK.

 The second command enables the virtual hard disk object.

 3: Specify an owner for all virtual hard disks with an "Unknown" owner.

 PS C:\> Get-VirtualHardDisk -VMMServer "VMMServer1.Contoso.com" | where {$_
 .Owner -eq "Unknown"} | Set-VirtualHardDisk -Owner "Contoso\SanjayPatel"

 Gets all virtual hard disk objects from the VMM library, selects only those
 virtual hard disks whose owner is "Unknown," and specifies an owner for ea
 ch virtual hard disk object.

REMARKS
 For more information, type: "get-help Set-VirtualHardDisk -detailed".
 For technical information, type: "get-help Set-VirtualHardDisk -full".

[bookmark: _Toc225244516]VirtualizationManager
[bookmark: _Toc225244517]Add-VirtualizationManager

SYNOPSIS
 Adds a VMware VirtualCenter Server to Virtual Machine Manager.

SYNTAX
 Add-VirtualizationManager [-ComputerName] <String> -Credential <PSCredentia
 l> [-Certificate] [-Description <String>] [-JobVariable <String>] [-PROTipI
 D <Guid>] [-RunAsynchronously] [-SecureMode <Boolean>] [-TCPPort <Int32>] [
 -VMMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Adds a VMware VirtualCenter Management Server, also called a VirtualCenter
 Server, to your Virtual Machine Manager environment so that Virtual Machine
 Manager can connect to the VirtualCenter Server and import its data. After
 you add the VirtualCenter Server to Virtual Machine Manager, Virtual Machi
 ne Manager can manage VMware ESX hosts associated with the VirtualCenter Se
 rver and the virtual machines deployed on those hosts.

 Adding a VirtualCenter Server as a managed platform to Virtual Machine Mana
 ger maps each VMware object to a corresponding Virtual Machine Manager obje
 ct. This mapping enables that data to be managed as Windows PowerShell obje
 cts from the command-line or presented in the same Administrator Console as
 Microsoft virtual objects (in the Administration view).

 The default port used to connect to a VMware VirtualCenter Server computer
 is TCP port 443.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -Certificate
 Specifies a security certificate object.

 -Description <String>
 Specifies a description for the specified object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SecureMode <Boolean>
 Specifies the trust level between VMM and VMware ESX hosts managed by a
 VMware VirtualCenter Server.

 -TCPPort <Int32>
 Specifies a numeric value that represents a TCP port.
 Note: In VMM 2007, this parameter, when used with the Get-VMMServer cmd
 let, was named Port.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add a VMware VirtualCenter Server to VMM.

 PS C:\> $Credential = Get-Credential
 PS C:\> $Cert= Get-Certificate -Computername "VirtMgrServer01.Contoso.com"
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Add-VirtualizationManager -ComputerName "VirtMgrServer01.Contoso.co
 m" -Certificate $Cert -TCPPort 443 -Credential $Credential

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are either a local Administrator account
 or a domain account with administrator rights on the computer (a VMware Vir
 tualCenter Server) that you want to add as a virtualization manager to VMM.

 The second command obtains the security certificate from "VirtMgrServer01.C
 ontoso.com" and stores it in a variable $Cert.

 The third command connects to the VMM server named VMMServer1 that is locat
 ed in the Contoso domain and gets the server object from the VMM database p
 rovided by VMMServer1.

 The last command adds the virtualization manager object that represents the
 VirtualCenter Server called VirtMgrServer01 to the VMM database, imports t
 he security certificate object , and specifies that VMM will use TCP port 4
 43 (the default port) to connect to that server. As the last command is pro
 cessed, $Credential provides your credentials to Add-VirtualizationManager.

 2: Add multiple VMware VirtualCenter Servers to VMM.

 PS C:\> $Credential = Get-Credential

 PS C:\> $ServerNames = "VirtMgrServer01.Contoso.com", "VirtMgrServer02.Cont
 oso.com"

 PS C:\> foreach($ServerName in $ServerNames) {$Cert = Get-Certificate -Co
 mputername $Servername; Add-VirtualizationManager -ComputerName $ServerNam
 e -Certificate $Cert -TCPPort 443 -Credential $Credential}

 The first command uses Get-Credential to prompt you to supply an appropriat
 e user name and password and stores your credentials in $Credential.

 The second command stores in $ServerNames the strings "VirtMgrServer01.Cont
 oso.com" and "VirtMgrServer02.Contoso.com", which are the names of two VMwa
 re VirtualCenter Servers.

 The last command adds the two servers to VMM and specifies that VMM will im
 port the security certificates and use TCP port 443 (the default port) to
 connect to the virtualization manager service on VirtMgrServer01 and VirtM
 grServer02. As this command is processed, $Credential provides your credent
 ials to Add-VirtualizationManager.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

REMARKS
 For more information, type: "get-help Add-VirtualizationManager -detailed".
 For technical information, type: "get-help Add-VirtualizationManager -full"
 .

[bookmark: _Toc225244518]Get-VirtualizationManager

SYNOPSIS
 Gets objects that represent VMware VirtualCenter Servers managed by Virtual
 Machine Manager from the Virtual Machine Manager database.

SYNTAX
 Get-VirtualizationManager [[-ComputerName] <String>] [-VMMServer [<String S
 erverConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent VMware VirtualCenter Servers manage
 d by Virtual Machine Manager from the Virtual Machine Manager database. Vir
 tualCenter Server is a virtualization manager that typically manages VMware
 ESX Server virtual machine hosts and virtual machines deployed on those ho
 sts.

 If a VirtualCenter Server is connected to Virtual Machine Manager, you can
 use this cmdlet to view the object properties of the VirtualCenter Server o
 r to store its object in a variable for use by other cmdlets.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Display information about each VMware VirtualCenter Server managed by VM
 M.

 PS C:\> Get-VirtualizationManager -VMMServer VMMServer1.Contoso.com

 The command retrieves all objects that represent virtualization managers cu
 rrently associated with VMM from VMMServer1 and displays information about
 the returned objects.

 2: Get a specific VMware VirtualCenter Server managed by VMM.

 PS C:\> Get-VirtualizatonManager -VMMServer VMMServer1.Contoso.com -Compute
 rName "VirtMgrServer02"

 Gets object for the VirtualCenter server called "VirtMgrServer02" and displ
 ays information about the returned object.

 3: Get all VMware VirtualCenter Servers that match specified criteria.

 PS C:\> $VirtMgrServers = Get-VirtualizationManager -VMMServer "VMMServer1.
 Contoso.com" | where {$_.Name -match "Server"}
 PS C:\> Write-Output $VirtMgrServers

 The first command gets all virtualization manager objects whose name includ
 es the string “Server” (such as VirtMgrServer01, VirtMgrServer02, and so on
) and stores the returned objects in $VirtMgrServers.

 The second command displays information about each VirtualCenter Server obj
 ect.

REMARKS
 For more information, type: "get-help Get-VirtualizationManager -detailed".
 For technical information, type: "get-help Get-VirtualizationManager -full"
 .

[bookmark: _Toc225244519]Refresh-VirtualizationManager

SYNOPSIS
 Refreshes the properties of a VMware VirtualCenter Server so that the Virtu
 al Machine Manager Administrator Console displays updated information about
 entities in VirtualCenter Server.

SYNTAX
 Refresh-VirtualizationManager [-VirtualizationManager] <VirtualizationManag
 er> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<Commo
 nParameters>]

DETAILED DESCRIPTION
 Refreshes the properties of a VMware VirtualCenter Server managed by Virtua
 l Machine Manager so that the Virtual Machine Manager Administrator Console
 displays updated information about entities in VirtualCenter Server.

 The Refresh-VirtualizationManager cmdlet imports changes that an administra
 tor makes on VirtualCenter Server into the Virtual Machine Manager database
 so that Virtual Machine Manager can then manage the new or modified object
 s.

 For example, if an administrator adds a set of ESX hosts to VirtualCenter S
 erver and then, on the Virtual Machine Manager server, runs the Refresh-Vir
 tualizationManager cmdlet, Virtual Machine Manager discovers the new hosts
 (and the virtual machines deployed on those hosts). These ESX hosts and the
 ir virtual machines can now be managed by Virtual Machine Manager.

 Similarly, if an administrator changes the hierarchical structure of folder
 and datacenter objects (which are child objects under the VirtualCenter ro
 ot folder), running the Refresh-VirtualizationManager cmdlet propagates tho
 se changes into Virtual Machine Manager.

PARAMETERS
 -VirtualizationManager <VirtualizationManager>
 Specifies a virtualization manager object currently managed by VMM. VMM
 2008 supports the following non-Microsoft virtualization managers:
 -VMware VirtualCenter 2.0: manages hosts running ESX Server 3.0 or 3.5
 -VMware VirtualCenter 2.5: manages hosts running ESX Server 3.0, 3.5, o
 r 3i

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Refresh all VMware VirtualCenter Servers managed by VMM.

 PS C:\> $VirtManagers = Get-VirtualizationManager -VMMServer VMMServer1.Con
 toso.com
 PS C:\> foreach ($VirtMan in $VirtManagers) { Refresh-VirtualizationManager
 -VirtualizationManager $VirtMan }

 The first command retrieves all virtualizaton manager objects from the VMM
 database on VMMServer1 and stores the returned objects in variable $VirtMan
 .

 The second command uses a foreach loop statement to refreshe the properties
 of the objects stored in $VirtMan so that current information about these
 virtualization managers displays in the Administrator Console.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

 2: Refresh a specific VMware VirtualCenter Server managed by VMM.

 PS C:\> $VirtMan = Get-VirtualizationManager -VMMServer "VMMServer1.Contoso
 .com" -Computername "VMwareVC1"
 PS C:\> Refresh-VirtualizationManager -VirtualizationManager $VirtMan

 The first command gets the object that represents a specific virtualizaton
 manager named "VMwareVC1" from VMMServer1 and stores the returned object in
 $VirtMan.

 The second command refreshes the properties for the object stored in $VirtM
 an so that current information about this virtualization manager displays i
 n the Administrator Console.

REMARKS
 For more information, type: "get-help Refresh-VirtualizationManager -detail
 ed".
 For technical information, type: "get-help Refresh-VirtualizationManager -f
 ull".

[bookmark: _Toc225244520]Remove-VirtualizationManager

SYNOPSIS
 Removes a VMware VirtualCenter Server from Virtual Machine Manager.

SYNTAX
 Remove-VirtualizationManager [-VirtualizationManager] <VirtualizationManage
 r> [-Confirm] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronousl
 y] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent VMware VirtualCenter Servers fro
 m the Virtual Machine Manager database. This cmdlet deletes the VirtualCent
 er Server object from the Virtual Machine Manager database and also removes
 all imported ESX host objects and virtual machine objects associated with
 the VirtualCenter Server from the Virtual Machine Manager database.

 When you remove a VirtualCenter Server, the cmdlet does not make any change
 s within VirtualCenter Server and does not remove any hosts or virtual mach
 ines from the VirtualCenter Server. What has changed after you run the Remo
 ve-VirtualizationManager cmdlet is that the VirtualCenter server is no long
 er managed by Virtual Machine Manager.

PARAMETERS
 -VirtualizationManager <VirtualizationManager>
 Specifies a virtualization manager object currently managed by VMM. VMM
 2008 supports the following non-Microsoft virtualization managers:
 -VMware VirtualCenter 2.0: manages hosts running ESX Server 3.0 or 3.5
 -VMware VirtualCenter 2.5: manages hosts running ESX Server 3.0, 3.5, o
 r 3i

 -Confirm
 Prompts for confirmation before running the command.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a VMware VirtualCenter Server from VMM.

 PS C:\> $VirtMgrServer = Get-VirtualizationManager -VMMServer VMMServer1.Co
 ntoso.com -ComputerName "VirtMgrServer01.Contoso.com"
 PS C:\> Remove-VirtualizationManager -VirtualizationManager $VirtMgrServer

 The first command gets the object for a VirtualCenter Server named VirtMgrS
 erver01 from VMMServer1 and stores the object in $VirtMgrServer.

 The second command removes the VirtualCenter Server object, as well as all
 associated host and virtual machine objects, from VMM.

 NOTE: This example assumes that there is only one VirtualCenter Server.

 2: Remove a set of VMware VirtualCenter Servers from VMM.

 PS C:\> $VirtMgrServers = Get-VirtualizationManager -VMMServer VMMServer1.C
 ontoso.com | where { $_.Name -match "Server" }
 PS C:\> foreach($VirtMgr in $VirtMgrServers) { Remove-VirtualizationManage
 r -VirtualizationManager $VirtMgr }

 The first command gets all virtualization manager objects whose name includ
 es the string “Server” and stores the returned objects in $VirtMgrServers.

 The second command removes each object in $VirtMgrServers from VMM, as well
 as all associated host and virtual machine objects.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

 3: Remove all VMware VirtualCenter Servers from VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VirtualizationManager | foreach { Remove-VirtualizationManager
 -VirtualizationManager $_ -RunAsynchronously }

 The first command connects to VMMServer1.

 The second command removes all virtualization manager objects from VMM.

REMARKS
 For more information, type: "get-help Remove-VirtualizationManager -detaile
 d".
 For technical information, type: "get-help Remove-VirtualizationManager -fu
 ll".

[bookmark: _Toc225244521]Set-VirtualizationManager

SYNOPSIS
 Changes properties of a VMware VirtualCenter Server that is managed by Virt
 ual Machine Manager.

SYNTAX
 Set-VirtualizationManager [-VirtualizationManager] <VirtualizationManager>
 [-Certificate] [-Credential <PSCredential>] [-JobVariable <String>] [-PROTi
 pID <Guid>] [-RunAsynchronously] [-SecureMode <Boolean>] [-TCPPort <Int32>]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a VMware VirtualCenter Server that is con
 nected to and managed by Virtual Machine Manager. A VirtualCenter Server ma
 nages VMware ESX Servers that act as hosts for VMware-based virtual machine
 s.

 Properties that you can change include settings for the TCP port used to co
 nnect to the VirtualCenter Server, credentials used to access the VirtualCe
 nter Server, and updating a VMware VirtualCenter Server security certificat
 e.

 If a security certificate for a VMware VirtualCenter server expires or a se
 lf-signed certificate is replaced by a certificate from a third-party Certi
 fication Authority (CA), you must update both VMware VirtualCenter and VMM:

 * First, replace the current VMware VirtualCenter certificate with the
 new certificate in VMware VirtualCenter. See the instructions in the
 VMware "Developer's Setup Guide," available at:

 http://www.vmware.com/support/developer/vc-sdk/

 * Next, update the certificate in VMM by importing the new certificate
 into VMM. See example 3 for this cmdlet.

 For more information about including a VMware VirtualCenter Server as a vir
 tualization managers in a Virtual Machine Manager environment, type:
 Get-Help Add-VirtualizationManager -detailed

PARAMETERS
 -VirtualizationManager <VirtualizationManager>
 Specifies a virtualization manager object currently managed by VMM. VMM
 2008 supports the following non-Microsoft virtualization managers:
 -VMware VirtualCenter 2.0: manages hosts running ESX Server 3.0 or 3.5
 -VMware VirtualCenter 2.5: manages hosts running ESX Server 3.0, 3.5, o
 r 3i

 -Certificate
 Specifies a security certificate object.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SecureMode <Boolean>
 Specifies the trust level between VMM and VMware ESX hosts managed by a
 VMware VirtualCenter Server.

 -TCPPort <Int32>
 Specifies a numeric value that represents a TCP port.
 Note: In VMM 2007, this parameter, when used with the Get-VMMServer cmd
 let, was named Port.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Specify new credentials for a virtualization manager object.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VirtMgr = Get-VirtualizationManager -ComputerName "VirtMgrServer01
 "
 PS C:\> $Credential = Get-Credential
 PS C:\> Set-VirtualizationManager -VirtualizationManager $VirtMgr -Credenti
 al $Credential

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object for the VMware VirtualCenter Server virt
 ualization manager named VirtMgrServer01 from the VMM database and stores t
 he returned object in variable $VirtMgr.

 The third command prompts the user for new credentials and stores the crede
 ntials in variable $Credential. The credentials required for this operation
 are <VCServerName>\Administrator and the password for that account.

 The last command changes the credentials stored for VirtMgrServer01 to be u
 sed when VMM connects to the external service.

 2: Modify the virtualization manager TCP port settings.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VirtMgr = Get-VirtualizationManager -ComputerName "VirtMgrServer02
 "
 PS C:\> Set-VirtualizationManager -VirtualizationManager $VirtMgr -TCPPort
 980

 The first command connects to VMMServer1.

 The second command gets the object for the VMware VirtualCenter Server virt
 ualization manager named VirtMgrServer02 and stores the returned object in
 $VirtMgr.

 The third command changes the TCP port setting used to connect to the Virtu
 alCenter Server to "980"

 3: Update the VirtualCenter Server security certificate by importing a new
 certificate into VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\>$Virtmgr = Get-Virtualizationmanager -Computername “VirtMgrServer03.
 Contoso.com”
 PS C:\>$Cert = Get-Certificate -Computername “VirtMgrServer01.Contoso.com”
 PS C:\>Set-VirtualizationManager -VirtualizationManager $VirtMgr -Certifica
 te $Cert

 The first command connects to VMMServer1.

 The second command gets the object that represents the VMWare VirtualCenter
 Server named VirtMgrServer03 (located in the Contoso.com domain) and store
 s the returned object in $VirtMgr.

 The third command obtains the security certficate object from VirtMgrServer
 01 and stores the certificate object in $Cert.

 The last command imports the security certificate object on VirtMgrServer01
 into the local machine Certificate store on the VMM server.

 The VMware certificate is located in the local machine Certificate store un
 der Certificates (Local Computer) / Trusted People / Certificates. For info
 rmation about installing and using MMC Certificates, see "How to: View Cert
 ificates with the MMC Snap-in" (http://go.microsoft.com/fwlink/?LinkID=9436
 9).

REMARKS
 For more information, type: "get-help Set-VirtualizationManager -detailed".
 For technical information, type: "get-help Set-VirtualizationManager -full"
 .

[bookmark: _Toc225244522]VirtualNetwork
[bookmark: _Toc225244523]Get-VirtualNetwork

SYNOPSIS
 Gets virtual network objects configured on a host managed by Virtual Machin
 e Manager.

SYNTAX
 Get-VirtualNetwork [[-Name] <String>] [-VMMServer [<String ServerConnection
 >]] [<CommonParameters>]

 Get-VirtualNetwork [[-Name] <String>] -VMHost [<String Host>] [<CommonParam
 eters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual networks configured on a ho
 st managed by Virtual Machine Manager.

 For more information about virtual networks in Virtual Machine Manager, typ
 e:
 Get-Help New-VirtualNetwork -detailed

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all virtual networks in the VMM database.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VN = Get-VirtualNetwork
 PS C:\> $VN
 PS C:\> $VN | select Name,VMHost,VMHostNetworkadapters | format-list

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command all objects that represent virtual networks on all hosts
 managed by VMM and stores the virtual network objects in $VN (an object ar
 ray).

 The third command displays a set of information about each virtual network
 object in $VN.

 The last command displays a subset of the information in $VN: the name of e
 ach virtual network, the physical host on which each virtual network is con
 figured, and the physical network adapters configured on the host for each
 virtual network.

 2: Get all virtual networks on a specific host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02.Contoso.com"
 PS C:\> $VN = Get-VirtualNetwork -VMHost $VMHost
 PS C:\> $VN

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost02 and stores the
 host object in $VMHost.

 The third command gets from VMHost01 all objects that represent virtual net
 works on this host and stores the virtual network objects in $VN.

 The last command displays information about each virtual network on VMHost0
 2.

 3: Get a virtual network by name from a specific host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost03.Contoso.com"
 PS C:\> $VN = Get-VirtualNetwork -VMHost $VMHost -Name "Internal Network"
 PS C:\> $VN | Get-Member

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost03 and stores the
 host object in $VMHost.

 The third command gets from VMHost03 the object that represents the virtual
 network named "Internal Network" and stores the virtual network object in
 $VN.

 The last command passes each virtual network object in $VN to the Get-Membe
 r cmdlet, which displays the .NET type for a virtual network object:

 TypeName: Microsoft.SystemCenter.VirtualMachineManager.VirtualNetwork

 The command also displays a list of methods and properties that are associa
 ted with a VMM virtual network object.

REMARKS
 For more information, type: "get-help Get-VirtualNetwork -detailed".
 For technical information, type: "get-help Get-VirtualNetwork -full".

[bookmark: _Toc225244524]New-VirtualNetwork

SYNOPSIS
 Creates a virtual network object on a host managed by Virtual Machine Manag
 er that enables virtual machines on that host to communicate over that virt
 ual network.

SYNTAX
 New-VirtualNetwork [-Name] <String> -VMHost [<String Host>] [-BoundToVMHost
 <Boolean>] [-Description <String>] [-HostBoundVLanId] [-JobGroup <Guid>] [
 -JobVariable <String>] [-NetworkTag <String>] [-Path <String>] [-PROTipID <
 Guid>] [-RunAsynchronously] [-VirtualDHCPDefaultGatewayAddress <String>] [-
 VirtualDHCPDNSServer <String>] [-VirtualDHCPEnabled <Boolean>] [-VirtualDHC
 PEndingIPAddress <String>] [-VirtualDHCPIPAddressLeaseTime <Int32>] [-Virtu
 alDHCPLeaseRebindingTime <Int32>] [-VirtualDHCPLeaseRenewalTime <Int32>] [-
 VirtualDHCPNetworkAddress <String>] [-VirtualDHCPNetworkMask <String>] [-Vi
 rtualDHCPServerAddress <String>] [-VirtualDHCPStartingIPAddress <String>] [
 -VirtualDHCPWINSServer <String>] [-VMHostNetworkAdapters <HostNetworkAdapte
 r[]>] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a virtual network object on a host managed by Virtual Machine Manag
 er that enables virtual machines on that host to communicate over that virt
 ual network.

 VMM 2008 supports the use of virtual switches to implement virtual networki
 ng scenarios for all supported hosts: Virtual Server, Hyper-V, and VMware h
 osts. These virtual switch-based scenarios are similar to the virtual netwo
 rk scenarios supported in VMM 2007. You can connect, or bind, virtual machi
 nes and hosts to a virtual network switch in a manner similar to the way th
 at you connect physical computers to a physical network switch.

 For Hyper-V hosts and VMware hosts, and the virtual machines deployed on th
 ose hosts, VMM 2008 also supports the use of virtual switches to implement
 virtual local area networks (VLANs). A VLAN is an independent logical virtu
 al network configured within a physical LAN. If you create multiple VLANs o
 n a physical LAN, these separate logical segments cannot exchange data with
 each other.

 In VMM 2008, you can easily move a virtual machine that is connected to a V
 LAN from one host to another host and (assuming that both hosts are connect
 ed to the same VLAN), the virtual machine in its new location is already co
 nfigured to resume communicating over the VLAN without any additional admin
 istrator effort. Moving a virtual machine to a new location on a VLAN does
 not require software reconfiguration in the way that moving a physical comp
 uter to a new location on a physical network requires hardware reconfigurat
 ion.

 VMM 2008 NETWORKING SCENARIOS

 The following three scenarios summarize VMM 2008 virtual networking configu
 rations.

 Scenario 1 – External Virtual Network

 In this scenario, virtual machines deployed on a host use a virtual network
 adapter to connect to a virtual switch on the host, and this virtual switc
 h is, in turn, connected to a physical network adapter on the host. The hos
 t is connected through a physical switch to other computers on its network.
 This configuration gives the virtual machines access to the host itself, t
 o the physical network to which the host is connected, and to other physica
 l computers (or other physical devices) that are on the same physical netwo
 rk as the host.

 The virtual network can support external access though a VLAN if the physic
 al adapter on the host that it is bound to has been configured appropriatel
 y and if the virtual machines on that host are configured to use a VLAN. Fo
 r more information, type:

 Get-Help Add-VMHostNetworkAdapter -detailed
 Get-Help New-VirtualNetworkAdapter -detailed

 Scenario 2 – Internal Virtual Network

 In this scenario, virtual machines deployed on a host use a virtual network
 adapter to connect to a virtual switch on the host. In this scenario, the
 virtual network is bound to the host but the virtual machines do not connec
 t via the virtual switch to a physical network adapter on the host. This co
 nfiguration establishes an internal virtual network that enables virtual ma
 chines connected to that virtual switch to communicate with each other and
 with services and applications on the host, but not with other computers co
 nnected to the host’s physical network.

 If you want to to configure an internal network that is separated into two
 or more VLANs, you must set the VLAN IDs on a virtual network adapter confi
 gured on the virtual machine object. For more information, type:

 Get-Help New-VirtualNetworkAdapter -detailed
 Get-Help Set-VirtualNetworkAdapter -detailed

 Scenario 3 - Private Virtual Network

 In this scenario, virtual machines deployed on a host use a virtual network
 adapter to connect to a virtual switch on the host. As in scenario 2, a vi
 rtual machine does not connect via that virtual switch to a physical networ
 k adapter on the host. Unlike scenario 2, the virtual network is not bound
 to the host. This configuration establishes a private virtual network that
 virtual machines on the same host can use to communicate with each other, b
 ut, in this case, they cannot communicate with services or applications on
 the host nor with any physical computers connected to the host’s physical n
 etwork.

 FOR VIRTUAL SERVER HOSTS ONLY - OPTIONAL VIRTUAL DHCP SERVER
 --
 The only type of host for which you can, optionally, configure a virtual DH
 CP server is a Virtual Server host. By default, a new virtual network confi
 gured on a Virtual Server host does not use a virtual DHCP server.

 For virtual machines configured to communicate with the host’s external net
 work, if the Virtual Server host computer is configured to obtain a dynamic
 IP address from a DHCP server, the virtual machines will also automaticall
 y obtain dynamic IP addresses from that DHCP server (alternatively, you can
 configure static IP addresses on virtual machines).

 For virtual machines on an isolated internal virtual network on a Virtual S
 erver host, you might choose to use static IP addresses (if you have only a
 few virtual machines on the internal virtual network). More typically, you
 might prefer to enable virtual DHCP to provide dynamic IP addresses to the
 virtual machines on that network.

 You might, for example, specify:

 - 10.237.0.0 as the network address (with a subnet mask 255.255.0.0)
 - 10.237.0.1 as the IP address for the DCHP server
 - 10.237.0.16 as the starting IP address for DHCP clients
 - 10.237.255.254 as the ending IP address for DHCP clients

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -BoundToVMHost <Boolean>
 Enables virtual machines connected to a virtual network on a Hyper-V ho
 st to access the host operating system. This parameter does not apply t
 o Virtual Server or VMware ESX hosts.

 -Description <String>
 Specifies a description for the specified object.

 -HostBoundVLanId
 Assigns a numerical identifier in the range 1-4094 to a virtual local a
 rea network (a VLAN) configured on a Hyper-V host. This is the VLAN ID
 that virtual machines use to access the host. This parameter does not a
 pply to Virtual Server or VMware ESX hosts.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -NetworkTag <String>
 Specifies a word or phrase to associate with a virtual network adapter
 that is configured to connect to a specific internal or external networ
 k on the host. The NetworkTag identifies all VMs with the same NetworkT
 ag as members of the same network. VMM uses a NeworkTag (if one exists)
 when it evaluates hosts as possible candidates on which to deploy a VM
 . If the host does not include VMs on the network with the same Network
 Tag as the VM to be placed, the host receives zero stars in the placeme
 nt process.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VirtualDHCPDefaultGatewayAddress <String>
 Specifies the IP address of the default DHCP gateway for a virtual netw
 ork configured on a Virtual Server host. The default gateway is a local
 IP router that forwards traffic beyond this virtual network. This para
 meter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPDNSServer <String>
 Specifies a set of IP addresses of WINS servers (as strings separated b
 y the pipeline operator) for use by DHCP clients for NetBIOS name resol
 ution on a virtual network configured on a Virtual Server host. This pa
 rameter does not apply to Hyper-V hosts or VMware ESX hosts.
 Example format:
 -VirtualDHCPDNSServer "nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn"

 -VirtualDHCPEnabled <Boolean>
 Enables virtual DHCP on a virtual network on a Virtual Server host (whe
 n set to TRUE), or disables virtual DHCP on the virtual network (when s
 et to FALSE). This parameter does not apply to Hyper-V hosts or VMware
 ESX hosts.

 -VirtualDHCPEndingIPAddress <String>
 Specifies the last IP address in the range of IP addresses that the vir
 tual DHCP server maintains for assignment to virtual DHCP clients on a
 virtual network configured on a Virtual Server host. This parameter doe
 s not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPIPAddressLeaseTime <Int32>
 Specifies, in minutes, the duration of the lease for IP addresses assig
 ned to virtual DHCP clients by the virtual DHCP server on a virtual net
 work configured on a Virtual Server host.
 Default value: 2160 minutes (36 hours). Maximum value: 49,710 days.
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPLeaseRebindingTime <Int32>
 Specifies, in minutes, the DHCP lease rebinding time used by virtual DH
 CP clients of a virtual DHCP server on a virtual network configured on
 a Virtual Server host.
 Default value: 1620 minutes (27 hours). Maximum value: 49,710 days.
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPLeaseRenewalTime <Int32>
 Specifies, in minutes, the amount of time that you want a virtual DHCP
 client to wait before it tries to renew its current IP address with the
 virtual DHCP server on a virtual network configured on a Virtual Serve
 r host.
 Default value: 1080 minutes (18 hours). Maximum value: up to 49,710 day
 s.
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPNetworkAddress <String>
 Specifies the network address for a virtual network configured on a Vir
 tual Server host. The value specified must be a valid IP address and mu
 st be the base of the subnet. This parameter does not apply to Hyper-V
 hosts or VMware ESX hosts.

 -VirtualDHCPNetworkMask <String>
 Specifies the network mask for a virtual network configured on a Virtua
 l Server host. The specified value must be a valid network mask. The de
 fault value is 255.255.0.0. This parameter does not apply to Hyper-V ho
 sts or VMware ESX hosts.

 -VirtualDHCPServerAddress <String>
 Specifies the IP address for a virtual DHCP server on a virtual network
 configured on a Virtual Server host. This parameter does not apply to
 Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPStartingIPAddress <String>
 Specifies the first IP address in the range of IP addresses that a virt
 ual DHCP server maintains for assignment to virtual DHCP clients on a v
 irtual network configured on a Virtual Server host. The value specified
 must be a valid IP address; must use the network address (IP address o
 f this virtual network) and network mask (subnet mask for this virtual
 network); and must start at 16 or higher. This parameter does not apply
 to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPWINSServer <String>
 Specifies a set of the IP addresses of WINS servers (as strings separat
 ed by the pipeline operator) for use by DHCP clients on a virtual netwo
 rk configured on a Virtual Server host. The array must contain a set of
 valid IP addresses.
 Example format:
 -VirtualDHCPWINSServer "nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn
 "
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VMHostNetworkAdapters <HostNetworkAdapter[]>
 Specifies an array of one or more physical network adapter objects on a
 host to which virtual machines deployed on that host can connect.
 Example format: -VMHostNetworkAdapters $VMHostNICs

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create an external virtual network on a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> $HostAdapter = Get-VMHostNetworkAdapter -VMHost $VMHost -Name "Host
 LANAdapter01"
 PS C:\> New-VirtualNetwork -Name "ExternalVirtualNetwork1" -VMHost $VMHost
 -VMHostNetworkAdapter $HostAdapter

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from teh VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the host named VMHost01
 and stores the host object in $VMHost.

 The third command gets the object that represents the physical host network
 adapter on VMHost01 named HostLANAdapter01 and stores the adapter object i
 n $HostAdapter.

 The last command creates a virtual network on VMHost01, names it ExternalVi
 rtualNetwork1, and connects the new virtual network to the host network ada
 pter HostLANAdapter01.

 This virtual network is an external virtual network. It is attached to the
 physical network adapter on the host and can therefore access the LAN that
 the host is attached to just as if it were another physical computer on tha
 t LAN.

 2: Create an internal host-bound virtual network.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02.Contoso.com"
 PS C:\> $NewVNet = New-VirtualNetwork -VMHost $VMHost -Name "Internal02" -D
 escription "Internal Host-Bound Network" -NetworkTag "Internal02" -BoundToV
 MHost
 PS C:\> $NewVNet

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost02
 and stores the host object in $VMHost.

 The third command creates a virtual network on VMHost02, names it Internal0
 2, specifies a description and network tag, and binds the virtual network t
 o the physical host. The virtual network object created by the New-VirtualN
 etwork cmdlet is stored in $NewVNet.

 The last command displays the properties of the virtual network object in $
 NewVNet.

 This virtual network is an internal, host-bound virtual network. Because it
 is not attached to a physical network adapter on the host, it cannot acces
 s networks external to the host. Virtual machines that are connected to thi
 s internal virtual network on this host can communicate only with each othe
 r. Because the network is bound to the host, network communication from vir
 tual machines to the host is also possible.

 3: Create a private virtual network that is not bound to the host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> New-VirtualNetwork -Name "UnboundVirtualNetwork1" -VMHost $VMHost

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost01
 and stores the host object in $VMHost.

 The last command creates a virtual network on VMHost01, names it UnboundVir
 tualNetwork1. Because the network is not attached to a physical network ad
 apter on the host, it cannot access networks external to the host. VMs tha
 t are connected to this internal virtual network on this host can communica
 te only with each other. The virtual network is not bound to the host, so n
 etwork communication to the host is not possible.

 4: Create an internal DHCP-enabled virtual network on a Virtual Server host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VirtualServerHost01.Contoso.com"

 PS C:\> $NewVNet = New-VirtualNetwork -VMHost $VMHost -Name "Internal01" -D
 escription "Internal DHCP Network" -Path "C:\Public" -NetworkTag "Internal0
 1" -VirtualDHCPEnabled $TRUE -VirtualDHCPNetworkAddress 192.168.1.0 -Virtua
 lDHCPNetworkMask 255.255.255.0 -VirtualDHCPStartingIPAddress 192.168.1.100
 -VirtualDHCPEndingIPAddress 192.168.1.200 -VirtualDHCPServerAddress 192.168
 .1.10 -VirtualDHCPDefaultGatewayAddress 192.168.1.1 -VirtualDHCPDNSServer 1
 92.168.1.10 -VirtualDHCPWINSServer 192.168.1.10 -VirtualDHCPIPAddressLeaseT
 ime 2160 -VirtualDHCPLeaseRenewalTime 1080 -VirtualDHCPLeaseRebindingTime 1
 620

 PS C:\> $NewVNet

 BEFORE YOU START: Note that DHCP-enabled virtual networks apply only to Vi
 rtual Server hosts.

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VirtualSe
 rverHost01 and stores the host object in variable $VMHost.

 The third command creates a virtual network on VirtualServerHost01, names i
 t Internal01, specifies the description, path, and network tag. Next, the c
 ommand specifies the DCHP server settings. Finally, the command stores the
 new virtual network object in $NewVNet.

 The last command displays the properties of the virtual network object repr
 esented by $NewVNet.

 This virtual network is an internal virtual network. Because it is not atta
 ched to a physical network adapter on the host, it cannot access networks e
 xternal to the host. Virtual machines that are connected to this internal v
 irtual network on this host can communicate with each other and can receive
 DHCP leases from Virtual Server host's DHCP server.

REMARKS
 For more information, type: "get-help New-VirtualNetwork -detailed".
 For technical information, type: "get-help New-VirtualNetwork -full".

[bookmark: _Toc225244525]Remove-VirtualNetwork

SYNOPSIS
 Removes a virtual network object from a host managed by Virtual Machine Man
 ager.

SYNTAX
 Remove-VirtualNetwork [-VirtualNetwork] <VirtualNetwork> [-Confirm] [-JobGr
 oup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects from the Virtual Machine Manager database that
 represent virtual networks configured on a virtual machine host.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -Confirm
 Prompts for confirmation before running the command.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific virtual network from a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> $Network = Get-VirtualNetwork -VMHost $VMHost -Name "Internal Netwo
 rk"
 PS C:\> Remove-VirtualNetwork -VirtualNetwork $Network

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object. The following commands use this server by default.

 The second command gets the object that represents the host named VMHost01
 from the VMM database and stores the host object in $VMHost.

 The third command gets the object that represents the virtual network named
 "Internal Network" that is configured on VMHost01 and stores the virtual n
 etwork object in variable $Network.

 The last command removes the virtual network called Internal Network from V
 MHost01.

REMARKS
 For more information, type: "get-help Remove-VirtualNetwork -detailed".
 For technical information, type: "get-help Remove-VirtualNetwork -full".

[bookmark: _Toc225244526]Set-VirtualNetwork

SYNOPSIS
 Changes properties of a virtual network on a virtual machine host managed b
 y Virtual Machine Manager.

SYNTAX
 Set-VirtualNetwork [-VirtualNetwork] <VirtualNetwork> [-BoundToVMHost <Bool
 ean>] [-Description <String>] [-HostBoundVLanId] [-JobGroup <Guid>] [-JobVa
 riable <String>] [-Name <String>] [-NetworkTag <String>] [-PROTipID <Guid>]
 [-RunAsynchronously] [-VirtualDHCPDefaultGatewayAddress <String>] [-Virtua
 lDHCPDNSServer <String>] [-VirtualDHCPEnabled <Boolean>] [-VirtualDHCPEndin
 gIPAddress <String>] [-VirtualDHCPIPAddressLeaseTime <Int32>] [-VirtualDHCP
 LeaseRebindingTime <Int32>] [-VirtualDHCPLeaseRenewalTime <Int32>] [-Virtua
 lDHCPNetworkAddress <String>] [-VirtualDHCPNetworkMask <String>] [-VirtualD
 HCPServerAddress <String>] [-VirtualDHCPStartingIPAddress <String>] [-Virtu
 alDHCPWINSServer <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes properties of a virtual network on a virtual machine host managed b
 y Virtual Machine Manager.

 Properties for a virtual network that you can change include:

 * ANY HOST - For a virtual network configured for virtual machines
 deployed on any virtual machine host supported by Virtual Machine
 Manager (a Hyper-V, Virtual Server, or VMware ESX host), you can set
 or modify the name, description, or Network Tag.

 * HYPER-V HOST ONLY - If the host is a Hyper-V host, you can also
 configure whether virtual machines are bound to the host (and can
 thus access the host operating system), and you can specify a
 numerical identifier for a virtual local area network (VLAN) on the
 host.

 * VIRTUAL SERVER HOST ONLY - If the host is a Virtual Server host, you
 can set or modify multiple properties related to Dynamic Host
 Configuration Protocol (DHCP).

PARAMETERS
 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -BoundToVMHost <Boolean>
 Enables virtual machines connected to a virtual network on a Hyper-V ho
 st to access the host operating system. This parameter does not apply t
 o Virtual Server or VMware ESX hosts.

 -Description <String>
 Specifies a description for the specified object.

 -HostBoundVLanId
 Assigns a numerical identifier in the range 1-4094 to a virtual local a
 rea network (a VLAN) configured on a Hyper-V host. This is the VLAN ID
 that virtual machines use to access the host. This parameter does not a
 pply to Virtual Server or VMware ESX hosts.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Name <String>
 Specifies the name of a VMM object.

 -NetworkTag <String>
 Specifies a word or phrase to associate with a virtual network adapter
 that is configured to connect to a specific internal or external networ
 k on the host. The NetworkTag identifies all VMs with the same NetworkT
 ag as members of the same network. VMM uses a NeworkTag (if one exists)
 when it evaluates hosts as possible candidates on which to deploy a VM
 . If the host does not include VMs on the network with the same Network
 Tag as the VM to be placed, the host receives zero stars in the placeme
 nt process.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VirtualDHCPDefaultGatewayAddress <String>
 Specifies the IP address of the default DHCP gateway for a virtual netw
 ork configured on a Virtual Server host. The default gateway is a local
 IP router that forwards traffic beyond this virtual network. This para
 meter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPDNSServer <String>
 Specifies a set of IP addresses of WINS servers (as strings separated b
 y the pipeline operator) for use by DHCP clients for NetBIOS name resol
 ution on a virtual network configured on a Virtual Server host. This pa
 rameter does not apply to Hyper-V hosts or VMware ESX hosts.
 Example format:
 -VirtualDHCPDNSServer "nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn"

 -VirtualDHCPEnabled <Boolean>
 Enables virtual DHCP on a virtual network on a Virtual Server host (whe
 n set to TRUE), or disables virtual DHCP on the virtual network (when s
 et to FALSE). This parameter does not apply to Hyper-V hosts or VMware
 ESX hosts.

 -VirtualDHCPEndingIPAddress <String>
 Specifies the last IP address in the range of IP addresses that the vir
 tual DHCP server maintains for assignment to virtual DHCP clients on a
 virtual network configured on a Virtual Server host. This parameter doe
 s not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPIPAddressLeaseTime <Int32>
 Specifies, in minutes, the duration of the lease for IP addresses assig
 ned to virtual DHCP clients by the virtual DHCP server on a virtual net
 work configured on a Virtual Server host.
 Default value: 2160 minutes (36 hours). Maximum value: 49,710 days.
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPLeaseRebindingTime <Int32>
 Specifies, in minutes, the DHCP lease rebinding time used by virtual DH
 CP clients of a virtual DHCP server on a virtual network configured on
 a Virtual Server host.
 Default value: 1620 minutes (27 hours). Maximum value: 49,710 days.
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPLeaseRenewalTime <Int32>
 Specifies, in minutes, the amount of time that you want a virtual DHCP
 client to wait before it tries to renew its current IP address with the
 virtual DHCP server on a virtual network configured on a Virtual Serve
 r host.
 Default value: 1080 minutes (18 hours). Maximum value: up to 49,710 day
 s.
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPNetworkAddress <String>
 Specifies the network address for a virtual network configured on a Vir
 tual Server host. The value specified must be a valid IP address and mu
 st be the base of the subnet. This parameter does not apply to Hyper-V
 hosts or VMware ESX hosts.

 -VirtualDHCPNetworkMask <String>
 Specifies the network mask for a virtual network configured on a Virtua
 l Server host. The specified value must be a valid network mask. The de
 fault value is 255.255.0.0. This parameter does not apply to Hyper-V ho
 sts or VMware ESX hosts.

 -VirtualDHCPServerAddress <String>
 Specifies the IP address for a virtual DHCP server on a virtual network
 configured on a Virtual Server host. This parameter does not apply to
 Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPStartingIPAddress <String>
 Specifies the first IP address in the range of IP addresses that a virt
 ual DHCP server maintains for assignment to virtual DHCP clients on a v
 irtual network configured on a Virtual Server host. The value specified
 must be a valid IP address; must use the network address (IP address o
 f this virtual network) and network mask (subnet mask for this virtual
 network); and must start at 16 or higher. This parameter does not apply
 to Hyper-V hosts or VMware ESX hosts.

 -VirtualDHCPWINSServer <String>
 Specifies a set of the IP addresses of WINS servers (as strings separat
 ed by the pipeline operator) for use by DHCP clients on a virtual netwo
 rk configured on a Virtual Server host. The array must contain a set of
 valid IP addresses.
 Example format:
 -VirtualDHCPWINSServer "nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn|nnn.nnn.nnn.nnn
 "
 This parameter does not apply to Hyper-V hosts or VMware ESX hosts.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Disable virtual DHCP on a virtual network on a Virtual Server host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> $VirtualNetwork = Get-VirtualNetwork -VMHost $VMHost -Name "Interna
 l Network"
 PS C:\> Set-VirtualNetwork -VirtualNetwork $VirtualNetwork -VirtualDHCPEnab
 led $FALSE

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the returned object in $VMHost.

 The third command gets from VMHost01 the object that represents the virtual
 network named "Internal Network" and stores the returned object in variabl
 e $VirtualNetwork.

 The last command disables (turns off) virtual DHCP on the virtual network.

 2: Enable virtual DHCP on a virtual network on a Virtual Server host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02.Contoso.com"
 PS C:\> $VirtualNetwork = Get-VirtualNetwork -VMHost $VMHost -Name "Interna
 l Network"
 PS C:\> Set-VirtualNetwork -VirtualNetwork $VirtualNetwork -VirtualDHCPNetw
 orkAddress "10.251.0.0" -VirtualDHCPNetworkMask "255.255.0.0" -VirtualDHCPS
 tartingIPAddress "10.251.0.16" -VirtualDHCPEndingIPAddress "10.251.255.254"
 -VirtualDHCPServerAddress "10.251.0.1" -VirtualDHCPDefaultGateway "192.168
 .1.1" -VirtualDHCPDNSServer "192.168.1.2,192.168.1.3" -VirtualDHCPWINSServe
 r "192.168.1.4,192.168.1.5" -VirtualDHCPIPAddressLeaseTime 1080 -VirtualDHC
 PLeaseRenewalTime 500 -VirtualDHCPLeaseRebindingTime 900

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost02 and stores the
 host object in $VMHost.

 The third command gets from VMHost02 the object that represents the virtual
 network named "Internal Network" and stores the virtual network object in
 $VirtualNetwork.

 The last command configures a series of settings that together enable virtu
 al DHCP on that virtual network.

 3: Unbind a virtual network from the host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost03.Contoso.com"
 PS C:\> $VirtualNetwork = Get-VirtualNetwork -VMHost $VMHost -Name "Host Bo
 und Network"
 PS C:\> Set-VirtualNetwork -VirtualNetwork $VirtualNetwork -BoundToVMHost $
 False

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost03 and stores the
 host object in $VMHost.

 The third command gets from VMHost03 the object that represents the virtual
 network named "Host Bound Network" and stores the virtual network object i
 n $VirtualNetwork.

 The last command renames the virtual network to "Unbound Network" and sets
 the -BoundToVMHost parameter to FALSE. This unbinds the virtual network fro
 m the host, which prevents any virtual machines that are attached to this v
 irtual network from accessing the host through this network.

REMARKS
 For more information, type: "get-help Set-VirtualNetwork -detailed".
 For technical information, type: "get-help Set-VirtualNetwork -full".

[bookmark: _Toc225244527]VirtualNetworkAdapter
[bookmark: _Toc225244528]Get-VirtualNetworkAdapter

SYNOPSIS
 Gets Virtual Machine Manager virtual network adapter objects from a virtual
 machine, template, or hardware profile.

SYNTAX
 Get-VirtualNetworkAdapter -All [-VMMServer [<String ServerConnection>]] [<C
 ommonParameters>]

 Get-VirtualNetworkAdapter -Template [<Template String>] [<CommonParameters>
]

 Get-VirtualNetworkAdapter -VM [<String VM>] [<CommonParameters>]

 Get-VirtualNetworkAdapter -HardwareProfile <HardwareProfile> [<CommonParame
 ters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual network adapters from a vir
 tual machine object, from a template object, or from a hardware profile obj
 ect in a Virtual Machine Manager environment .

 For more information about virtual network adapters, type:
 Get-Help New-VirtualNetworkAdapter -detailed

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get virtual network adapters from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> Get-VirtualNetworkAdapter -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command selects from all virtual machine objects in the VMM data
 base the object that represents VM01 and stores this object in variable $VM
 .

 The last command gets all objects that represent virtual network adapters o
 n VM01 and displays information about these adapters to the user.

 2: Get virtual network adapters from a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template1" }
 PS C:\> Get-VirtualNetworkAdapter -Template $Template

 The first command connects to VMMServer1.

 The second command selects from all template objects in the VMM library the
 object that represents Template1 and stores this object in $Template.

 The last command gets all objects that represent virtual network adapters o
 n Template1 and displays information about these adapters to the user.

 3: Get virtual network adapters from a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file1" }
 PS C:\> Get-VirtualNetworkAdapter -HardwareProfile $HWProfile

 The first command connects to VMMServer1.

 The second command selects from all hardware profile objects in the VMM lib
 rary the object that represents HardwareProfile1 and stores this object in
 $HWProfile.

 The last command gets all objects that represent virtual network adapters o
 n HardwareProfile1 and displays information about these adapters to the use
 r.

REMARKS
 For more information, type: "get-help Get-VirtualNetworkAdapter -detailed".
 For technical information, type: "get-help Get-VirtualNetworkAdapter -full"
 .

[bookmark: _Toc225244529]New-VirtualNetworkAdapter

SYNOPSIS
 Creates a virtual network adapter on a virtual machine, template, or hardwa
 re profile used in Virtual Machine Manager.

SYNTAX
 New-VirtualNetworkAdapter [[-VirtualNetwork] <VirtualNetwork>] -VM [<String
 VM>] [-JobVariable <String>] [-NetworkLocation <String>] [-NetworkTag <Str
 ing>] [-NoConnection] [-PhysicalAddress <String>] [-PhysicalAddressType <St
 ring>] [-PROTipID <Guid>] [-RunAsynchronously] [-Synthetic] [-VLANEnabled]
 [-VLANID <Int32>] [<CommonParameters>]

 New-VirtualNetworkAdapter [[-VirtualNetwork] <VirtualNetwork>] -JobGroup <G
 uid> [-JobVariable <String>] [-NetworkLocation <String>] [-NetworkTag <Stri
 ng>] [-NoConnection] [-PhysicalAddress <String>] [-PhysicalAddressType <Str
 ing>] [-PROTipID <Guid>] [-RunAsynchronously] [-Synthetic] [-VLANEnabled] [
 -VLANID <Int32>] [-VMMServer [<String ServerConnection>]] [<CommonParameter
 s>]

 New-VirtualNetworkAdapter [[-VirtualNetwork] <VirtualNetwork>] -Template [<
 Template String>] [-JobVariable <String>] [-NetworkLocation <String>] [-Net
 workTag <String>] [-NoConnection] [-PhysicalAddress <String>] [-PhysicalAdd
 ressType <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Synthetic] [-V
 LANEnabled] [-VLANID <Int32>] [<CommonParameters>]

 New-VirtualNetworkAdapter [[-VirtualNetwork] <VirtualNetwork>] -HardwarePro
 file <HardwareProfile> [-JobVariable <String>] [-NetworkLocation <String>]
 [-NetworkTag <String>] [-NoConnection] [-PhysicalAddress <String>] [-Physic
 alAddressType <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Synthetic
] [-VLANEnabled] [-VLANID <Int32>] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a virtual network adapter on a virtual machine or on a template or
 hardware profile used to create virtual machines managed by Virtual Machine
 Manager.

 NETWORK LOCATION

 You can, optionally, use the New-VirtualNetworkAdapter cmdlet to specify a
 network location and connect the virtual network adapter to a virtual netwo
 rk configured on the host when you create the adapter, or you can configure
 those and other settings later by using the Set-VirtualNetworkAdapter cmdl
 et.

 STATIC OR DYNAMIC MAC ADDRESS

 Additionally, you can specify whether the virtual network adapter uses a st
 atic or dynamic physical address (MAC address), and you can specify a stati
 c MAC address.

 EMULATED OR SYNTHETIC VIRTUAL NETWORK ADAPTERS
 --
 You can use the New-VirtualNetworkAdapter cmdlet to create an adapter whose
 type is either emulated (the default) or synthetic.

 For virtual machines on any type of host (Hyper-V, Virtual Server, or VMwar
 e), you can configure a virtual network adapter on the virtual machine that
 emulates a specific physical network adapter.

 For virtual machines on Hyper-V hosts, if the guest operating system instal
 led on a virtual machine is a virtualization-aware operating system (for ex
 ample, Windows Server 2008 and some versions of Linux), VMM 2008 lets you c
 onfigure a high-performance synthetic virtual network adapter on the virtua
 l machine to communicate with the physical hardware on the host. You must e
 xplicitly specify that a virtual network adapter is synthetic by using the
 Synthetic parameter.

 VIRTUAL LOCAL AREA NETWORK

 VMM 2008 extends virtual networking support to include support for configur
 ing one or more virtual area networks (VLANs) on a host for use by virtual
 machines deployed on that host. You can use the New-VirtualNetworkAdapter c
 mdlet (or the Set-VirtualNetworkAdapter cmdlet) with the VLAN parameters to
 attach the virtual network adapter on a virtual machine to a VLAN. To conf
 igure corresponding VLAN settings on the host network adapter, use the Add-
 VMHostNetworkAdapter cmdlet or the Set-VMHostNetworkAdapter cmdlet.

 For an illustration of how to configure VLANs, see the examples for this cm
 dlet, and see the examples for New-VMHostNetworkAdapter and Set-VMHostNetwo
 rkAdapter.

 For more information about VLANs, type:
 Get-Help about_VMM_2008_Virtual_Networking

PARAMETERS
 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -NetworkLocation <String>
 Specifies the network location for a physical network adapter or for a
 virtual network adapter, or changes the default network location of a h
 ost's physical network adapter.
 Example formats:
 -NetworkLocation $NetLoc ($NetLoc might contain "Corp.Contoso.com")
 -OverrideNetworkLocation $TRUE –NetworkLocation "HostNICNewLocation.Co
 ntoso.com"

 -NetworkTag <String>
 Specifies a word or phrase to associate with a virtual network adapter
 that is configured to connect to a specific internal or external networ
 k on the host. The NetworkTag identifies all VMs with the same NetworkT
 ag as members of the same network. VMM uses a NeworkTag (if one exists)
 when it evaluates hosts as possible candidates on which to deploy a VM
 . If the host does not include VMs on the network with the same Network
 Tag as the VM to be placed, the host receives zero stars in the placeme
 nt process.

 -NoConnection
 Disconnects a virtual network adapter from a virtual network.

 -PhysicalAddress <String>
 Specifies the physical address (MAC address) of a physical or virtual n
 etwork adapter.
 Note: In VMM 2007, this parameter was named EthernetAddress.

 -PhysicalAddressType <String>
 Specifies the type of physical address (MAC address) to use for a virtu
 al network adapter:
 Valid values: Static, Dynamic
 Note: In VMM 2007, this parameter was named EthernetAddressType.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -Synthetic
 Specifies that a device (such as a virtual network adapter) on a virtua
 l machine deployed on a Hyper-V host is a high-performance synthetic de
 vice. Requires a virtualization-aware guest operating system on the vir
 tual machine.

 -VLANEnabled
 Enables a virtual LAN (a VLAN) for use by virtual machines on a Hyper-V
 or VMware ESX host.
 Example format for a single VLAN:
 -VLANEnabled -VLANMode "Access" -VLANID 35
 Example format for multiple VLANs:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 -VLANID <Int32>
 Assigns a numerical identifier in the range 1-4094 to a virtual network
 adapter on a virtual machine or to a physical network adapter on a Hyp
 er-V or VMware ESX host.
 Configure a VLANID on a Hyper-V or VMware ESX host:
 * On an externally bound physical network adapter.
 Configure a VLANID on a virtual network adapter of a virtual machine:
 * Bound to a physical network adapter on the host, or
 * Bound to an internal virtual network on the host.
 Example format:
 -VLANEnabled
 -VLANMode "Access" -VLANID 35

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a virtual network adapter on a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name VM01
 PS C:\> New-VirtualNetworkAdapter -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VM01 from the VMM databa
 se and stores the virtual machine object in variable $VM.

 The last command creates a virtual network adapter on VM01.

 2: Create a virtual network adapter on a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template2" }
 PS C:\> New-VirtualNetworkAdapter -Template $Template

 The first command connects to VMMServer1.

 The second command gets the object that represents Template2 from the VMM l
 ibrary and stores the template object in $Template.

 The last command creates a virtual network adapter on Template2.

 3: Create an emulated virtual network adapter and a synthetic virtual netwo
 rk adapter on a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file3" }
 PS C:\> New-VirtualNetworkAdapter -HardwareProfile $HWProfile
 PS C:\> New-VirtualNetworkAdapter -HardwareProfile $HWProfile -Synthetic

 The first command connects to VMMServer1.

 The second command gets the object that represents HardwareProfile3 from th
 e VMM library and stores the hardware profile object in $HWProfile.

 The third command creates a virtual network adapter (a "native" or emulated
 adapter) on HardwareProfile3.

 The last command creates a synthetic virtual network adapter on HardwarePro
 file3.

 4: Create a virtual network adapter on a VM and assign it a unique MAC addr
 ess.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MAC = New-PhysicalAddress -Commit
 PS C:\> $VM = Get-VM -Name "VM04"
 PS C:\> New-VirtualNetworkAdapter -VM $VM -PhysicalAddress $MAC

 The first command connects to VMMServer1.

 The second command get the next available physical address (MAC address) fr
 om the address pool configured on VMMServer1; uses the -Commit parameter to
 commit that address for use (for example, it can be assigned to a virtual
 network adapter on a VM, a template, or a hardware profile); and stores the
 MAC address object in $MAC.

 The third command gets the object that represents the virtual machine named
 VM04 and stores the virtual machine object in $VM.

 The last command creates a new virtual network adapter on VM04 and assigns
 the MAC address stored in $MAC to that virtual network adapter.

 NOTE: This example assumes that a range of MAC addresses has already been c
 onfigured for your VMM environment. For information about how to set the ra
 nge of MAC addresses, type: Get-Help Set-VMMServer -example

 5: Create a virtual network adapter with a static MAC address and a specifi
 c VLAN ID.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM05" -and $_.VMHost.Name -eq "
 VMHost05.Contoso.com" }

 PS C:\> $Loc = Get-NetworkLocation | where { $_.Name -eq "Corp.Contoso.com"
 }

 PS C:\> $VNetwork = Get-VirtualNetwork | where { $_.Name -match "External N
 etwork1" -and $_.VMHost -match "VMHost05" }

 PS C:\> New-VirtualNetworkAdapter -VM $VM -VirtualNetwork $VNetwork -Physic
 alAddress "00-00-00-11-12-1A" -PhysicalAddressType "Static" -NetworkLocatio
 n $Loc -VLANEnabled $TRUE -VLANId 3

 The first command connects to the VMM server.

 The second command gets the object that represents the virtual machine name
 d VM05 that is deployed on host server VMHost05 and stores the virtual mach
 ine object in $VM.

 The third command gets the object that represents the network location (nam
 ed "Corp.Contoso.com") reported to VMM by all of the hosts that VMM manages
 , and stores the virtual network object in $Loc.

 The fourth command gets the object that represents a virtual network (named
 "External Network1") from VMHost05 and stores the virtual network object i
 n $VNetwork.

 The last command creates a new virtual network adapter for VM05; connects t
 he virtual network adapter to the virtual network represented by $VNetwork;
 specifies a static physical address (MAC address) type for the virtual net
 work adapter and sets its static physical address to 00-00-00-11-12-1A; ena
 bles VLAN, and specifies a VLAN ID of 2,

 CAUTION: This example assumes that that your host is already connected to a
 VLAN or, if not, that your host has two network adapters. If your host has
 a single network adapter (as might be the case if you are experimenting wi
 th VMM cmdlets in a lab setting), assigning the adapter to a VLAN that is u
 navailable to the VMM server will prevent VMM from managing the host. You c
 an perform the steps in this example on a host that has only one network ad
 apter if you first install the Microsoft Loopback Adapter on your server.

REMARKS
 For more information, type: "get-help New-VirtualNetworkAdapter -detailed".
 For technical information, type: "get-help New-VirtualNetworkAdapter -full".

[bookmark: _Toc225244530]Remove-VirtualNetworkAdapter

SYNOPSIS
 Removes a virtual network adapter object from Virtual Machine Manager.

SYNTAX
 Remove-VirtualNetworkAdapter [-VirtualNetworkAdapter] <VirtualNetworkAdapte
 r> [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsync
 hronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent virtual network adapters from a
 virtual machine, template, or hardware profile used in a Virtual Machine Ma
 nager environment.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VirtualNetworkAdapter <VirtualNetworkAdapter>
 Specifies a virtual network adapter object for a virtual machine.
 TYPE OF HOST NUMBER OF VIRTUAL NETWORK ADAPTERS
 ------------ ----------------------------------
 Virtual Server Up to 4 emulated adapters per VM.
 Hyper-V Up to 4 emulated adapters per VM.
 Up to 8 synthetic adapters per VM.
 (Exception: no driver available for an emulated
 network adapter on a Windows Server 2003 x64 guest.)
 VMware ESX Up to 4 emulated adapters per VM.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a virtual network adapter with the specified MAC address from a v
 irtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $Adapter = Get-VirtualNetworkAdapter -VM $VM | where { $_.PhysicalA
 ddress -eq "12-34-56-78-90-12" }
 PS C:\> Remove-VirtualNetworkAdapter -VirtualNetworkAdaptor $Adapter

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command gets the object that represents the virtual network adapt
 er on VM01 that has the specified physical address (MAC address), 12-34-56-
 78-90-12, and stores this virtual network adapter object in variable $Adapt
 er.

 The last command removes the virtual network adapter whose object is stored
 in $Adapter from VM01.

 2: Remove a virtual network adapter connected to a specific virtual network
 from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> $Adapter = Get-VirtualNetworkAdapter -VM $VM | where { $_.VirtualNe
 twork -eq "ContosoNet" }
 PS C:\> Remove-VirtualNetworkAdapter -VirtualNetworkAdapter $Adapter

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third command gets the object that represents the virtual network adapt
 er on VM02 that is currently connected to the specified virtual network (Co
 ntosoNet) and stores this virtual network adapter object in $Adapter.

 The last command removes the virtual network adapter object stored in $Adap
 ter from VM02.

 3: Remove the only virtual network adapter from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM03"
 PS C:\> $Adapter = Get-VirtualNetworkAdapter -VM $VM
 PS C:\> Remove-VirtualNetworkAdapter -VirtualNetworkAdapter $Adapter

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM03 and stores the virtual machine object in $VM.

 The third command gets the object that represents the single virtual networ
 k adapter on VM03 and stores this virtual network adapter object in $Adapte
 r. (This example assumes that VM03 has only one virtual network adapter.)

 The last command removes the object stored in $Adapter from VM03. Because $
 Adapter contains only one element, you can use this command to pass the vi
 rtual network adapter object directly as a parameter to the Remove-VirtualN
 etworkAdapter cmdlet.

 Compare the syntax used in this example that removes a single object with t
 he syntax in the following examples that remove objects from multiple-eleme
 nt arrays.

 4: Remove all virtual network adapters from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM04"
 PS C:\> $Adapters = Get-VirtualNetworkAdapter -VM $VM
 PS C:\> $Adapters | Remove-VirtualNetworkAdapter

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM04 and stores the virtual machine object in $VM.

 The third command gets all objects that represent virtual network adapters
 on VM04 and stores these virtual network objects in $Adapters (an object ar
 ray).

 The last command passes each object stored in $Adapters to Remove-VirtualNe
 tworkAdapter, which removes each virtual network adapter object from VM04.

 5: Remove the second virtual network adapter from a virtual machine that ha
 s three virtual network adapters.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM05"
 PS C:\> $Adapters = Get-VirtualNetworkAdapter -VM $VM
 PS C:\> $Adapters[1] | Remove-VirtualNetworkAdapter

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM05 and stores the virtual machine object in $VM.

 The third command gets all objects that represent virtual network adapters
 on VM05 and stores these virtual network objects in $Adapters (an object ar
 ray). This example assumes that VM05 has three virtual network adapters and
 therefore the array contains three elements (counting 0 to 2).

 The last command passes the second virtual network adapter (object [1]) sto
 red in $Adapters to the Remove-VirtualNetworkAdapter cmdlet, which removes
 this virtual network adapter object from VM05.

REMARKS
 For more information, type: "get-help Remove-VirtualNetworkAdapter -detaile
 d".
 For technical information, type: "get-help Remove-VirtualNetworkAdapter -fu
 ll".

[bookmark: _Toc225244531]Set-VirtualNetworkAdapter

SYNOPSIS
 Changes properties of a virtual network adapter associated with a virtual m
 achine, or with a template or hardware profile used to create virtual machi
 nes in Virtual Machine Manager.

SYNTAX
 Set-VirtualNetworkAdapter [-VirtualNetworkAdapter] <VirtualNetworkAdapter>
 [-JobGroup <Guid>] [-JobVariable <String>] [-NetworkLocation <String>] [-Ne
 tworkTag <String>] [-NoConnection] [-PhysicalAddress <String>] [-PhysicalAd
 dressType <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-VirtualNetwor
 k <VirtualNetwork>] [-VLANEnabled] [-VLANID <Int32>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual network adapter associated with
 a virtual machine, or with a template or hardware profile used to create v
 irtual machines in a Virtual Machine Manager environment.

 You can use this cmdlet to:

 * Connect a virtual network adapter to a virtual network.
 * Disconnect a virtual network adapter from a virtual network.
 * Specify a network location and network tag on a virtual network adapter.
 * Specify a physical address (MAC address) on this virtual network adapter.
 * Enable the use of a virtual local area network (VLAN) and specify a
 VLAN ID (numerical identifier) for that VLAN on this virtual network
 adapter.

PARAMETERS
 -VirtualNetworkAdapter <VirtualNetworkAdapter>
 Specifies a virtual network adapter object for a virtual machine.
 TYPE OF HOST NUMBER OF VIRTUAL NETWORK ADAPTERS
 ------------ ----------------------------------
 Virtual Server Up to 4 emulated adapters per VM.
 Hyper-V Up to 4 emulated adapters per VM.
 Up to 8 synthetic adapters per VM.
 (Exception: no driver available for an emulated
 network adapter on a Windows Server 2003 x64 guest.)
 VMware ESX Up to 4 emulated adapters per VM.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -NetworkLocation <String>
 Specifies the network location for a physical network adapter or for a
 virtual network adapter, or changes the default network location of a h
 ost's physical network adapter.
 Example formats:
 -NetworkLocation $NetLoc ($NetLoc might contain "Corp.Contoso.com")
 -OverrideNetworkLocation $TRUE –NetworkLocation "HostNICNewLocation.Co
 ntoso.com"

 -NetworkTag <String>
 Specifies a word or phrase to associate with a virtual network adapter
 that is configured to connect to a specific internal or external networ
 k on the host. The NetworkTag identifies all VMs with the same NetworkT
 ag as members of the same network. VMM uses a NeworkTag (if one exists)
 when it evaluates hosts as possible candidates on which to deploy a VM
 . If the host does not include VMs on the network with the same Network
 Tag as the VM to be placed, the host receives zero stars in the placeme
 nt process.

 -NoConnection
 Disconnects a virtual network adapter from a virtual network.

 -PhysicalAddress <String>
 Specifies the physical address (MAC address) of a physical or virtual n
 etwork adapter.
 Note: In VMM 2007, this parameter was named EthernetAddress.

 -PhysicalAddressType <String>
 Specifies the type of physical address (MAC address) to use for a virtu
 al network adapter:
 Valid values: Static, Dynamic
 Note: In VMM 2007, this parameter was named EthernetAddressType.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -VLANEnabled
 Enables a virtual LAN (a VLAN) for use by virtual machines on a Hyper-V
 or VMware ESX host.
 Example format for a single VLAN:
 -VLANEnabled -VLANMode "Access" -VLANID 35
 Example format for multiple VLANs:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 -VLANID <Int32>
 Assigns a numerical identifier in the range 1-4094 to a virtual network
 adapter on a virtual machine or to a physical network adapter on a Hyp
 er-V or VMware ESX host.
 Configure a VLANID on a Hyper-V or VMware ESX host:
 * On an externally bound physical network adapter.
 Configure a VLANID on a virtual network adapter of a virtual machine:
 * Bound to a physical network adapter on the host, or
 * Bound to an internal virtual network on the host.
 Example format:
 -VLANEnabled
 -VLANMode "Access" -VLANID 35

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Connect a virtual network adapter to a virtual network.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VM = Get-VM -Name "VM01"

 PS C:\> $Adapter = Get-VirtualNetworkAdapter -VM $VM | where { $_.PhysicalA
 ddress -eq "12-34-56-78-90-12" }

 PS C:\> Set-VirtualNetworkAdapter -VirtualNetworkAdapter $Adapter -VirtualN
 etwork "Network1"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command selects from all virtual network adapter objects on VM01
 the object that represents the virtual network adapter with the physical ad
 dress (MAC address) 12-34-56-78-90-12 and stores this virtual network adapt
 er object in variable $Adapter.

 The last command connects the virtual network adapter (whose object is stor
 ed in $Adapter) to the virtual network named Network1 on the host that cont
 ains VM01.

 2: Specify a static physical address (MAC address) for a virtual network ad
 apter.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM02" }

 PS C:\> $Adapter = Get-VirtualNetworkAdapter -VM $VM | where { $_.ID -eq "1
 234-1234-
 1234-1234-1234" }

 PS C:\> Set-VirtualNetworkAdapter -VirtualNetworkAdapter $Adapter -Physical
 AddressType "Static" -PhysicalAddress "00-03-FF-70-C1-F3"

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third command selects from all virtual network adapters on VM02 the vir
 tual network adapter with the specified ID and stores its object in $Adapte
 r. This example assumes that, currently, this adapter has a dynamic physica
 l address (MAC address).

 The last command specifies that Adapter02 uses a static MAC address type an
 d sets its static MAC address to 00-03-FF-70-C1-F3.

 3: Specify a static MAC address and assign it to an existing virtual networ
 k adapter.

 PS C:\> $VMMServer = Get-VMMServer "VMMServer1.contoso.com"

 PS C:\> $VM = Get-VM -Name "VM03"

 PS C:\> if($VMMServer.PhysicalAddressRangeStart -ne $null){$StaticMac = New
 -PhysicalAddress -Commit}

 PS C:\> Set-VirtualNetworkAdapter -VirtualNetworkAdapter (Get-VirtualNetwor
 kAdapter -VM $VM | where { $_.ID -eq "1234-1234-1234-1234-1234"}) -Physical
 AddressType "Static" -PhysicalAddress $StaticMac

 The first command connects to VMMServer1 and stores the server object in $V
 MMServer.

 The second command gets the object that represents the virtual machine name
 d VM03 and stores the virtual machine object in $VM.

 The third command checks whether the static MAC pool has been configured; i
 f it does exist, the command retrieves the object for the next available MA
 C address from the pool and stores the MAC address object in $StaticMac.

 The last command gets the object that represents an adapter on VM03 by ID,
 specifies that the adapter uses a static address type, and sets the physica
 l address (MAC address) to the value retrieved from the static MAC pool.

 4. Disconnect the specified virtual network adapter from the virtal network
 .

 PS C:\> Get-VMMServer "VMMServer1.contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM04" -and $_.VMHost.Name -eq "
 VMHost04.Contoso.com"}
 PS C:\> $Adapters = Get-VirtualNetworkAdapter -VM $VM
 PS C:\> Set-VirtualNetworkAdapter -VirtualNetworkAdapter $Adapter[1] -NoCon
 nection

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM04 deployed on the host named VMHost04 and stores the virtual machine o
 bject in $VM.

 The third command gets all virtual network adapters on VM04 and stores the
 adapter objects in $Adapters. This example assumes that VM04 has at least 2
 virtual network adapters.

 The last command uses the NoConnection parameter to disconnect the second v
 irtual network adapter (Adapters[1]) from any virtual network that it is co
 nnected to.

REMARKS
 For more information, type: "get-help Set-VirtualNetworkAdapter -detailed".
 For technical information, type: "get-help Set-VirtualNetworkAdapter -full"
 .

[bookmark: _Toc225244532]VirtualSCSIAdapter
[bookmark: _Toc225244533]Get-VirtualSCSIAdapter

SYNOPSIS
 Gets Virtual Machine Manager virtual SCSI adapter objects from a virtual ma
 chine, template, or hardware profile.

SYNTAX
 Get-VirtualSCSIAdapter -HardwareProfile <HardwareProfile> [<CommonParameter
 s>]

 Get-VirtualSCSIAdapter -VM [<String VM>] [<CommonParameters>]

 Get-VirtualSCSIAdapter -Template [<Template String>] [<CommonParameters>]

 Get-VirtualSCSIAdapter -All [-VMMServer [<String ServerConnection>]] [<Comm
 onParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual SCSI adapters used in a Vir
 tual Machine Manager environment from a virtual machine object, from a temp
 late object, or from a hardware profile object.

PARAMETERS
 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get virtual SCSI adapters from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> Get-VirtualSCSIAdapter -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object. The following commands use this server by default.

 The second command selects from all virtual machine objects in the VMM data
 base the object that represents VM01 and stores this object in variable $VM
 .

 The last command gets all objects that represent virtual SCSI adapters on V
 M01 and displays information about these adapters to the user.

 2: Get virtual SCSI adapters from a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template1" }
 PS C:\> Get-VirtualSCSIAdapter -Template $Template

 The first command connects to VMMServer1.

 The second command selects from all template objects in the VMM library the
 object that represents Template1 and stores this object in $Template.

 The last command gets all objects that represent virtual SCSI adapters on T
 emplate1 and displays information about these adapters to the user.

 3: Get virtual SCSI adapters from a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file1" }
 PS C:\> Get-VirtualSCSIAdapter -HardwareProfile $HWProfile

 The first command connects to VMMServer1.

 The second command selects from all hardware profile objects in the VMM lib
 rary the object that represents HardwareProfile1 and stores this object in
 $HWProfile.

 The last command gets all objects that represent virtual SCSI adapters on H
 ardwareProfile1 and displays information about these adapters to the user.

REMARKS
 For more information, type: "get-help Get-VirtualSCSIAdapter -detailed".
 For technical information, type: "get-help Get-VirtualSCSIAdapter -full".

[bookmark: _Toc225244534]New-VirtualSCSIAdapter

SYNOPSIS
 Creates a virtual SCSI adapter on a virtual machine, template, or hardware
 profile used in Virtual Machine Manager.

SYNTAX
 New-VirtualSCSIAdapter [[-AdapterID] <Int32>] -Template [<Template String>]
 [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Shared <
 Boolean>] [<CommonParameters>]

 New-VirtualSCSIAdapter [[-AdapterID] <Int32>] -JobGroup <Guid> [-JobVariabl
 e <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Shared <Boolean>] [-V
 MMServer [<String ServerConnection>]] [<CommonParameters>]

 New-VirtualSCSIAdapter [[-AdapterID] <Int32>] -HardwareProfile <HardwarePro
 file> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Sha
 red <Boolean>] [<CommonParameters>]

 New-VirtualSCSIAdapter [[-AdapterID] <Int32>] -VM [<String VM>] [-JobVariab
 le <String>] [-PROTipID <Guid>] [-RunAsynchronously] [-Shared <Boolean>] [<
 CommonParameters>]

DETAILED DESCRIPTION
 Creates a virtual SCSI adapter on a virtual machine, template, or hardware
 profile used in a Virtual Machine Manager environment. After you create the
 virtual SCSI adapter, you can use the Set-VirtualSCSIAdapter cmdlet to mod
 ify its settings.

 Note: Using the Shared parameter to share a virtual SCSI adapter on a virtu
 al machine in order to enable guest clustering is supported only if the vir
 tual machine is deployed on a Virtual Server host or ESX host. The Shared p
 arameter is not used for a virtual machine on a Hyper-V host because a virt
 ual machine on a Hyper-V host uses iSCSI for shared storage.

PARAMETERS
 -AdapterID <Int32>
 Specifies the logical unit number, or LUN ID, for a virtual SCSI adapte
 r on a virtual machine on a Virtual Server host or on a template. (For
 a VMware ESX host, the default is 7 and cannot be changed. Hyper-V does
 not expose this value, and it cannot be changed.)
 Valid values for AdapterID for a Virtual Server host: 6 or 7. Default v
 alue: 7.

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -Shared <Boolean>
 Specifies that a virtual SCSI adapter will be shared so that it can be
 used in guest clustering.
 TYPE OF HOST USES SHARED PARAMETER
 ------------ ---------------------
 Virtual Server host Yes
 VMware ESX host Yes
 Hyper-V host No (for guest clustering, use iSCSI storage)
 Note: When sharing a SCSI controller on a virtual machine on an ESX hos
 t, VMM defaults the SCSI sharing policy on VMware to "physical."

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a virtual SCSI adapter on a VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> New-VirtualSCSIAdapter -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VM01 from the VMM databa
 se and stores the virtual machine object in variable $VM.

 The last command creates a virtual SCSI adapter on VM01.

 2: Create a virtual SCSI adapter on a template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -eq "Template1" }
 PS C:\> New-VirtualSCSIAdapter -Template $Template

 The first command connects to VMMServer1.

 The second command gets the object that represents Template1 from the VMM l
 ibrary and stores the template object in $Template.

 The last command creates a virtual SCSI adapter on Template1.

 3: Create a virtual SCSI adapter on a hardware profile.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "HardwarePro
 file1" }
 PS C:\> New-VirtualSCSIAdapter -HardwareProfile $HWProfile

 The first command connects to VMMServer1.

 The second command gets the object that represents HardwareProfile1 from th
 e VMM library and stores the hardware profile object in $HWProfile.

 The last command creates a virtual SCSI adapter on HardwareProfile1.

 4: Create a virtual SCSI adapter used for guest clustering on a VM on a Vir
 tual Server host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM02" }
 PS C:\> New-VirtualSCSIAdapter -VM $VM -Shared $TRUE -AdapterID 6

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 from the VMM database and stores the virtual machine object in $VM.
 This example assumes that VM02 is deployed on a Virtual Server host.

 The last command creates a virtual SCSI adapter on VM02, sets the adapter I
 D to 6, and specifies that the adapter is shared so that it can be used in
 guest clustering.

 NOTES:

 Using the Shared parameter to share a virtual SCSI adapter on a VM and spec
 ifying the adapter ID depends on the virtualization platform of the host:

 * If the VM is on a Virtual Server host, you can set the adapter ID
 to 6 or 7.

 * If the VM is on a VMware ESX host, VMM supports the use of a shared
 virtual SCSI adapter for guest clustering but sets the default value
 to 7. You cannot change this value.

 However, if the VM is deployed on a Hyper-V host, you must use iSCSI storag
 e for guest clustering.

 This type of clustering enables failover of applications or services betwee
 n two virtual machines. Both virtual machines must be on the same physical
 host and the shared disk must be a fixed (not dynamic) virtual hard disk.

 For more information:

 * At the VMM command prompt, type:

 Get-Help about_VMM_2008_Failover_Clusters

 Scroll down to the sub-section "VMM 2008 AND GUEST CLUSTERS"

 * See the Windows Server 2008 help in the Failover Cluster Management
 console for information about guest clusters for virtual machines
 deployed on Hyper-V hosts.

 * See the Virtual Server help for information about guest clusters
 for virtual machines deployed on Virtual Server hosts, and see
 "Using Microsoft Virtual Server 2005 to Create and Configure a
 Two-Node Microsoft Windows Server 2003 Cluster" at:

 http://go.microsoft.com/fwlink/?LinkId=30134

REMARKS
 For more information, type: "get-help New-VirtualSCSIAdapter -detailed".
 For technical information, type: "get-help New-VirtualSCSIAdapter -full".

[bookmark: _Toc225244535]Remove-VirtualSCSIAdapter

SYNOPSIS
 Removes a virtual SCSI adapter object from Virtual Machine Manager.

SYNTAX
 Remove-VirtualSCSIAdapter [-VirtualSCSIAdapter] <VirtualSCSIAdapter> [-JobG
 roup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously
] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent virtual SCSI adapters from a vir
 tual machine, template, or hardware profile used in a Virtual Machine Manag
 er environment.

 The Remove-VirtualSCSIAdapter cmdlet removes a virtual SCSI adapter success
 fully only if the adapter does not have any devices attached to it.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VirtualSCSIAdapter <VirtualSCSIAdapter>
 Specifies a virtual SCSI adapter object for a virtual machine.
 TYPE OF HOST NUMBER OF VIRTUAL SCSI ADAPTERS
 ------------ -------------------------------
 Virtual Server Up to 4 virtual SCSI adapters per VM,
 and up to 7 devices per adapter.
 Supports a virtual disk drive size up to 2040 GB.
 Hyper-V Up to 4 synthetic virtual SCSI adapters per VM,
 and up to 64 devices per adapter
 Supports a virtual disk drive size up to 2040 GB.
 Does not support emulated virtual SCSI adapters.
 VMware ESX Up to 4 virtual SCSI adapters per VM,
 and up to 15 devices per adapter.
 Supports a virtual disk drive size up to 2048 GB.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove the third virtual SCSI adapter from a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> $Adapter = Get-VirtualSCSIAdapter -VM $VM
 PS C:\> $Adapter[2] | Remove-VirtualSCSIAdapter

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command gets all objects that represent virtual SCSI adapters on
 VM01 and stores these virtual SCSI adapter objects in $Adapter (an object a
 rray). A virtual machine can have up to four virtual SCSI adapters attached
 . This example assumes that VM01 has four virtual SCSI adapters and therefo
 re the array contains four elements (counting 0 through 3).

 The last command passes the third virtual SCSI adapter (object [2]) stored
 in $Adapter) to Remove-VirtualSCSIAdapter, which removes this virtual SCSI
 adapter from VM01.

REMARKS
 For more information, type: "get-help Remove-VirtualSCSIAdapter -detailed".
 For technical information, type: "get-help Remove-VirtualSCSIAdapter -full"
 .

[bookmark: _Toc225244536]Set-VirtualSCSIAdapter

SYNOPSIS
 Changes properties of a virtual SCSI adapter used in Virtual Machine Manage
 r.

SYNTAX
 Set-VirtualSCSIAdapter [-VirtualSCSIAdapter] <VirtualSCSIAdapter> [-Adapter
 ID <Int32>] [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [
 -RunAsynchronously] [-Shared <Boolean>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual SCSI adapter used in a Virtual
 Machine Manager environment. Modifiable settings include specifying whether
 or not a virtual SCSI adapter is shared and setting the adapter ID.

 Note: Using the Shared parameter to share a virtual SCSI adapter on a virtu
 al machine in order to enable guest clustering is supported only if the vir
 tual machine is deployed on a Virtual Server host or ESX host. The Shared p
 arameter is not used for a virtual machine on a Hyper-V host because a virt
 ual machine on a Hyper-V host uses iSCSI for shared storage.

PARAMETERS
 -VirtualSCSIAdapter <VirtualSCSIAdapter>
 Specifies a virtual SCSI adapter object for a virtual machine.
 TYPE OF HOST NUMBER OF VIRTUAL SCSI ADAPTERS
 ------------ -------------------------------
 Virtual Server Up to 4 virtual SCSI adapters per VM,
 and up to 7 devices per adapter.
 Supports a virtual disk drive size up to 2040 GB.
 Hyper-V Up to 4 synthetic virtual SCSI adapters per VM,
 and up to 64 devices per adapter
 Supports a virtual disk drive size up to 2040 GB.
 Does not support emulated virtual SCSI adapters.
 VMware ESX Up to 4 virtual SCSI adapters per VM,
 and up to 15 devices per adapter.
 Supports a virtual disk drive size up to 2048 GB.

 -AdapterID <Int32>
 Specifies the logical unit number, or LUN ID, for a virtual SCSI adapte
 r on a virtual machine on a Virtual Server host or on a template. (For
 a VMware ESX host, the default is 7 and cannot be changed. Hyper-V does
 not expose this value, and it cannot be changed.)
 Valid values for AdapterID for a Virtual Server host: 6 or 7. Default v
 alue: 7.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -Shared <Boolean>
 Specifies that a virtual SCSI adapter will be shared so that it can be
 used in guest clustering.
 TYPE OF HOST USES SHARED PARAMETER
 ------------ ---------------------
 Virtual Server host Yes
 VMware ESX host Yes
 Hyper-V host No (for guest clustering, use iSCSI storage)
 Note: When sharing a SCSI controller on a virtual machine on an ESX hos
 t, VMM defaults the SCSI sharing policy on VMware to "physical."

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Share a specific virtual SCSI adapter on a virtual machine to enable it
 for guest clustering.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> $Adapter = Get-VirtualSCSIAdapter -VM $VM
 PS C:\> Set-VirtualSCSIAdapter -VirtualSCSIAdapter $Adapter[3] -Shared $TRU
 E

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 deployed on a Virtual Server host from the VMM database and stores t
 he virtual machine object in variable $VM.

 The third command gets all objects that represent virtual SCSI adapters on
 VM01 and stores these virtual SCSI adapter objects in $Adapter (an object a
 rray). A virtual machine can have up to four virtual SCSI adapters attached
 . This example assumes that VM01 has four virtual SCSI adapters and that, t
 herefore, the array contains four elements (counting 0 through 3).

 The last command enables the fourth virtual SCSI adapter (object [3] in the
 variable array) and specifies that is it shared so that it can be used in
 guest clustering.

 NOTE: Using the Shared parameter to share a virtual SCSI adapter on a VM is
 supported only if the VM is deployed on a Virtual Server or ESX host. The
 Shared parameter is not used for a VM a Hyper-V host because a VM on a Hype
 r-V host uses iSCSI for shared storage.

REMARKS
 For more information, type: "get-help Set-VirtualSCSIAdapter -detailed".
 For technical information, type: "get-help Set-VirtualSCSIAdapter -full".

[bookmark: _Toc225244537]VM
[bookmark: _Toc225244538]DisableUndoDisk-VM

SYNOPSIS
 Merges or discards undo disks associated with a virtual machine on a Virtua
 l Server host managed by Virtual Machine Manager.

SYNTAX
 DisableUndoDisk-VM [-VM] [<String VM>] [-Discard <Boolean>] [-JobVariable <
 String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 DisableUndoDisk-VM [-VM] [<String VM>] [-JobVariable <String>] [-Merge <Boo
 lean>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Merges or discards undo disks associated with a virtual machine on a Virtua
 l Server host managed by Virtual Machine Manager.

 Virtual Machine Manager provides limited support for the Virtual Server fea
 ture called Undo Disks. If the Undo Disks feature is enabled, any changes t
 o a virtual machine's configuration or data are stored temporarily in a sep
 arate virtual undo disk (.vud) file instead of on the virtual machine's ori
 ginal (parent) virtual hard disk file.

 When an undo disk exists, you can use the DisableUndoDisk-VM cmdlet to perf
 orm the following tasks:

 * Merge undo disks, which updates the virtual machine's original virtual
 hard disk file with all of the changes that are stored in the undo disk
 file. (In Virtual Server, the "merge" action is known as "commit.")

 * Discard undo disks, which deletes the undo disk without committing any
 changes to the virtual machine's original virtual hard disk file, thus
 leaving the virtual machine in the same state that it was in before the
 undo disk was created.

 If the Undo Disks feature is enabled and you take no action, the undo disk
 file continues to exist, storing the changes that it contains separately fr
 om the virtual machine's original virtual hard disk until you merge or disc
 ard those changes.

 For information about undo disks, see the Virtual Server 2005 Administrator
 's Guide.

 For information about the Virtual Machine Manager feature called checkpoint
 s, which provides functionality similar to Undo Disks but which is designed
 specifically for virtual machines on a host managed by Virtual Machine Man
 ager, type:

 Get-Help New-VMCheckpoint -detailed

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -Discard <Boolean>
 Discards an undo disk associated with a virtual machine.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Merge <Boolean>
 Updates the virtual machine's original virtual hard disk file by mergin
 g into it all of the changes that are stored in the undo disk file.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Discard undo disks associated with a specific virtual machine on a Virtu
 al Server host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" -and $_.VirtualizationPla
 tform -eq "VirtualServer" }
 PS C:\> DisableUndoDisk-VM -VM $VM -Discard

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets all virtual machine objects from the VMM database,
 selects the object that represents the virtual machine named VM01 and whose
 virtualization platform is Virtual Server, and stores this virtual machine
 object in variable $VM. This example assumes that only one virtual machin
 e named VM01 exists.

 The last command discards the undo disks on VM01.

REMARKS
 For more information, type: "get-help DisableUndoDisk-VM -detailed".
 For technical information, type: "get-help DisableUndoDisk-VM -full".

[bookmark: _Toc225244539]DiscardSavedState-VM

SYNOPSIS
 Discards the saved state of virtual machines managed by Virtual Machine Man
 ager.

SYNTAX
 DiscardSavedState-VM -VM [<String VM>] [-JobVariable <String>] [-PROTipID <
 Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Discards the saved state of one or more virtual machines managed by Virtual
 Machine Manager. Discarding the saved state of a virtual machine returns i
 ts object in a stopped state.

 After the saved state of a virtual machine is discarded, the virtual machin
 e cannot be resumed in a condition identical to the discarded saved state.

 To save the state of a virtual machine, use SaveState-VM.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Discard the saved state of the specified virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> DiscardSavedState-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets all virtual machine objects from the VMM database,
 selects the object that represents the virtual machine named VM01, and stor
 es this virtual machine object in variable $VM. This example assumes that o
 nly one virtual machine named VM01 exists.

 The third command discards the saved state of VM01, puts it into a stopped
 state, and returns its stopped object to the user.

REMARKS
 For more information, type: "get-help DiscardSavedState-VM -detailed".
 For technical information, type: "get-help DiscardSavedState-VM -full".

[bookmark: _Toc225244540]Get-VM

SYNOPSIS
 Gets virtual machine objects from the Virtual Machine Manager database.

SYNTAX
 Get-VM [[-Name] <String>] -VMHost [<String Host>] [-VMMServer [<String Serv
 erConnection>]] [<CommonParameters>]

 Get-VM [[-Name] <String>] [-VMMServer [<String ServerConnection>]] [<Common
 Parameters>]

 Get-VM [[-Name] <String>] [-ID <Guid>] [-VMMServer [<String ServerConnectio
 n>]] [<CommonParameters>]

 Get-VM [[-Name] <String>] [-All] [-VMMServer [<String ServerConnection>]] [
 <CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual machines from the Virtual M
 achine Manager database. A virtual machine can be deployed on a virtual mac
 hine host or can be stored in the Virtual Machine Manager library.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -All
 Retrieves a full list of all subordinate objects independent of the par
 ent object. For example, the command Get-VirtualDiskDrive -All retrieve
 s all virtual disk drive objects regardless of the virtual machine obje
 ct or template object that each virtual disk drive object is associated
 with.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all virtual machines and display complete information about each one
 .

 PS C:\> Get-VM -VMMServer VMMServer1.Contoso.com

 Gets from the VMM database on VMMServer1 (in the Contoso.com domain) all ob
 jects that represent virtual machines and displays information about these
 virtual machines to the user.

 2: Get all virtual machines and display information about specific properti
 es.

 PS C:\> Get-VM -VMMServer VMMServer1.Contoso.com | Format-List -property Na
 me, Owner, Description, HostName, OperatingSystem, CPUCount, Memory

 Gets from VMMServer1 all objects that represent virtual machines and displa
 ys information about the specified properties of these virtual machines to
 the user.

 3: Get a specific virtual machine by name that is stored on the specified l
 ibrary server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> Get-VM | where { $_.Name -eq "VM03" -and $_.LibraryServer
 -eq "FileServer01" } | select Name,LibraryServer,Status

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM03 that is stored on the library server named FileServer 01 and display
 s the virtual machine name, the name of the library server, and the status
 of the virtual machine.

 4: Get all virtual machines on the specified host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VM -VMHost "VMHost04.Contoso.com"

 The first command connects to VMMServer1.

 The last command gets all objects that represent virtual machines currently
 deployed on VMHost04 and displays information about these virtual machines
 to the user.

REMARKS
 For more information, type: "get-help Get-VM -detailed".
 For technical information, type: "get-help Get-VM -full".

[bookmark: _Toc225244541]Move-VM

SYNOPSIS
 Moves a virtual machine currently stored in the Virtual Machine Manager lib
 rary or deployed on a host server to a new location on a host server.

SYNTAX
 Move-VM [-VM] [<String VM>] -VMHost [<String Host>] [-JobGroup <Guid>] [-Jo
 bVariable <String>] [-Path <String>] [-PROTipID <Guid>] [-RunAsynchronously
] [-StartVMOnTarget] [-UseLAN <Boolean>] [<CommonParameters>]

DETAILED DESCRIPTION
 Moves a virtual machine currently stored in the Virtual Machine Manager lib
 rary or deployed on a host server to a new location on a host server. Alter
 natively, if you want to move a virtual machine from a host and store it in
 the library, you must use the Store-VM cmdlet.

 You can run the Move-VM cmdlet on a running virtual machine and VMM will at
 tempt to shut down the virtual machine before moving the VM. If VMM cannot
 use either VMware Live Migration or Windows 2008 Cluster Migration to move
 the VM, you must put the virtual machine in a stopped state or saved state
 before using the Move-VM cmdlet.

 VMM 2008 can use any of the following transfer methods (listed in the order
 in which VMM tries to use them):

 * VMWARE LIVE MIGRATION – If a virtual machine deployed on a VMware ESX
 host uses shared storage, VMM can use the VMware live migration feature
 (also called VMotion) to move the virtual machine to a new host. You
 do not need to specify a path for this type of move.

 The Move-VM cmdlet can use the VMware VMotion feature to move a virtual
 machine from one ESX host to another only if both ESX servers are in
 the same Datacenter container on the VMware VirtualCenter Server.

 * WINDOWS 2008 CLUSTER MIGRATION – If a virtual machine is deployed on
 a Hyper-V host that is one node on a host cluster, VMM can use
 Windows Server 2008 Cluster Migration (sometimes called Quick Migration)
 to move the virtual machine to another node in the cluster. You do not
 need to specify a path for this type of move.

 * SAN MIGRATION (Fibre Channel, iSCSI, or NPIV) – If the virtual machine
 is on a host that is connected to SAN storage, VMM can move that
 virtual machine to another host connected to the same SAN. In a SAN
 transfer, the target LUNs are remapped from the source host to the
 destination host (no files are moved), which is why a SAN transfer is
 much faster than moving virtual machine files from one host to another
 over a local area network (LAN). VMM can use an NPIV SAN transfer if a
 host bus adapter (HBA) with NPIV support is available. You must specify
 a path for this type of move.

 * NETWORK MIGRATION – If no faster method is available, VMM uses a network
 transfer to move the virtual machine files from one host to another
 over the LAN that connects the two hosts. You must specify a path for
 this type of move.

 The Move-VM cmdlet automatically uses the fastest available transfer type t
 o move a VM. If the first method is not appropriate or available for the vi
 rtual machine you want to migrate, VMM tries to use the next method, and so
 on. If you want to force the use of a network transfer, specify the -UseLA
 N parameter.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -StartVMOnTarget
 Specifies that a virtual machine starts as soon as it reaches its desti
 nation host.

 -UseLAN <Boolean>
 Forces a transfer over the local area network (LAN) even if a faster tr
 ansfer mechanism, such as a storage area network (SAN) transfer, is ava
 ilable.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Move a virtual machine from the library to a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" -and $_.LibraryServer -eq
 "FileServer01.Contoso.com" }
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> Move-VM -VMHost $VMHost -VM $VM -Path "D:\VMs"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets from the VMM database the object that represents th
 e virtual machine named VM01 (which is currently stored in the VMM library
 on the library server named FileServer01) and stores the virtual machine ob
 ject in variable $VM. This example assumes that only one virtual machine na
 med VM01 is currently stored on FileServer01, and that, therefore, Get-VM r
 etrieves only one object.

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in variable $VMHost.

 The last command moves the virtual machine from its current location in the
 library to the location D:\VMs on the host. The command automatically uses
 the fastest available transfer type. When the command completes, it return
 s information about the moved virtual machine to the screen, including the
 MostRecentTask, which contains "Move virtual machine from <YourLibraryServe
 rName> to <YourVMHostName>."

 NOTE: If you want to move a virtual machine that is currently deployed on a
 host to another location and neither VMotion nor Quick Migration is availa
 ble, the virtual machine must be turned off or put in a saved state before
 it can be moved. If you want to move a virtual machine that is currently de
 ployed on a host into the VMM library, you must use the Store-VM cmdlet.

 2: Move a virtual machine from the library to a host asynchronously.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM02" -and $_.LibraryServer -eq
 "FileServer02.Contoso.com" }
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02.Contoso.com"
 PS C:\> Move-VM -VMHost $VMHost -VM $VM -Path "D:\VMs" -RunAsynchronously -
 JobVariable "MyJob"
 PS C:\> $MyJob

 The first four commands in this example are identical to the commands in ex
 ample 1, except that when the fourth command moves the virtual machine from
 its current location to D:\VMs on VMHost02, it also uses the RunAsynchrono
 usly parameter to return control to the command shell immediately, and it u
 ses the JobVariable parameter to track job progress and store a record of i
 ts progress in variable MyJob. For the JobVariable parameter, you do not us
 e the dollar sign ($) when the variable is created.

 The last command displays the contents of $MyJob, which includes a descript
 ion of the move job, its status ("Running"), and other information.

 3: Move a virtual machine from the library to a host by forcing a LAN trans
 fer.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost03.Contoso.com"
 PS C:\> Move-VM -VMHost $VMHost -VM "VM03" -Path "D:\VMs" -UseLAN

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost03
 and stores the host object in $VMHost.

 The last command moves the virtual machine VM03 (by specifying its name) fr
 om its current location in the library to D:\VMs on VMHost03, it uses the U
 seLAN parameter to specify that the transfer uses a network transfer (even
 if faster transfer mechanisms are available). This example assumes that VM0
 3 was stored in the VMM library before the move operation started.

 4: Move a virtual machine between hosts by using VMware VMotion.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM04" | where {$_.VMHost.Name -eq "10.199.53.11
 "}
 PS C:\> $VMHost = Get-VMHost | where {$_.Name -eq "10.199.53.12"}
 PS C:\> Move-VM -VM $VM -VMHost $VMHost
 PS C:\> Move-VM -VM $VM -VMHost $VMHost -Path "[Storage2]\VM04\VM04.vmx"

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM04 (which is currently running on the VMWare ESX host identified by its
 IP address, 10.199.53.11) and stores the virtual machine object in $VM.

 The third command gets the object that represents the ESX host identified
 by IP address10.100.53.12 and stores the host object in $VMHost.

 In the last command, the Move-VM cmdlet uses VMware VMotion to move the vir
 tual machine from its current ESX host to the other ESX host.

 IMPORTANT: The Move-VM cmdlet can use the VMware VMotion feature to move a
 virtual machine from one ESX host to another only if both ESX servers are i
 n the same Datacenter container on the VMware VirtualCenter Server.

 5: Move a highly available VM between nodes in a host cluster by using Hype
 r-V quick migration.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "HAVM05" | where {$_.VMHost.Name -eq "VMHVHostNo
 de05A.Contoso.com"}
 PS C:\> $VMHost = Get-VMHost | where {$_.Name -eq "VMHVHostNode05B.Contoso.
 com"}
 PS C:\> Move-VM -VM $VM -VMHost $VMHost

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d HAVM05 (which is currently running on the Hyper-V host named VMHVHostNode
 05A) and stores the virtual machine object in $VM. This example assumes tha
 t HAVM05 is a highly available virtual machine and that VMHVHostNode05A and
 VMHVHostNode05B are nodes in a Hyper-V host cluster.

 The third command gets the object that represents the host named VMHVHostNo
 de05B and stores the host object in $VMHost.

 In the last command, the Move-VM cmdlet uses Windows Server 2008 quick migr
 ation to move the virtual machine from VMHVHostNode05A to VMHVHostNode05B.

REMARKS
 For more information, type: "get-help Move-VM -detailed".
 For technical information, type: "get-help Move-VM -full".

[bookmark: _Toc225244542]New-VM

SYNOPSIS
 Creates a virtual machine to be managed by Virtual Machine Manager.

SYNTAX
 New-VM [-Name] <String> -Path <String> -VM [<String VM>] -VMHost [<String H
 ost>] [-CPUCount <Int32>] [-CPUType [<ProcessorType String>]] [-DelayStart
 <Int32>] [-Description <String>] [-HardwareProfile <HardwareProfile>] [-Job
 Group <Guid>] [-JobVariable <String>] [-LimitCPUFunctionality <Boolean>] [-
 MemoryMB <Int32>] [-OperatingSystem <OperatingSystem>] [-Owner <String>] [-
 PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsSystem] [-RunAsUserCreden
 tial <PSCredential>] [-RunAsynchronously] [-StartAction <String>] [-StartVM
] [-StopAction <String>] [-UseHardwareAssistedVirtualization] [<CommonParam
 eters>]

 New-VM [-Name] <String> -Path <String> -VMHost [<String Host>] [-CPUCount <
 Int32>] [-CPUType [<ProcessorType String>]] [-DelayStart <Int32>] [-Descrip
 tion <String>] [-HardwareProfile <HardwareProfile>] [-JobGroup <Guid>] [-Jo
 bVariable <String>] [-LimitCPUFunctionality <Boolean>] [-MemoryMB <Int32>]
 [-OperatingSystem <OperatingSystem>] [-Owner <String>] [-PROTipID <Guid>] [
 -RelativeWeight <Int32>] [-RunAsSystem] [-RunAsUserCredential <PSCredential
 >] [-RunAsynchronously] [-StartAction <String>] [-StartVM] [-StopAction <St
 ring>] [-UseHardwareAssistedVirtualization] [-VMMServer [<String ServerConn
 ection>]] [<CommonParameters>]

 New-VM [-Name] <String> -LibraryServer [<String LibraryServer>] -SharePath
 <String> -VirtualHardDisk <VirtualHardDisk> [-CPUCount <Int32>] [-CPUType [
 <ProcessorType String>]] [-DelayStart <Int32>] [-Description <String>] [-Ha
 rdwareProfile <HardwareProfile>] [-JobGroup <Guid>] [-JobVariable <String>]
 [-LimitCPUFunctionality <Boolean>] [-MemoryMB <Int32>] [-OperatingSystem <
 OperatingSystem>] [-Owner <String>] [-PROTipID <Guid>] [-RelativeWeight <In
 t32>] [-RunAsSystem] [-RunAsUserCredential <PSCredential>] [-RunAsynchronou
 sly] [-StartAction <String>] [-StopAction <String>] [-UseHardwareAssistedVi
 rtualization] [<CommonParameters>]

 New-VM [-Name] <String> -LibraryServer [<String LibraryServer>] -SharePath
 <String> -VM [<String VM>] [-CPUCount <Int32>] [-CPUType [<ProcessorType St
 ring>]] [-DelayStart <Int32>] [-Description <String>] [-HardwareProfile <Ha
 rdwareProfile>] [-JobGroup <Guid>] [-JobVariable <String>] [-LimitCPUFuncti
 onality <Boolean>] [-MemoryMB <Int32>] [-OperatingSystem <OperatingSystem>]
 [-Owner <String>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsSyst
 em] [-RunAsUserCredential <PSCredential>] [-RunAsynchronously] [-StartActio
 n <String>] [-StopAction <String>] [-UseHardwareAssistedVirtualization] [<C
 ommonParameters>]

 New-VM [-Name] <String> -LibraryServer [<String LibraryServer>] -SharePath
 <String> [-CPUCount <Int32>] [-CPUType [<ProcessorType String>]] [-DelaySta
 rt <Int32>] [-Description <String>] [-HardwareProfile <HardwareProfile>] [-
 JobGroup <Guid>] [-JobVariable <String>] [-LimitCPUFunctionality <Boolean>]
 [-MemoryMB <Int32>] [-OperatingSystem <OperatingSystem>] [-Owner <String>]
 [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsSystem] [-RunAsUserCre
 dential <PSCredential>] [-RunAsynchronously] [-StartAction <String>] [-Stop
 Action <String>] [-UseHardwareAssistedVirtualization] [-VMMServer [<String
 ServerConnection>]] [<CommonParameters>]

 New-VM [-Name] <String> -Path <String> -Template [<Template String>] -VMHos
 t [<String Host>] [-AdminPasswordCredential <PSCredential>] [-AnswerFile <S
 cript>] [-ComputerName <String>] [-CPUCount <Int32>] [-CPUType [<ProcessorT
 ype String>]] [-DelayStart <Int32>] [-Description <String>] [-FullName <Str
 ing>] [-GuestOSProfile [<GuestOSProfile String>]] [-GuiRunOnceCommands <Str
 ing[]>] [-HardwareProfile <HardwareProfile>] [-JobGroup <Guid>] [-JobVariab
 le <String>] [-JoinDomain <String>] [-JoinDomainCredential <PSCredential>]
 [-JoinWorkgroup <String>] [-LimitCPUFunctionality <Boolean>] [-MemoryMB <In
 t32>] [-OperatingSystem <OperatingSystem>] [-OrgName <String>] [-Owner <Str
 ing>] [-ProductKey <String>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [
 -RunAsSystem] [-RunAsUserCredential <PSCredential>] [-RunAsynchronously] [-
 SelfServiceRole <UserRole>] [-StartAction <String>] [-StartVM] [-StopAction
 <String>] [-TimeZone <Int32>] [-UseHardwareAssistedVirtualization] [<Commo
 nParameters>]

 New-VM [-Name] <String> -Path <String> -VirtualHardDisk <VirtualHardDisk> -
 VMHost [<String Host>] [-CPUCount <Int32>] [-CPUType [<ProcessorType String
 >]] [-DelayStart <Int32>] [-Description <String>] [-HardwareProfile <Hardwa
 reProfile>] [-JobGroup <Guid>] [-JobVariable <String>] [-LimitCPUFunctional
 ity <Boolean>] [-MemoryMB <Int32>] [-OperatingSystem <OperatingSystem>] [-O
 wner <String>] [-PROTipID <Guid>] [-RelativeWeight <Int32>] [-RunAsSystem]
 [-RunAsUserCredential <PSCredential>] [-RunAsynchronously] [-StartAction <S
 tring>] [-StartVM] [-StopAction <String>] [-UseHardwareAssistedVirtualizati
 on] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a virtual machine to be managed by Virtual Machine Manager. You can
 create a virtual machine from an existing stopped virtual machine deployed
 on a host, from an existing virtual machine stored in the Virtual Machine
 Manager library, from a virtual machine template, from an existing virtual
 hard disk (that already contains an operating system), or from a blank virt
 ual hard disk.

 You can, for example, create a new virtual machine from an existing hard di
 sk that contains a third-party operating system, such as Linux.

 For a new (or moved) virtual machine deployed on a host, the default locati
 on for the virtual machine files in the file system is:

 * Virtual machine deployed on a Hyper-V host:
 <C>:\ProgramData\Microsoft\Windows\Hyper-V

 * Virtual machine deployed on a Virtual Server host:
 <C>:\Documents and Settings\All Users\Documents\Shared Virtual Machines\

 * Virtual machine deployed on a VMware ESX host:
 No default path exists, so you must specify the path when you create
 the new virtual machine.

 As an alternative to using New-VM, you can also use the following cmdlets t
 o create a new virtual machine:

 * New-P2V - creates a new virtual machine from an existing physical
 machine (a P2V conversion).

 * New-V2V - creates a new virtual machine from an existing virtual
 machine; for example, from a virtual machine created in VMWare
 (a V2V conversion).

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VirtualHardDisk <VirtualHardDisk>
 Specifies a virtual hard disk object.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -AdminPasswordCredential <PSCredential>
 Specifies the password for the local Administrator account. Specifying
 a password (on a new or existing template, on a new or existing guest
 operating system profile, or on a new virtual machine) overrides any ex
 isting Administrator password.

 -AnswerFile <Script>
 Specifies a script object stored in the VMM library to use as an answer
 file. The name of the answer file script depends on the operating syst
 em that you want to install on a virtual machine:
 ANSWER FILE GUEST OS TO INSTALL ON VM
 ----------- -------------------------
 Sysprep.inf Windows XP, Windows Server 2000, or Windows Server 2003
 Unattend.xml Windows Vista or Windows Server 2008
 Note: In VMM 2007, this parameter was named SysPrepFile.

 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -DelayStart <Int32>
 Specifies the number of seconds to wait after the virtualization servic
 e starts before automatically starting a virtual machine. Used to stagg
 er the startup time of multiple virtual machines to help reduce the dem
 and on the physical computer’s resources. A typical setting might be 30
 to 60 seconds.
 TYPE OF HOST MAXIMUM CONFIGURABLE DELAY
 ------------ --------------------------------
 Hyper-V 1000000000 seconds (277777 hours)
 Virtual Server 86400 seconds (24 hours)
 VMware ESX 65535 seconds (18 hours)

 -Description <String>
 Specifies a description for the specified object.

 -FullName <String>
 Specifies the name of the person in whose name a virtual machine is reg
 istered.

 -GuestOSProfile [<GuestOSProfile String>]
 Specifies a guest operating system profile object.

 -GuiRunOnceCommands <String[]>
 Specifies one or more commands to add to the [GuiRunOnce] section of an
 unattended answer file (such as SysPrep.inf or Unattend.xml). Use sing
 le quotes around each string enclosed in double quotes.
 Example:
 -GuiRunOnceCommands '"C:\APF\APFPostSysPrepCopy.cmd PARAMS1"', '"C:\APF
 \APFPostSysPrepCopy.cmd PARAMS1"'
 For information about how Windows PowerShell uses quotes, type: Get-Hel
 p about_Quoting_Rules

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -JoinDomain <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the do
 main to which you want to join a virtual machine. You can use this para
 meter to override the existing value on a template or on a guest operat
 ing system profile. You can join a VM to a domain only if a virtual net
 work adapter is configured for the VM.

 -JoinDomainCredential <PSCredential>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the user name and
 password of an account with permission to join a virtual machine to the
 domain. A limited rights account should be used for joining machines t
 o the domain.

 -JoinWorkgroup <String>
 Specifies (on a new or existing template, on a new or existing guest op
 erating system profile, or on a new virtual machine) the name of the wo
 rkgroup to which you want to join a virtual machine. You can use this p
 arameter to override the existing value on a template or on a guest ope
 rating system profile.

 -LimitCPUFunctionality <Boolean>
 Enables running an older operating system (such as Windows NT 4.0) on a
 virtual machine deployed on a Hyper-V host or on a VMware ESX host by
 providing only limited CPU functionality for the virtual machine.

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -OrgName <String>
 Specifies the name of the organization of the person in whose name a vi
 rtual machine is registered.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -ProductKey <String>
 Specifies the product key to use for the operating system to be install
 ed on a virtual machine. The product key is a 25-digit number that iden
 tifies the product license.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RunAsSystem
 Specifies that a virtual machine on a Virtual Server host will run unde
 r the local system account. If specified, Virtual Server will not autom
 atically start the virtual machine when the Virtual Server service star
 ts. (This parameter does not apply to virtual machines on Hyper-V or VM
 ware ESX hosts because Hyper-V and VMware run a virtual machine under t
 he local system account by default; you cannot change this setting on t
 hose virtualization platforms.)

 -RunAsUserCredential <PSCredential>
 Specifies the guest account (domain\account) that a virtual machine on
 a Virtual Server host runs under. If specified, Virtual Server will aut
 omatically start a virtual machine when the Virtual Server service star
 ts. For enhanced security, create a special account with limited permis
 sions:
 FILE TYPE MINIMUM REQUIRED PERMISSIONS FOR GUEST ACCOUNT
 ----------- --
 .vmc file Read Data, Write Data, Execute File
 .vmc folder List Folder, Write/Create File (required to save VM state)
 .vhd file Read Data, Read Attributes, Read Extended Attributes,
 Write Data
 .vnc file Execute File, Read Data, Read Attributes, Read
 (required if VM connects to a virtual network)
 Note: This parameter does not apply to virtual machines on Hyper-V or V
 Mware ESX hosts.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SelfServiceRole <UserRole>
 Specifies the self-service role with permission to access the virtual m
 achine.

 -StartAction <String>
 Specifies the behavior of a virtual machine when the virtualization ser
 vice (Hyper-V, Virtual Server, or VMware) starts. To specify that a vir
 tual machine deployed on a Virtual Server host starts automatically, us
 e the -RunAsUserCredential parameter to specify an account with appropr
 iate permissions (otherwise, the StartAction reverts to NeverAutoTurnOn
 VM).
 Valid values: AlwaysAutoTurnOnVM, NeverAutoTurnOnVM, TurnOnVMIfRunningW
 henVSStopped

 -StartVM
 Specifies that the virtual machine starts when it arrives at the destin
 ation host.

 -StopAction <String>
 Specifies the behavior of the virtual machine when the virtualization s
 ervice (Hyper-V, Virtual Server, or VMware) stops.
 Valid values: SaveVM, TurnOffVM, ShutdownGuestOS

 -TimeZone <Int32>
 Specifies a number (an "index") that identifies a geographical region t
 hat shares the same standard time. For a list of time zone indexes, see
 "Microsoft Time Zone Index Values" at: http://go.microsoft.com/fwlink/
 ?LinkId=120935. If no time zone is specified, the default time zone use
 d for a virtual machine is the same time zone setting that is on the vi
 rtual machine host.
 Example: To specify the GMT Standard Time zone, type: -TimeZone 085

 -UseHardwareAssistedVirtualization
 Specifies that, for a virtual machine deployed on a Virtual Server host
 , hardware-assisted virtualization is used if it is available (when set
 to TRUE). The Virtual Server host must support AMD Virtualization (AMD
 -V) or Intel Virtualization Technology (Intel-VT) hardware virtualizati
 on. This parameter does not apply to virtual machines on Hyper-V hosts
 or VMware ESX hosts.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a virtual machine from a virtual hard disk and deploy it on a hos
 t.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VHD = Get-VirtualHardDisk | where {$_.Name -eq "Blank Disk - Large
 "}
 PS C:\> $VMHost = Get-VMHost | where {$_.Name -eq "VMHost01.Contoso.com"}
 PS C:\> New-VM -Name "VM01" -VirtualHardDisk $VHD -VMHost $VMHost -Path "C:
 \MyVMs" –RunAsynchronously

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the virtual hard disk named "Blank Disk - Large" fr
 om the VMM library and stores the virtual hard disk object in variable $VHD
 .

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in variable $VMHost.

 The last command creates a virtual machine named VM01 from the virtual hard
 disk called "Blank Disk - Large" and deploys the new virtual machine on th
 e C: drive of VMHost01 in the MyVMs folder. The -RunAsynchronously paramete
 r returns control to the shell immediately (before the command completes).

 2: Create a virtual machine from a template and deploy it on a host.

 PS C:\> $Template = Get-Template -VMMServer "VMMServer1.Contoso.com" | wher
 e {$_.Name -eq "Gold Windows Server 2003 R2"}

 PS C:\> $VMHost = Get-VMHost | where {$_.Name -eq "VMHost02.Contoso.com"}

 PS C:\> New-VM -Template $Template -Name "VM02" -VMHost $VMHost -Path "C:\D
 ocuments and Settings\All Users\Documents\Shared Virtual Machines\" -RunAsy
 nchronously -ComputerName "Server-01" -FullName "Rachel Valdez" -OrgName "C
 ontoso Corp" -ProductKey "XXXXX-XXXXX-XXXXX-XXXXX-XXXXX"

 The first command gets the object that represents the template named "Gold
 Windows Server 2003 R2" and stores the template object in $Template.

 The second command gets the object that represents the host named VMHost02
 and stores the host object in $VMHost.

 The last command uses the New-VM cmdlet to perform the following tasks:

 * Create a virtual machine from the "Gold Windows Server 2003 R2"
 template.

 * Name the new virtual machine VM02.

 * Deploy the new virtual machine on VMHost02 and specify the path
 where the virtual machine files will be stored on VMHost02:

 C:\Documents and Settings\All Users\Documents\Shared Virtual Machines\

 * Specify that the command run asynchronously to return control
 to the shell immediately (before the command completes).

 * Sets the following information for VM02:

 - Server-01.Contoso.com (the computer name and domain for
 VM02 that appears on the Computer Name tab of System Properties)

 - Rachel Valdez (the name of the person that appears on the General
 tab of System Properties)

 - ContosoCorp (the organization name that appears on the General tab
 of System Properties)

 - XXXXX-XXXXX-XXXXX-XXXXX-XXXXX (the product key - substitute
 your 25-digit product key number for the X's)

 3: Clone a virtual machine from an existing virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where {$_.Name -eq "VM03"}
 PS C:\> $VMHost = Get-VMHost | where { $_.Name -eq "VMHost03.Contoso.com" }
 PS C:\> if($VM.Status -eq "PowerOff"){New-VM -Name "VM04" -VM $VM -VMHost $
 VMHost -Path "C:\MyVMs" –RunAsynchronously}

 The first command connects to VMMServer1.

 The second command gets the object that represents the VM named VM03 and st
 ores the virtual machine object in $VM.

 The third command gets the object that represents the host named VMHost03 a
 nd stores the host object in $VMHost.

 The last command first checks if the VM is in a powered off state. If the V
 M is powered off, the command creates a virtual machine named VM04 from VM0
 3 and deploys the new virtual machine on the C:\ drive of VMHost03 in the M
 yVMs folder. The -RunAsynchronously parameter returns control to the shell
 immediately (before the command completes).

 4. Create a virtual machine from a virtual machine stored in the library.

 PS C:\> Get-VMMServer "VMMServer1.contoso.com"

 PS C:\> $VMHost = Get-VMHost | where {$_.Name -eq "VMHost04"}

 PS C:\> $VM = Get-VM -Name "StoredVM" | where {$_.LibraryServer.Name -eq "F
 ileServer01"} | where {$_.Location -eq "\\FileServer01\MSSCVMMLibrary\Store
 dVM\"}

 PS C:\> New-VM -VM $VM -Name "VM04" -Description "New VM from VM stored in
 Library" -Owner "Contoso\VMMAdmin" -VMHost $VMHost -Path "C:\MyVMs" -RunAsy
 nchronously -RunAsSystem -StartAction NeverAutoTurnOnVM -UseHardwareAssiste
 dVirtualization $FALSE -StopAction SaveVM -MemoryMB 1024

 The first command connects to VMMServer1.

 The second command gets the object for the host named VMHost04 and stores t
 he host object in $VMHost.

 The third command gets the object for the VM named StoredVM, which is locat
 ed at the specified path on library server FileServer01, and stores the vir
 tual machine object in $VM.

 The last command uses the New-VM cmdlet to perform the following operations
 :

 * Creates a new VM named VM04 from StoredVM and provides
 VM04 with 1024 MB of memory.

 * Deploys VM04 on host VMHost04 at the specified path.

 * Provides a description and specifies VMMAdmin as the owner.

 * Uses the -RunAsynchronously parameter to return control to the shell
 immediately (before the command completes).

 * Uses the -RunAsSystem parameter to specify that the VM runs under the
 local system account (it is only necessary to specify this for a VM on
 a Virtual Server host because Hyper-V and VMware run a VM under the
 local system account by default).

 * Specifies that hardware assisted virtualization is not used.

 * Specifies that the start action for the new VM is set to never turn on
 automatically and that the stop action is set to save the VM.

 5. Create a highly available virtual machine.

 PS C:\> Get-VMMServer "VMMServer1.Contoso.com"

 PS C:\> $VMGuid = [System.Guid]::NewGuid().ToString()

 PS C:\> $VMName = "HAVM01"

 PS C:\> New-VirtualNetworkAdapter -JobGroup $VMGuid -PhysicalAddressType Dy
 namic -VLANEnabled $FALSE

 PS C:\> New-VirtualDVDDrive -JobGroup $VMGuid -Bus 1 -LUN 0

 PS C:\> New-HardwareProfile -Owner "Contoso\VMMAdmin" -Name "HWProfile" -CP
 UCount 1 -MemoryMB 512 -HighlyAvailable $TRUE -NumLock $FALSE -BootOrder "C
 D", "IdeHardDrive", "PxeBoot", "Floppy" -LimitCPUFunctionality $FALSE -JobG
 roup $VMGuid

 PS C:\> New-VirtualDiskDrive -IDE -Bus 0 -LUN 0 -JobGroup $VMGuid -Size 409
 60 -Dynamic -Filename "VMM-HAVM_disk_1.vhd"

 PS C:\> $VMHost = Get-VMHost | where {$_.Name -eq "VMM-HVNode2.SCVMM.Contos
 o.com"}

 PS C:\> $HardwareProfile = Get-HardwareProfile | where {$_.Name -eq "HWProf
 ile"}

 PS C:\> $OperatingSystem = Get-OperatingSystem | where {$_.Name -eq "64-bit
 edition of Windows Server 2008 Datacenter"}

 PS C:\> New-VM -Name $VMName -Description "" -Owner "Contoso\VMMAdmin" -VMH
 ost $VMHost -Path "P:\" -HardwareProfile $HardwareProfile -JobGroup $VMGuid
 -OperatingSystem $OperatingSystem -RunAsynchronously -RunAsSystem -StartAc
 tion NeverAutoTurnOnVM -StopAction SaveVM -UseHardwareAssistedVirtualizatio
 n $FALSE

 The first command connects to VMMServer1.

 The second command creates a new GUID string and stores it in $VMGuid. This
 GUID is a job group ID that functions as an identifier that groups subsequ
 ent commands that include this identifier into a single job group.

 The third command stores a string ("HAVM01") used to name the new VM in $VM
 Name.

 The fourth command will create a new virtual network adapter with a dynamic
 MAC address and with VLAN disabled, but uses the job group ID to specify t
 hat the network adapter is not created until just before the New-VM cmdlet
 (in the last command) runs.

 The fifth command will create a new IDE virtual DVD drive connected to the
 second channel and the first slot, but uses the job group ID to specify tha
 t the virtual DVD drive is not created until just before the New-VM cmdlet
 (in the last command) runs.

 The sixth command will create a new hardware profile and specifies values f
 or the profile name, owner, CPU count, memory, and bootorder; disables NumL
 ock as well as limited CPU functionality (which is not needed because this
 is VM will not have an older operating system); and designates that the VM
 created by using this hardware profile will be a highly available VM. The c
 ommand uses the job group ID to specify that the hardware profile is not cr
 eated until just before the New-VM cmdlet (in the last command) runs.

 The seventh command will create a new IDE virtual disk drive with a storage
 capacity of 40 GB on the first channel and first slot, but uses the job gr
 oup ID to specify that the new virtual disk drive is not created until just
 before the New-VM cmdlet (in the last command) runs.

 The eighth command gets a VM host object by name (VMM-HVNode2) and stores t
 he host object in $VMHost. This host is one node of a host cluster that is
 managed by VMM.

 The ninth command gets the object that represents the hardware profile spec
 ified in the fifth command by name, and stores the return value in $Hardwar
 eProfile.

 The tenth command gets an operating system object by name and stores the re
 turn value in $OperatingSystem.

 The last command uses the New-VM cmdlet and the job group ID to create a ne
 w VM named HAVM01 by using the objects obtained or created in the preceding
 commands. The command also performs the following operations:

 * Uses the Path parameter to specify the location where the VM is stored;
 this location must be a cluster-migratable LUN.

 * Uses the RunAsynchronously parameter to return control to the shell
 immediately (before the command completes)

 * Uses the -RunAsSystem parameter to specify that the VM runs under
 the local system account (it is only necessary to specify this for a
 VM on a Virtual Server host because Hyper-V and VMware run a VM under
 the local system account by default).

 * Specifies that the VM is not started automatically when the host
 starts and that the VM is put into a saved state when the
 virtualization service stops.

 * Specifies that hardware-assisted virtualization is not used.

REMARKS
 For more information, type: "get-help New-VM -detailed".
 For technical information, type: "get-help New-VM -full".

[bookmark: _Toc225244543]Refresh-VM

SYNOPSIS
 Refreshes the properties of a virtual machine so that the Virtual Machine M
 anager Administrator Console displays updated information about the virtual
 machine.

SYNTAX
 Refresh-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>] [
 -RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Refreshes the properties of a virtual machine so that the Virtual Machine M
 anager Administrator Console displays updated information about the virtual
 machine. The updated properties include Name, Location, Status, OperatingS
 ystem, and other properties.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Refresh information about a specific virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> Refresh-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The last command refreshes the properties Name, Location, Status, Operating
 System, and VMAdditions for VM01. After this command completes successfully
 , current information about this virtual machine will appear in the Adminis
 trator Console.

 2: Refresh all virtual machines on each host whose name matches the specifi
 ed string.

 PS C:\> $VMs = Get-VM -VMMServer VMMServer1.Contoso.com | where { $_.VMHost
 .Name -match "VMM" }
 PS C:\> $VMs | Refresh-VM

 The first command gets all objects from VMMServer1 that represent virtual m
 achines deployed on hosts whose name contains the string "VMM" and stores t
 he virtual machine objects in $VMs.

 The second command refreshes the properties of each virtual machine object
 in $VMs.

REMARKS
 For more information, type: "get-help Refresh-VM -detailed".
 For technical information, type: "get-help Refresh-VM -full".

[bookmark: _Toc225244544]Register-VM

SYNOPSIS
 Registers an existing virtual machine with Virtual Machine Manager that, cu
 rrently, is not registered with the virtualization platform (Virtual Server
 , Hyper-V, or VMware) of any host managed by Virtual Machine Manager and is
 not stored in the Virtual Machine Manager library.

SYNTAX
 Register-VM [-VMHost] [<String Host>] [-Path] <String> [-JobGroup <Guid>] [
 -JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonPara
 meters>]

DETAILED DESCRIPTION
 Registers an existing virtual machine with Virtual Machine Manager that, cu
 rrently, is not registered with the virtualization platform (Virtual Server
 , Hyper-V, or VMware) of any host managed by Virtual Machine Manager, and i
 s not stored in the Virtual Machine Manager library. If virtual machine fil
 es are stored in the Virtual Machine Manager library, you do not need to re
 gister the virtual machine before you deploy it on a host.

 The configuration files for the virtual machine that you want to register m
 ust be stored either in the file system on the host on which you want to de
 ploy the virtual machine or stored on shared storage (such as SAN) availabl
 e to this host:

 * HYPER-V HOST – You can register a virtual machine for a Hyper-V host
 if the configuration files for that virtual machine are stored in a
 folder on the host's file system or on shared storage, and an export
 of the virtual machine was created using the "Export" function in the
 Hyper-V Manager console.

 The path must specify a folder. Example:

 -Path "D:\MyHyperVFolderForVMs"

 * VIRTUAL SERVER HOST – You can register a virtual machine for a Virtual
 Server host if the configuration file for that virtual machine is
 stored on the host's file system or on shared storage. No separate
 "export" step is required.

 The path must specify the folder and the configuration file. Example:

 -Path "D:\MyVirtualServerFolderForVMs\MyVM.vmc"

 * VMWARE ESX HOST - You can register a virtual machine for a VMware ESX
 host if the VMware virtual machine configuration file (a .vmx file)
 is stored on the host's file system or on shared storage. No separate
 "export" step is required.

 The path must specify the folder and the configuration file. Example:

 -Path [MyDatastore]\MyVMwareFolderForVMs\MyVM.vmx

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Register an existing virtual machine on a Virtual Server host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VSHost01"
 PS C:\> Register-VM -VMHost $VMHost -Path "D:\MyVirtualServerFolderForVMs\V
 M01.vmc"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents a Virtual Server host ca
 lled VSHost01 and stores the host object in variable $VMHost.

 The last command adds the existing virtual machine on VSHost01 to the VMM d
 atabase by specifying the path to the virtual machine's virtual machine con
 figuration file (VM01.vmc).

 2: Register an existing virtual machine on a Hyper-V host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "HVHost02"
 PS C:\> Register-VM –VMHost $VMHost –Path “D:\MyHyperVFolderForVMs”

 The first command connects to VMMServer1.

 The second command gets the object that represents a Hyper-V host called HV
 Host02 and stores the host object in $VMHost.

 The last command adds the existing virtual machine on HVHost02 to VMM by sp
 ecifying the path to the folder that contains the virtual machine's virtual
 machine configuration file.

 IMPORTANT: If the virtual machine is on a Hyper-V host, you specify the pat
 h to the folder (as shown here). However, if the virtual machine is on a Vi
 rtual Server host or on a VMware ESX host, you specify the path to the fold
 er and file (as shown in examples 1 and 3).

 3: Register an existing virtual machine on a VMware ESX host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "ESXHost03"
 PS C:\> Register-VM –VMHost $VMHost –Path "[storage1]\MyVMwareFolderForVMs\
 MyVM.vmx"

 The first command connects to VMMServer1.

 The second command gets the object that represents a VMware ESX host called
 ESXHost03 and stores the host object in $VMHost.

 The last command adds an existing virtual machine on ESXHost03 to VMM by sp
 ecifying the path to the virtual machine's virtual machine configuration fi
 le (MyVM.vmx).

REMARKS
 For more information, type: "get-help Register-VM -detailed".
 For technical information, type: "get-help Register-VM -full".

[bookmark: _Toc225244545]Remove-VM

SYNOPSIS
 Removes a virtual machine object from Virtual Machine Manager.

SYNTAX
 Remove-VM [-VM] [<String VM>] [-Confirm] [-Force] [-JobVariable <String>] [
 -PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes an object that represents a virtual machine deployed on a host or s
 tored on a library server from Virtual Machine Manager.

 The Remove-VM cmdlet deletes the virtual machine record from the Virtual Ma
 chine Manager database, deletes all files associated with the virtual machi
 ne, and removes the virtual machine from the host on which it is deployed o
 r from the library server on which it is stored.

 If a folder on a host was created for this virtual machine by Virtual Machi
 ne Manager (rather than by Hyper-V, Virtual Server, or VMware) and if that
 folder contains no other virtual machines or other data, you can use the fi
 le system to delete the folder after you have removed the virtual machine.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -Confirm
 Prompts for confirmation before running the command.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific virtual machine deployed on a host and delete the asso
 ciated files from the host.

 PS C:\> $VM = Get-VM -VMMServer VMMServer1.Contoso.com | where { $_.VMHost.
 Name -eq "VMHost01.Contoso.com" -and $_.Name -eq "VM01" }
 PS C:\> Remove-VM -VM $VM

 The first command gets all objects that represent virtual machines from the
 VMM database provided by VMMServer1, selects from the results the virtual
 machine deployed on VMHost01 named VM01, and stores the virtual machine ob
 ject in variable $VM.

 The second command removes the object that represents VM01 from the VMM dat
 abase and deletes the corresponding virtual machine files from the file sys
 tem on its host.

 2: Remove all virtual machines with names that include a specific string fr
 om the database and from their hosts.

 PS C:\> $MyVMs = @(Get-VM -VMMServer VMMServer1.Contoso.com | where { $_.Na
 me -Match "VM0" })
 PS C:\> $MyVMs | Remove-VM

 The first command gets all objects that represent any virtual machines depl
 oyed on any host whose name includes the string "VM0" (as in VM01, VM02, an
 d so on) and stores these virtual machine objects in $MyVMs. Using the "@"
 symbol and parentheses ensures that the command stores the results in an ar
 ray (in case the command returns a single object or a null value).

 The second command removes each virtual machine object in $MyVMs from the V
 MM database and deletes the corresponding virtual machine files from the fi
 le system on each host.

 3: Remove from the library the object that represents a specific virtual ma
 chine stored on a VMM library server.

 PS C:\> $VM = Get-VM -VMMServer VMMServer1.Contoso.com | where { $_.Library
 Server.Name -eq "FileServer01.Contoso.com" -and $_.Name -eq "VM03" }
 PS C:\> Remove-VM -VM $VM

 The first command gets the object that represents the virtual machine named
 VM03 (which is stored on the library server named FileServer01) and stores
 the virtual machine object in $VM. This example assumes that only one virt
 ual machine named VM03 exists.

 The second command removes the object that represents VM03 from the library
 and deletes the corresponding virtual machine files from the file system o
 n the library server.

 4: Remove multiple stored virtual machines from the VMM library and from th
 e library server.

 PS C:\> $MyVMs = Get-VM -VMMServer VMMServer1.Contoso.com | where { $_.Libr
 aryServer.Name -eq "FileServer01.Contoso.com" -and $_.Name -match “VM0” }
 PS C:\> $MyVMs | Remove-VM -Confirm

 The first command gets all objects that represent virtual machines whose na
 mes include the string "VM0" (as in VM01, VM02, and so on) and that are sto
 red stored on the library server named FileServer01. The command stores the
 matching virtual machine objects in $MyVMs (an object array).

 The second command passes each virtual machine object in $MyVMs to the Remo
 ve-VM cmdlet, which removes each object from the library and deletes the co
 rresponding virtual machine files from the file system on the library serve
 r. The Confirm parameter prompts you to confirm whether you want to delete
 these virtual machines.

REMARKS
 For more information, type: "get-help Remove-VM -detailed".
 For technical information, type: "get-help Remove-VM -full".

[bookmark: _Toc225244546]Repair-VM

SYNOPSIS
 Repairs a virtual machine on a host managed by Virtual Machine Manager if t
 he virtual machine is in a failed state.

SYNTAX
 Repair-VM [-VM] [<String VM>] -Undo <Boolean> [-JobVariable <String>] [-PRO
 TipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Repair-VM [-VM] [<String VM>] -Dismiss <Boolean> [-JobVariable <String>] [-
 PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

 Repair-VM [-VM] [<String VM>] -Retry <Boolean> [-JobVariable <String>] [-PR
 OTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Repairs a virtual machine on a host managed by Virtual Machine Manager if t
 he virtual machine is in a failed state. A virtual machine can be in one of
 four types of failed state:

 - Creation Failed
 - Migration Failed
 - Update Failed
 - Deletion Failed

 You can use this command to repair a failure as follows:

 * RETRY. You can use the Retry option, which will attempt to perform
 the failed job again.

 * UNDO. You can use the Undo option, which will attempt to undo any
 changes made to the virtual machine object and restore it to a healthy
 state. For example, if a Move-VM job fails, using the Undo option
 attempts to move the virtual machine back to its previous host.

 * DISMISS. You can use the Dismiss option, which dismisses the
 failed job and refreshes the virtual machine object based on its
 current state. If you manually fix a failure (for example, by
 manually moving the .vhd and .vmc files to a new host after a
 Move-VM failure), you can use the Dismiss option to refresh the
 data for the virtual machine in the Virtual Machine Manager
 database. However, using the Dismiss option might return the
 object to the failed state.

 When you run Repair-VM, you can specify only one type of action (Retry, Und
 o, or Dismiss) at a time.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -Dismiss <Boolean>
 Dismisses the error on an object and refreshes that object. If the erro
 r reappears, refreshing does not solve the problem and you must fix the
 error.

 -Retry <Boolean>
 Retries the last task that failed on a VMM object in an attempt to comp
 lete the task successfully.

 -Undo <Boolean>
 Cancels the last job run on a VMM object and reverses any changes that
 were made. This parameter is available only if the most recent job fail
 ed.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Repair a failed migration task by retrying the migration task.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Repair-VM -VM $VM -Retry

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 and stores the virtual machine object in variable $VM. This example
 assumes that the task that you want to repair by using the Retry parameter
 is an attempt to move (migrate) the virtual machine from one host to anothe
 r.

 The third command repairs VM01 by restarting the previous failed migration
 task, and returns the virtual machine object in the transitional state to t
 he user.

REMARKS
 For more information, type: "get-help Repair-VM -detailed".
 For technical information, type: "get-help Repair-VM -full".

[bookmark: _Toc225244547]Resume-VM

SYNOPSIS
 Resumes paused virtual machines managed by Virtual Machine Manager.

SYNTAX
 Resume-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>] [-
 RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Resumes one or more paused virtual machines managed by Virtual Machine Mana
 ger. A paused virtual machine is one that has been suspended by using the S
 uspend-VM cmdlet. Using the Resume-VM cmdlet to resume a virtual machine re
 turns its object in a Running state. When the virtual machine is running ag
 ain, the user can resume activity on that virtual machine.

 If you run Resume-VM on a virtual machine that is already running, the cmdl
 et returns a message indicating success but does not change the state of th
 at virtual machine.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Resume a paused virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM01" }
 PS C:\> Resume-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 (which this example assumes to be in a paused state) from the VMM da
 tabase and stores the virtual machine object in variable $VM.

 The last command puts VM01 into a running state and returns its object in a
 running state to the user.

 2: Resume all paused virtual machines.

 PS C:\> $VMs = Get-VM -VMMServer VMMServer1.Contoso.com | where {$_.Status
 -eq "Paused"}
 PS C:\> $VMs | Resume-VM

 The first command gets from VMMServer1 all objects that represent virtual m
 achines that are currently paused and stores the virtual machine objects in
 $VMs (an object array).

 The second command passes each object in $VMs to Resume-VM, which resumes e
 ach virtual machine.

REMARKS
 For more information, type: "get-help Resume-VM -detailed".
 For technical information, type: "get-help Resume-VM -full".

[bookmark: _Toc225244548]SaveState-VM

SYNOPSIS
 Saves the state of virtual machines managed by Virtual Machine Manager.

SYNTAX
 SaveState-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>]
 [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Saves the state (status and configuration changes) of one or more virtual m
 achines managed by Virtual Machine Manager. Putting a virtual machine into
 a saved state also returns its object in a saved state.

 The SaveState-VM cmdlet stores a virtual machine so that it can be quickly
 resumed, similar to a hibernated laptop. When you put a running virtual mac
 hine into a saved state, the cmdlet stops the virtual machine, writes the d
 ata that exists in memory to a temporary file with a .vsv extension (a save
 d-state file), and stops the consumption of system resources by the virtual
 machine.

 Restoring a virtual machine from a saved state returns it to the same condi
 tion that it was in when its state was saved. When you want to restore a vi
 rtual machine from a saved state, you can use either DiscardSavedState-VM (
 which returns the virtual machine object in a stopped state) or Start-VM (w
 hich returns the virtual machine object in a running state).

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Save the state of a specific virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> SaveState-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM. This example assumes that only one virtual machine named VM01 exis
 ts and that it is in a running state.

 The last command saves the state of VM01 and returns its object in a saved
 state to the user.

 2: Save the state of the specified virtual machines.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMs = Get-VM | where { $_.Name -match "VM0" -and $_.VMHost.Name -e
 q "VMHost02.Contoso.com" -and $_.Status -eq “Running” }

 PS C:\> $VMs | select Name,VMHost,Status

 PS C:\> $VMs | SaveState-VM | Out-Null

 PS C:\> $VMs | select Name,VMHost,Status

 The first command connects to VMMServer1.

 The second command gets the object for all virtual machines that match the
 following characteristics: the virtual machine name matches the string "VM0
 "; the host of the virtual machine is named VMHost02; and the virtual machi
 ne is in a running state. The command stores the selected virtual machine o
 bjects in $VMs.

 The third command displays the name, host, and current status of each virtu
 al machine object in $VMs to verify that these virtual machines match the s
 pecified characteristics.

 The fourth command passes each virtual machine object in $VMs to the SaveSt
 ate-VM cmdlet, which puts each virtual machine into a saved state. The comm
 and also uses the Out-Null cmdlet to redirect the output to $Null instead o
 f sending the output to the console.

 The last command displays the name, host, and current status of each virtua
 l machine object in $VMs to verify that the status of these virtual machine
 s is Saved.

REMARKS
 For more information, type: "get-help SaveState-VM -detailed".
 For technical information, type: "get-help SaveState-VM -full".

[bookmark: _Toc225244549]Set-VM

SYNOPSIS
 Changes properties of a virtual machine managed by Virtual Machine Manager.

SYNTAX
 Set-VM [-VM] [<String VM>] -JobGroup <Guid> [-BootOrder <BootDevice[]>] [-C
 ostCenter <String>] [-CPUCount <Int32>] [-CPUMax <Int32>] [-CPUReserve <Int
 32>] [-CPUType [<ProcessorType String>]] [-Custom1 <String>] [-Custom10 <St
 ring>] [-Custom2 <String>] [-Custom3 <String>] [-Custom4 <String>] [-Custom
 5 <String>] [-Custom6 <String>] [-Custom7 <String>] [-Custom8 <String>] [-C
 ustom9 <String>] [-DelayStart <Int32>] [-Description <String>] [-DiskIO <In
 t32>] [-EnableBackup <Boolean>] [-Enabled <Boolean>] [-EnableDataExchange <
 Boolean>] [-EnableHeartbeat <Boolean>] [-EnableOperatingSystemShutdown <Boo
 lean>] [-EnableTimeSynchronization <Boolean>] [-ExcludeFromPRO <Boolean>] [
 -ExpectedCPUUtilization <Int32>] [-HighlyAvailable <Boolean>] [-InstallVirt
 ualizationGuestServices] [-JobVariable <String>] [-LimitCPUFunctionality <B
 oolean>] [-MemoryMB <Int32>] [-Name <String>] [-NetworkUtilization <Int32>]
 [-NumLock] [-OperatingSystem <OperatingSystem>] [-Owner <String>] [-PROTip
 ID <Guid>] [-QuotaPoint <Int32>] [-RelativeWeight <Int32>] [-RemoveSelfServ
 iceUserRole <UserRole>] [-RunAsSystem] [-RunAsUserCredential <PSCredential>
] [-RunAsynchronously] [-StartAction <String>] [-StopAction <String>] [-Tag
 <String>] [-UseHardwareAssistedVirtualization] [-UserRole <UserRole>] [-VM
 wareResourcePool <VMwareResourcePool>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual machine managed by Virtual Mach
 ine Manager. Properties that you can change include:

 * Name, owner, and description of a VM.

 * BIOS boot order (for VMs on a Hyper-V host)

 * Amount of resources on the host used by a VM. These include:

 - Maximum amount of host CPU resources that a VM can use.
 - Minimum amount of host CPU resources that a VM can use.
 - Expected use of host CPU by a VM.
 - Amount of host CPU resources used by one VM relative to
 other VMs on the same host.
 - Amount of host memory that a VM can use.
 - Amount of bandwidth on the host's network that a VM can use.

 * Hardware settings for a VM unrelated to host resources. These include:

 - Number of CPUs
 - Type of CPU
 - Number of disk input/output operations per second (IOPS)
 - Limiting CPU functionality (for an older operating system,
 such as Windows NT 4.0)

 * Cost center, tag, and custom settings used to filter VMs by criteria
 that you set.

 * Settings that enable various optional capabilities, including:

 - Enabling or disabling a library object to make it available,
 or temporarily unavailable, to users
 - Enabling backing up a VM on a Hyper-V host with Volume Shadow Copy
 - Enabling a key/value pair for data exchange between a VM and its
 Hyper-V host
 - Enabling a signal to monitor a VM on a Hyper-V host.
 - Enabling shutdown of a VM from teh Hyper-V console.
 - Enabling time synchronization between a VM and its Hyper-V host.
 - Enabling the BIOS value for NumLock for a VM on a Windows host.

 * Setting that identifies whether a VM is highly available, that is,
 a VM to be deployed on a node of a Hyper-V host cluster.

 * Setting that determines whether virtualization guest services are
 installed on a Windows-based VM.

 * Number of seconds to delay before starting a VM.

 * Setting that identifies the operating system used for a VM.

 * Settings that specify whether to run a VM on a Virtual Server host under
 the local system account or under a guest account (domain\account).

 * Start and stop actions for a VM.

 * Setting that determines whether a VM on a Virtual Server host uses
 hardware-assisted virtualization.

 * Setting that limits the number of VMs self-service users can create.

 * Setting used to switch the role that a self-service user who belongs
 to multiple roles uses to manage a VM.

 * Setting that assigns a VM on an ESX host to a VMware resource pool.

 If you want to change the properties of a virtual floppy drive, virtual DVD
 drive, virtual network adapter, or virtual SCSI adapter associated with a
 specific virtual machine, you can use Set-VirtualFloppyDrive, Set-VirtualDV
 DDrive, Set-VirtualNetworkAdapter, or Set-VirtualSCSIAdapter, respectively.

 For more information about virtual machines, type:
 Get-Help New-VM -detailed

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -BootOrder <BootDevice[]>
 Specifies the order of devices that a virtual machine on a Hyper-V host
 uses to start up.
 Valid values: CD, IDEHardDrive, PXEBoot, or Floppy.
 Example: -BootOrder PXEBoot,IDEHardDrive,CD,Floppy

 -CostCenter <String>
 Specifies the cost center for a virtual machine so that you can collect
 data about the allocation of virtual machines (or resources allocated
 to virtual machines) to make use of in your billing system.

 -CPUCount <Int32>
 Specifies the number of CPUs on a virtual machine, on a hardware profil
 e, or on a template. See the examples for a specific cmdlet to determin
 e how that cmdlet uses this parameter.
 TYPE OF HOST NUMBER OF PROCESSORS
 ------------ --------------------
 Virtual Server 1 CPU per VM
 Hyper-V Up to 4 CPUs per VM; varies by guest OS
 VMware ESX Up to 4 CPUs per VM for any supported guest OS
 Exception: 1 CPU on a VM running Windows NT 4.0
 Note: In VMM 2007, this parameter was named ProcessorCount.

 -CPUMax <Int32>
 Specifies the highest percentage of the total resources of a single CPU
 on the host that can be used by a specific virtual machine at any give
 n time.
 Example: -CPUMax 80 (to specify 80 per cent)

 -CPUReserve <Int32>
 Specifies the minimum percentage of the resources of a single CPU on th
 e host to allocate to a virtual machine. The percentage of CPU capacity
 that is available to the virtual machine is never less than this perce
 ntage.

 -CPUType [<ProcessorType String>]
 Specifies the type of CPU for a virtual machine. To retrieve a list of
 all CPU types that are available for use in virtual machines in a VMM e
 nvironment, type: "Get-CPUType"

 -Custom1 <String>
 Specifies a custom property on a VMM object.

 -Custom10 <String>
 Specifies a custom property on a VMM object.

 -Custom2 <String>
 Specifies a custom property on a VMM object.

 -Custom3 <String>
 Specifies a custom property on a VMM object.

 -Custom4 <String>
 Specifies a custom property on a VMM object.

 -Custom5 <String>
 Specifies a custom property on a VMM object.

 -Custom6 <String>
 Specifies a custom property on a VMM object.

 -Custom7 <String>
 Specifies a custom property on a VMM object.

 -Custom8 <String>
 Specifies a custom property on a VMM object.

 -Custom9 <String>
 Specifies a custom property on a VMM object.

 -DelayStart <Int32>
 Specifies the number of seconds to wait after the virtualization servic
 e starts before automatically starting a virtual machine. Used to stagg
 er the startup time of multiple virtual machines to help reduce the dem
 and on the physical computer’s resources. A typical setting might be 30
 to 60 seconds.
 TYPE OF HOST MAXIMUM CONFIGURABLE DELAY
 ------------ --------------------------------
 Hyper-V 1000000000 seconds (277777 hours)
 Virtual Server 86400 seconds (24 hours)
 VMware ESX 65535 seconds (18 hours)

 -Description <String>
 Specifies a description for the specified object.

 -DiskIO <Int32>
 Specifies the number of disk input/output operations per second (IOPS)
 on the host that can be used by a specific virtual machine.
 Example: -DiskIO 1500 (to specify 1500 IOPS).

 -EnableBackup <Boolean>
 Enables the use of the Volume Shadow Copy service to back up a virtual
 machine if the virtual machine is deployed on a Hyper-V host.

 -Enabled <Boolean>
 Enables a library object (when set to TRUE) or disables a library objec
 t (when set to FALSE). For example, if you want to upgrade software on
 a virtual machine template, you can disable the template object in the
 VMM library to temporarily prevent users from using that object.

 -EnableDataExchange <Boolean>
 Enables the use of a key/value pair for the exchange of data between a
 virtual machine and the host operating system if the virtual machine is
 deployed on a Hyper-V host.

 -EnableHeartbeat <Boolean>
 Enables the use of a heartbeat (a signal emitted at regular intervals)
 to monitor the health of a virtual machine deployed on a Hyper-V host.

 -EnableOperatingSystemShutdown <Boolean>
 Enables the shut down of the operating system on a virtual machine mana
 ged by VMM from Hyper-V's management interfaces on the host if the virt
 ual machine is deployed on a Hyper-V host.

 -EnableTimeSynchronization <Boolean>
 Enables synchronizing the system time of a virtual machine with the sys
 tem time of the operating system running on the host if the virtual mac
 hine is deployed on a Hyper-V host.

 -ExcludeFromPRO <Boolean>
 Excludes (when set to TRUE) this virtual machine from being changed by
 implementing host-targeted PRO tips.

 -ExpectedCPUUtilization <Int32>
 Specifies (as a percentage) the amount of CPU on the host that you expe
 ct this virtual machine to use. This value is used only when VMM determ
 ines a suitable host for the virtual machine.

 -HighlyAvailable <Boolean>
 Specifies that a virtual machine will be placed on a Hyper-V host that
 is part of a host cluster. Configure this setting on a virtual machine,
 or on a template or hardware profile that will be used to create virtu
 al machines.

 -InstallVirtualizationGuestServices
 Installs virtualization guest services on a Windows-based virtual machi
 ne. By default, this parameter is set to FALSE and
 VMM installs the appropriate virtualization guest service automatically
 . For a virtual machine on a Hyper-V host, the virtualization guest ser
 vice is called Integration Components (VMGuest.iso). For a virtual mach
 ine on a Virtual Server host, the virtualization guest service is calle
 d Virtual Machine Additions (VMAdditions.iso). Virtual machines on a VM
 ware ESX host do not use a virtualization guest service.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LimitCPUFunctionality <Boolean>
 Enables running an older operating system (such as Windows NT 4.0) on a
 virtual machine deployed on a Hyper-V host or on a VMware ESX host by
 providing only limited CPU functionality for the virtual machine.

 -MemoryMB <Int32>
 Specifies, in megabytes (MB), the total amount of memory on the host th
 at is assigned to a virtual machine.
 TYPE OF HOST MAXIMUM HOST MEMORY ASSIGNABLE TO VM
 ------------ ------------------------------------
 Virtual Server Up to 3712 MB (3.7 GB) RAM per VM
 Hyper-V Up to 65536 MB (64.0 GB) RAM per VM
 VMware ESX Server 3.0.x Up to 16384 MB (16.0 GB) RAM per VM
 VMware ESX Server 3.5.x Up to 65536 MB (64.0 GB) RAM per VM

 -Name <String>
 Specifies the name of a VMM object.

 -NetworkUtilization <Int32>
 Specifies, in megabits per second (Mb/s), the amount of bandwidth on th
 e host's network that can be used by a specific virtual machine.
 Example: -NetworkUtilization 10 (to specify 10 Mb/s)

 -NumLock
 Enables the BIOS value for NumLock on a virtual machine (or on a templa
 te or hardware profile that is used to create virtual machines) on a Hy
 per-V host. This parameter does not apply to virtual machines on Virtua
 l Server hosts or on VMware ESX hosts.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -QuotaPoint <Int32>
 Specifies a quota that limits the number of virtual machines self-servi
 ce users can create.

 -RelativeWeight <Int32>
 Specifies the amount of CPU resources on a host that this virtual machi
 ne can use relative to other virtual machines on the same host. A virtu
 al machine with a higher setting is allocated more CPU resources than a
 virtual machine with a lower setting.
 TYPE OF HOST RANGE OF RELATIVE VALUES
 ------------ ------------------------
 Virtual Server 1 to 10000
 Hyper-V 1 to 10000
 VMware ESX 2000 = High
 1500 = Above Normal
 1000 = Normal (default)
 750 = Below Normal
 500 = Low
 1 to 1000000 = Custom
 The VMware term for these values is "shares."
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et uses this parameter.

 -RemoveSelfServiceUserRole <UserRole>
 Removes the specified self-service user role from the permission list o
 f the virtual machine.

 -RunAsSystem
 Specifies that a virtual machine on a Virtual Server host will run unde
 r the local system account. If specified, Virtual Server will not autom
 atically start the virtual machine when the Virtual Server service star
 ts. (This parameter does not apply to virtual machines on Hyper-V or VM
 ware ESX hosts because Hyper-V and VMware run a virtual machine under t
 he local system account by default; you cannot change this setting on t
 hose virtualization platforms.)

 -RunAsUserCredential <PSCredential>
 Specifies the guest account (domain\account) that a virtual machine on
 a Virtual Server host runs under. If specified, Virtual Server will aut
 omatically start a virtual machine when the Virtual Server service star
 ts. For enhanced security, create a special account with limited permis
 sions:
 FILE TYPE MINIMUM REQUIRED PERMISSIONS FOR GUEST ACCOUNT
 ----------- --
 .vmc file Read Data, Write Data, Execute File
 .vmc folder List Folder, Write/Create File (required to save VM state)
 .vhd file Read Data, Read Attributes, Read Extended Attributes,
 Write Data
 .vnc file Execute File, Read Data, Read Attributes, Read
 (required if VM connects to a virtual network)
 Note: This parameter does not apply to virtual machines on Hyper-V or V
 Mware ESX hosts.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -StartAction <String>
 Specifies the behavior of a virtual machine when the virtualization ser
 vice (Hyper-V, Virtual Server, or VMware) starts. To specify that a vir
 tual machine deployed on a Virtual Server host starts automatically, us
 e the -RunAsUserCredential parameter to specify an account with appropr
 iate permissions (otherwise, the StartAction reverts to NeverAutoTurnOn
 VM).
 Valid values: AlwaysAutoTurnOnVM, NeverAutoTurnOnVM, TurnOnVMIfRunningW
 henVSStopped

 -StopAction <String>
 Specifies the behavior of the virtual machine when the virtualization s
 ervice (Hyper-V, Virtual Server, or VMware) stops.
 Valid values: SaveVM, TurnOffVM, ShutdownGuestOS

 -Tag <String>
 Associates a word or phrase with a virtual machine (or a template used
 to create virtual machines) so that you can search for all virtual mach
 ines with that tag as a set.

 -UseHardwareAssistedVirtualization
 Specifies that, for a virtual machine deployed on a Virtual Server host
 , hardware-assisted virtualization is used if it is available (when set
 to TRUE). The Virtual Server host must support AMD Virtualization (AMD
 -V) or Intel Virtualization Technology (Intel-VT) hardware virtualizati
 on. This parameter does not apply to virtual machines on Hyper-V hosts
 or VMware ESX hosts.

 -UserRole <UserRole>
 Specifies a user role object.

 -VMwareResourcePool <VMwareResourcePool>
 Assigns a virtual machine deployed on a VMware ESX host to a specific V
 Mware resource pool.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Specify an amount of memory for an existing virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> if($VM.Status -ne "PowerOff"){Stop-VM -VM $VM}
 PS C:\> Set-VM -VM $VM -MemoryMB 1024

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command verifies whether the VM is in a powered off state. If the
 VM is not in a powered off state, the command uses the Stop-VM command to
 power off the VM. (Using Stop-VM to power off the VM is similar to pulling
 the plug to power off a physical computer. Alternatively, you can use the S
 hutdown-VM cmdlet to shut down the virtual machine in a way that is compara
 ble to pushing the power button on a physical machine so that the operating
 system can shut itself down systematically.)

 The last command changes the memory allocated to VM01 to 1024 MB. This is t
 he amount of memory on the host that VM01 can use.

 2: For a user who belongs to multiple self-service user roles, switch the r
 ole used to manage a specific VM.

 PS C:\> $VM = Get-VM -VMMServer "VMMServer1.Contoso.com" -Name "VM02"
 PS C:\> $SSRole = Get-VMMUserRole | where { $_.Name -eq "SSUserRole3" }
 PS C:\> Set-VM -VM $VM -UserRole $SSRole

 The first command gets from VMMServer1 the object that represents the VM na
 med VM02 and stores the VM object in $VM.

 The second command gets the object that represents the self-service user ro
 le named SSUserRole3 and stores the user role object in $SSRole.

 The last command specifies that members of the self-service user role calle
 d SSUserRole3 are now granted the permission to manage the VM called VM02.

 WHAT YOU NEED TO KNOW:

 VMM uses the UserRole parameter to set which VMs are managed by the members
 of a specific self-service user role. Typically, you do not need to use th
 e Set-VM cmdlet with the UserRole parameter to configure this setting. Howe
 ver, if one or more users are members of multiple self-service user roles a
 nd you grant them permission to manage multiple VMs on the same host, you m
 ight encounter a case where want to switch which user role is authorized to
 manage a particular VM. This example illustrates that scenario.

 3. Disable time syncronization on a virtual machine used as a domain contro
 ller.

 PS C:\> $EAP = $ErrorActionPreference

 PS C:\> $ErrorActionPreference = "STOP"

 PS C:\> Get-VMMServer "VMMServer1.contoso.com"

 PS C:\> $VM = Get-VM | where {$_.Name -eq "VM03"}

 PS C:\> trap{"Fail: Cannot disable Time Synchronization for VM: $VM";contin
 ue} Set-VM -VM $VM -EnableTimeSynchronization $TRUE | Out-Null

 PS C:\> $ErrorActionPreference = $EAP

 The first command stores the current setting for $ErrorActionPreference in
 variable $EAP. This variable will be used later to return the setting to it
 s original value.

 The second command sets the action preference to STOP. This error action pr
 eference changes an error from a non-terminating error to a terminating err
 or. The error object is thrown as an exception instead of being written to
 the output pipe, and execution does not continue.

 The third command connects to VMMServer1.

 The fourth command gets the object that represents a VM named VM03 and stor
 es the virtual machine object in $VM.

 The fifth command disables the time syncronization setting. Typically, disa
 bling time synchronization is required for VMs that act as domain controlle
 rs. The command uses the trap statement to catch terminating exceptions. If
 the Set-VM command fails, the string in the trap statement is displayed. C
 ontinue is used in the trap statement to continue execution instead of exit
 ing. The Out-Null cmdlet redirects the output to $Null instead of sending i
 t to the console.

 The last command sets the value for $ErrorActionPreference to the value sto
 red in $EAP.

 4. Set the device boot order for all VMs that support this feature.

 PS C:\> $EAP = $ErrorActionPreference

 PS C:\> $ErrorActionPreference = "STOP"

 PS C:\> Get-VMMServer "VMMServer1.Contoso.com"

 PS C:\> $VMs = @(Get-VM)

 PS C:\> foreach($VM in $VMs){trap{"Fail: Cannot set BIOS for VM: $VM";conti
 nue} Set-VM -VM $VM -BootOrder "PXEBoot","IDEHarddrive","CD","Floppy" | Out
 -Null}

 PS C:\> $ErrorActionPreference = $EAP

 The first command stores the current setting for $ErrorActionPreference in
 $EAP. This variable will be used later to return the setting to its origina
 l value.

 The second command sets the action preference to STOP. This error action pr
 eference changes an error from a non-terminating error to a terminating err
 or. The error object is thrown as an exception instead of being written to
 the output pipe, and execution does not continue.

 The third command connects to VMMServer1.

 The fourth command gets the object that represents each VM and stores the V
 M objects in $VMs. Using the '@' symbol and parentheses ensures that the co
 mmand stores the results in an array (in case the command returns a single
 object or a null value).

 The fifth command sets the BIOS boot order for each VM to PXEBoot,IDEHarddr
 ive,CD,Floppy. The command uses trap statement to catch terminating excepti
 ons. If the Set-VM command fails, the string in the trap statement is displ
 ayed. Continue is used in the trap statement to continue execution instead
 of exiting the foreach loop. The Out-Null cmdlet redirects the output to $N
 ull instead of sending it to the console.

 NOTE: The BootOrder parameter is used only for virtual machines on Hyper-V
 hosts; it is not used for virtual machines on Virtual Server or VMware ESX
 hosts.

 The last command sets the value for $ErrorActionPreference to the value sto
 red in EAP.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

 5: Specify an owner for all virtual machines with an "Unknown" owner.

 PS C:\> Get-VM -VMMServer "VMMServer1.Contoso.com" | where {$_.Owner -eq "U
 nknown"} | Set-VM -Owner "Contoso\KimAkers"

 Gets all VM objects from the VMM database, selects only those VM objects wh
 ose owner is "Unknown," and specifies an owner for each VM.

REMARKS
 For more information, type: "get-help Set-VM -detailed".
 For technical information, type: "get-help Set-VM -full".

[bookmark: _Toc225244550]Shutdown-VM

SYNOPSIS
 Shuts down a running virtual machine managed by Virtual Machine Manager.

SYNTAX
 Shutdown-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>]
 [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Shuts down one or more running virtual machines managed by Virtual Machine
 Manager and returns the object or objects in an off state.

 The Shutdown-VM cmdlet shuts down a running virtual machine in a way that i
 s comparable to pushing the power button on a physical machine so that the
 operating system can shut itself down systematically. However, you can use
 Shutdown-VM on a virtual machine on a Windows-based host (a Hyper-V host or
 a Virtual Server host) only if virtualization guest services are installed
 on the virtual machine. Virtualization guest services provide software dri
 vers that improve performance and make it easier to use a virtual machine.

 For a virtual machine deployed on a Hyper-V host, the virtualization guest
 service is called Integration Components. For a virtual machine deployed on
 a Virtual Server host, the virtualization guest service is called Virtual
 Machine Additions.

 If virtualization guest services are not installed on a Hyper-V or Virtual
 Server host, you must use the Stop-VM cmdlet to stop a running virtual mach
 ine. Stop-VM stops a running virtual machine in the same way that a physica
 l machine stops when you pull out its power plug.

 When you want to start a virtual machine that has been shut down, use the S
 tart-VM cmdlet.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Shuts down the specified virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Shutdown-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM. This example assumes that only one virtual machine named VM01 exis
 ts and that it is in a running state.

 The last command shuts down VM01 and returns its object in an Off state to
 the user.

REMARKS
 For more information, type: "get-help Shutdown-VM -detailed".
 For technical information, type: "get-help Shutdown-VM -full".

[bookmark: _Toc225244551]Start-VM

SYNOPSIS
 Starts virtual machines managed by Virtual Machine Manager.

SYNTAX
 Start-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>] [-R
 unAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Starts one or more virtual machines on hosts managed by Virtual Machine Man
 ager when the machines are currently turned off. Starting a turned off virt
 ual machine restores it to a running state and returns its object in a runn
 ing state. When the virtual machine is running again, you can resume activi
 ty on that virtual machine.

 If you run Start-VM on a virtual machine that is already running, the cmdle
 t returns a message indicating success but does not change the state of the
 virtual machine.

 If you want to stop a running virtual machine, use the Stop-VM cmdlet.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Start a virtual machine that is currently turned off.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Start-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The last command starts VM01, which is currently turned off, and returns it
 s object in a running state to the user.

 2: Start all virtual machines that are currently turned off.

 PS C:\> $VMs = Get-VM -VMMServer VMMServer1.Contoso.com | where { $_.Status
 -eq "PowerOff" }
 PS C:\> $VMs | Start-VM

 The first command gets all objects that represent virtual machines that are
 currently turned off and stores these objects in $VMs (an object array).

 The second command passes each virtual machine object in $VMs to the Start-
 VM cmdlet, which starts each virtual machine in the array.

REMARKS
 For more information, type: "get-help Start-VM -detailed".
 For technical information, type: "get-help Start-VM -full".

[bookmark: _Toc225244552]Stop-VM

SYNOPSIS
 Stops virtual machines on hosts managed by Virtual Machine Manager.

SYNTAX
 Stop-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>] [-Ru
 nAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Stops one or more running virtual machines on hosts managed by Virtual Mach
 ine Manager and returns the virtual machine object or objects in a stopped
 state. Stop-VM stops a virtual machine in the same way that a physical mach
 ine stops when you pull out its power plug.

 When you want to resume running a stopped virtual machine, use the Start-VM
 cmdlet.

 For information about an alternative way to shut down a virtual machine, wh
 ich is comparable to pushing the power button on a physical machine so that
 the operating system can shut itself down systematically, type:

 Get-Help Shutdown-VM -detailed

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Stop a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Stop-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM. This example assumes that only one virtual machine named VM01 exis
 ts and that it is currently in a running state.

 The last command stops VM01 and returns its stopped object to the user.

 NOTE: This command will fail if the virtual machine is in a state (such as
 powered off or stored) for which the "stop" action is invalid.

 2: Stop multiple virtual machines.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $SelectVMs = Get-VM | where { $_.Name -match "PartialName" -and $_.
 Status -eq "Running" }
 PS C:\> Get-VM | Stop-VM

 The first command connects to VMMServer1.

 The second command gets the objects for all virtual machines whose name mat
 ches the specified string and whose current status is "Running", and it sto
 res those virtual machine objects in $SelectVMs.

 The last command passes each virtual machine object in $SelectVMs to Stop-
 VM, which stops each virtual machine.

 NOTE: This command will fail for any virtual machine that is in a state (su
 ch as powered off) for which the "stop" action is invalid.

REMARKS
 For more information, type: "get-help Stop-VM -detailed".
 For technical information, type: "get-help Stop-VM -full".

[bookmark: _Toc225244553]Store-VM

SYNOPSIS
 Stores a virtual machine currently deployed on a virtual machine host by mi
 grating it from the host to the Virtual Machine Manager library.

SYNTAX
 Store-VM [-VM] [<String VM>] -LibraryServer [<String LibraryServer>] -Share
 Path <String> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronousl
 y] [-UseLAN <Boolean>] [<CommonParameters>]

DETAILED DESCRIPTION
 Stores a virtual machine currently deployed on a virtual machine host by mi
 grating it from the host to the Virtual Machine Manager library. A virtual
 machine must be in a saved state, shut down, or turned off before it can be
 moved from the host and stored in the library.

 The Store-VM cmdlet lets you store a virtual machine by using one of the fo
 llowing transfer methods:

 * SAN TRANSFER (Fibre Channel, iSCSI, or NPIV) - If the host and library
 server are both connected to SAN storage, VMM can use a SAN transfer to
 store the virtual machine in the library. In a SAN transfer, the target
 LUNs are remapped from the source host to the destination library
 server. No files are moved, which is why a SAN transfer is much faster
 than moving virtual machine files from one host to another over a
 local area network (LAN). VMM can use an NPIV SAN transfer if a host
 bus adapter (HBA) with NPIV support is available.

 * NETWORK TRANSFER - If no faster method is available, VMM uses a
 network transfer to move the virtual machine files from the host server
 to the library server over the LAN that connects the two servers. You
 must use the -SharePath parameter to specify the path to the share in
 the library where you want to store the virtual machine.

 Store-VM automatically uses the fastest available transfer type. If you wan
 t to force a network transfer, you can use the UseLAN parameter. If the hos
 t server and library server are the same server, the command will not fail
 if you specify the UseLAN parameter, but the migration to the library will
 occur faster if you do not use that parameter.

 When a virtual machine is stored in the library, it cannot be started. Befo
 re you can start the virtual machine, you must use the Move-VM cmdlet to mo
 ve it from the library to a virtual machine host.

 NOTE: For information about how to put the VM into a saved state, shut it d
 own, or turn it off, type:

 Get-Help SaveState-VM -detailed
 Get-Help Shutdown-VM -detailed
 Get-Help Stop-VM -detailed

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -SharePath <String>
 Specifies a path to a valid library share on an existing library server
 that uses a Universal Naming Convention (UNC) path.
 Example format: –SharePath "\\FileServer01\LibShare"

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -UseLAN <Boolean>
 Forces a transfer over the local area network (LAN) even if a faster tr
 ansfer mechanism, such as a storage area network (SAN) transfer, is ava
 ilable.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Store a virtual machine in the library.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $Library = Get-LibraryServer -ComputerName "FileServer01"
 PS C:\> Store-VM -LibraryServer $Library -VM $VM -SharePath "\\FileServer01
 .Contoso.com\MyLibrary1\VMs"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The third command gets the object that represents the library server named
 FileServer01 and stores the library server object in variable $Library.

 The last command removes VM01 from its host and stores it to the location \
 \FileServer01.Contoso.com\MyLibrary1\VMs on FileServer01. The command autom
 atically uses the fastest available transfer type.

 NOTE: A virtual machine must be in a saved state, shut down, or turned off
 before it can be moved from the host and stored in the library. For more in
 formation, type:

 Get-Help SaveState-VM -detailed
 Get-Help Shutdown-VM -detailed
 Get-Help Stop-VM -detailed

 2: Store a virtual machine in the library asynchronously.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM02"
 PS C:\> $Library = Get-LibraryServer -ComputerName "FileServer02"
 PS C:\> Store-VM -LibraryServer $Library -VM $VM -SharePath "\\FileServer02
 .Contoso.com\MyLibrary1\VMs" -RunAsynchronously -JobVariable "MyJob"
 PS C:\> $MyJob

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third command gets the object that represents the library server named
 FileServer02 and stores the library server object in $Library.

 The fourth command stores VM02 to the location \\MyLibrary1\VMs on FileServ
 er02. The RunAsynchronously parameter returns control to the shell immediat
 ely and the JobVariable parameter tracks job progress and stores a record o
 f its progress in MyJob. For JobVariable, you do not use the dollar sign ($
) when the variable is created.

 The last command displays the contents of $MyJob.

 3: Store a virtual machine in the library by forcing a network transfer.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM03"
 PS C:\> $Library = Get-LibraryServer -ComputerName "FileServer01"
 PS C:\> Store-VM -LibraryServer $Library -VM $VM -SharePath "\\FileServer01
 .Contoso.com\MyLibrary1\VMs" -UseLAN

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM03 and stores the virtual machine object in $VM.

 The third command gets the object that represents the library server named
 FileServer03 and stores the library server object in $Library.

 The last command stores VM03 to the location \\MyLibrary1\VMs on FileServer
 03. The UseLAN parameter forces a network transfer over the LAN even if a f
 aster transfer mechanism is available.

REMARKS
 For more information, type: "get-help Store-VM -detailed".
 For technical information, type: "get-help Store-VM -full".

[bookmark: _Toc225244554]Suspend-VM

SYNOPSIS
 Suspends execution on virtual machines managed by Virtual Machine Manager.

SYNTAX
 Suspend-VM [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <Guid>] [
 -RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Suspends execution on one or more virtual machines deployed on hosts manage
 d by Virtual Machine Manager. Suspending a virtual machine freezes, or paus
 es, activity on that virtual machine and returns its object in a paused sta
 te.

 You can use the Resume-VM cmdlet to put a suspended virtual machine back in
 to a running state.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Suspend the specified virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Suspend-VM -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the virtual machine name
 d VM01 from the VMM database and stores the virtual machine object in varia
 ble $VM.

 The last command suspends VM01 and displays information about its suspended
 object to the user.

REMARKS
 For more information, type: "get-help Suspend-VM -detailed".
 For technical information, type: "get-help Suspend-VM -full".

[bookmark: _Toc225244555]VMCheckpoint
[bookmark: _Toc225244556]Get-VMCheckpoint

SYNOPSIS
 Gets virtual machine checkpoint objects from the Virtual Machine Manager da
 tabase.

SYNTAX
 Get-VMCheckpoint [-MostRecent] [-VM [<String VM>]] [-VMMServer [<String Ser
 verConnection>]] [<CommonParameters>]

 Get-VMCheckpoint [-ID <Guid>] [-VMMServer [<String ServerConnection>]] [<Co
 mmonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual machine checkpoints from th
 e Virtual Machine Manager database. A virtual machine checkpoint is a point
 -in-time "snapshot" of a virtual machine.

 If the virtual machine is running on a Hyper-V host or on a VMware host, ch
 eckpoint properties that you can retrieve with the Get-VMCheckpoint cmdlet
 have been expanded to include hardware properties. If the virtual machine i
 s running on a Virtual Server host, checkpoint properties do not include ha
 rdware properties.

 You can use the checkpoint later to revert the virtual machine to its origi
 nal state.

 For more information about Virtual Machine Manager checkpoints, type:
 Get-Help New-VMCheckpoint -detailed

PARAMETERS
 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -MostRecent
 Specifies the most recent VMM virtual machine checkpoint object.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all checkpoints for each virtual machine.

 PS C:\> Get-VMCheckpoint -VMMServer VMMServer1.Contoso.com

 Gets from the VMM database on VMMServer1 all checkpoint objects for each vi
 rtual machine and displays information about these checkpoint objects to th
 e user.

 This (and subsequent) examples assume that checkpoints were created earlier
 on one or more virtual machines in your VMM environment.

 2: Get all checkpoints for one or more virtual machines with a specific nam
 e.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Checkpoints = Get-VMCheckpoint -VM "VM01"
 PS C:\> Write-Output $Checkpoints

 The first command connects to VMMServer1.

 The second command gets all virtual machine checkpoint objects for any virt
 ual machine named VM01 that is deployed on any host managed by VMM. The com
 mand stores these checkpoint objects in $Checkpoints (an object array).

 The last command displays the checkpoint objects in $Checkpoints.

 3: Get the hardware profile of the last restored checkpoint on a VM deploye
 d on a Hyper-V host.

 PS C:\> $VM = Get-VM -VMMServer VMMServer1.Contoso.com -Name "VM04"
 PS C:\> $VM.LastRestoredVMCheckpoint.CheckpointHWProfile

 The first command gets the object that represents VM04 from VMMServer1 and
 stores this object in $VM. This example assumes that multiple checkpoints e
 xist and that the virtual machine has been restored to one of the checkpoin
 ts.

 The second command displays information about the hardware profile of the l
 ast restored checkpoint on VM04, including the number of CPUs, the amount o
 f memory, and so on.

 NOTE: If the virtual machine is deployed on a Hyper-V host or on a VMware h
 ost, the checkpoint properties include the hardware profile. However, if th
 e virtual machine is deployed on a Virtual Server host, the checkpoint prop
 erties do not include the hardware profile.

 4: Get the hardware profile of the most recently created checkpoint on a VM
 deployed on a Hyper-V host.

 PS C:\> $VM = Get-VM -VMMServer VMMServer1.Contoso.com -Name "VM05"
 PS C:\> $Checkpoint = $VM | Get-VMCheckpoint -MostRecent
 PS C:\> $Checkpoint.CheckpointHWProfile

 The first command gets the object that represents VM05 and stores this obje
 ct in $VM.

 The second command gets the most recent checkpoint object created for VM05
 and stores that checkpoint object in $Checkpoint.

 The last command displays information about the hardware profile of the mos
 t recent checkpoint created for VM05.

 NOTE: If the virtual machine is deployed on a Hyper-V host or on a VMware h
 ost, the checkpoint properties include the hardware profile. However, if th
 e virtual machine is deployed on a Virtual Server host, the checkpoint prop
 erties do not include the hardware profile.

 5: Display the .NET type, methods, and properties for checkpoint objects on
 VMs deployed on Hyper-V or VMware hosts.

 PS C:\> $Checkpoints = Get-VMCheckpoint -VMMServer VMMServer1.Contoso.com
 PS C:\> $Checkpoints | Get-Member
 PS C:\> $Checkpoints | Get-Member | Format-List

 The first command gets from VMMServer1 all checkpoint objects for each virt
 ual machine and stores the checkpoint objects in $Checkpoints (an object ar
 ray).

 The second command passes each checkpoint object in $Checkpoints to the Get
 -Member cmdlet, which displays the following:

 * TypeName: Microsoft.SystemCenter.VirtualMachineManager.VMSnapshot

 * MemberType: A list of the name and definition for each method and
 property associated with this object type.

 The last command is the same as the second command except that it pipes the
 output to the Format-List cmdlet so that you can see the complete definiti
 on for each method and each property for the checkpoint object type.

 NOTE: This example assumes that the checkpoints are for a virtual machine d
 eployed on either a Hyper-V host or on a VMware ESX host. Checkpoints for a
 virtual machine deployed on a Virtual Server host are a different .NET typ
 e:

 Microsoft.SystemCenter.VirtualMachineManager.VMCheckpoint

REMARKS
 For more information, type: "get-help Get-VMCheckpoint -detailed".
 For technical information, type: "get-help Get-VMCheckpoint -full".

[bookmark: _Toc225244557]Merge-VMCheckpoint

SYNOPSIS
 Removes a virtual machine checkpoint object from the Virtual Machine Manage
 r database.

 NOTE: In VMM 2008, this cmdlet was renamed Remove-VMCheckpoint. This cmdle
 t will be deprecated in future releases.

SYNTAX
 Merge-VMCheckpoint -VMCheckpoint <VMCheckpoint> [-Confirm] [-JobGroup <Guid
 >] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<Common
 Parameters>]

DETAILED DESCRIPTION
 Removes a checkpoint object for a virtual machine from the Virtual Machine
 Manager database.

PARAMETERS
 -VMCheckpoint <VMCheckpoint>
 Specifies a VMM virtual machine checkpoint object.

 -Confirm
 Prompts for confirmation before running the command.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove the most recent checkpoint for a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Checkpoints = Get-VMCheckpoint -VM "VM01"
 PS C:\> Remove-VMCheckpoint -VMCheckpoint $Checkpoints[0] -Confirm

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets from the VMM database all checkpoint objects for th
 e virtual machine called VM01 and stores these objects in variable $Checkpo
 ints (an object array). This example assumes that VM01 has several checkpoi
 nts.

 The third command removes the first checkpoint in the array ($Checkpoints[0
]). The Confirm parameter prompts you to confirm whether you want to remove
 the checkpoint.

 CAUTION: You cannot remove a checkpoint from a running virtual machine if t
 he virtual machine is deployed on a Virtual Server host. Therefore, if the
 virtual machine is on a Virtual Server host, the Remove-VMCheckpoint cmdlet
 shuts down or stops the virtual machine while the cmdlet processes the ope
 ration. Whether the virtual machine is shut down or stopped depends on whet
 her or not the virtualization guest service appropriate for a virtual machi
 ne on a Virtual Server host (Virtual Machine Additions) is installed on the
 virtual machine:

 * If Virtual Machine Additions is installed on the virtual machine,
 VMM shuts down the virtual machine (comparable to using Shut Down
 from the Start menu) before the checkpoint is removed.

 * If Virtual Machine Additions is not installed on the virtual machine,
 the virtual machine is stopped without warning (comparable to
 pulling out the power plug on a physical machine) if you perform this
 operation from the command line. (If you perform this operation from
 the Administrator Console, a warning message appears before the
 virtual machine is stopped.)

 2: Remove the specified checkpoint for a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Checkpoints = Get-VMCheckpoint -VM "VM02"
 PS C:\> Remove-VMCheckpoint -VMCheckpoint $Checkpoints[1]

 The first command connects to VMMServer1.

 The second command gets all virtual machine checkpoint objects for VM02 and
 stores these objects in variable $Checkpoints (an object array). This exam
 ple assumes that VM02 has two checkpoints, so $Checkpoints contains two che
 ckpoint objects.

 The third command removes the second checkpoint ($Checkpoints[1])

 CAUTION: You cannot remove a checkpoint from a running virtual machine if t
 he virtual machine is deployed on a Virtual Server host. For more informati
 on, see the CAUTION in Example 1.

REMARKS
 For more information, type: "get-help Merge-VMCheckpoint -detailed".
 For technical information, type: "get-help Merge-VMCheckpoint -full".

[bookmark: _Toc225244558]New-VMCheckpoint

SYNOPSIS
 Creates a virtual machine checkpoint object for a virtual machine deployed
 on a host managed by Virtual Machine Manager.

SYNTAX
 New-VMCheckpoint [-VM] [<String VM>] [-Confirm] [-Description <String>] [-J
 obVariable <String>] [-Name <String>] [-PROTipID <Guid>] [-RunAsynchronousl
 y] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a virtual machine checkpoint object for a virtual machine deployed
 on a host managed by Virtual Machine Manager. You can use a checkpoint to r
 estore a virtual machine to a previous state.

 A typical use is to create a checkpoint before you install an update to the
 operating system or to an application on the virtual machine so that, if t
 he update fails or adversely affects the virtual machine, you can use the R
 estore-VMCheckpoint cmdlet to revert the virtual machine to its original st
 ate.

 For virtual machines deployed on a Hyper-V host or on a VMware ESX host, Vi
 rtual Machine Manager creates the checkpoint without stopping the virtual m
 achine, so no interruption in service occurs.

 However, for virtual machines deployed on a Virtual Server host, it is advi
 sable to shut down a virtual machine before creating a checkpoint. If the v
 irtual machine is not in a Stopped or Turned Off state, Virtual Machine Man
 ager must stop the virtual machine momentarily while the checkpoint is crea
 ted.

 It is important to back up data files on a virtual machine before you resto
 re the virtual machine to a checkpoint. When you restore the virtual machin
 e, user data files on its virtual hard disks are returned to their previous
 state.

 Although checkpoints let you restore a virtual machine to a previous state
 after a change such as a system or application update, checkpoints do not p
 rovide a permanent backup of the operating system, applications, or files.
 Checkpoints are stored with the virtual machine on the host. Therefore, if
 the host fails, checkpoints for virtual machines deployed on that host are
 lost.

 To provide data protection for your virtual machines, you can use the Volum
 e Shadow Copy Service (VSS) writer for virtual machines on a Virtual Server
 host. You can use a backup application such as Microsoft System Center Dat
 a Protection Manager (DPM) to back up virtual machines on any type of host
 to external storage.

 NOTE: You can grant self-service users permission to create and manage chec
 kpoints for their virtual machines. For more information, type: Get-Help Se
 t-VMMUserRole -detailed

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -Confirm
 Prompts for confirmation before running the command.

 -Description <String>
 Specifies a description for the specified object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Name <String>
 Specifies the name of a VMM object.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a virtual machine checkpoint for virtual machines that have the s
 ame name but reside on different hosts.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Checkpoints = Get-VM -name "VM01" | New-VMCheckpoint

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command performs the following operations:

 * Gets from the VMM atabase all objects that represent virtual machines
 deployed on any host managed by VMM.

 * Selects only those virtual machines named VM01. This
 example assumes that more than one host contains a virtual
 machine named VM01.

 * Creates a checkpoint for each of these virtual machines
 and stores these checkpoint objects in $Checkpoints.

 CAUTION: You cannot create a new a checkpoint on a running virtual machine
 if the virtual machine is deployed on a Virtual Server host. Therefore, if
 the virtual machine is on a Virtual Server host and you have not stopped or
 shutdown the virtual machine, the New-VMCheckpoint cmdlet shuts down or st
 ops the virtual machine while the cmdlet processes the operation. Whether t
 he virtual machine is shut down or stopped depends on whether or not the vi
 rtualization guest service appropriate for a virtual machine on a Virtual S
 erver host (Virtual Machine Additions) is installed on the virtual machine:

 * If Virtual Machine Additions is installed on the virtual machine,
 VMM shuts down the virtual machine (comparable to using Shut Down
 from the Start menu) before the checkpoint is removed.

 * If Virtual Machine Additions is not installed on the virtual machine,
 the virtual machine is stopped without warning (comparable to
 pulling out the power plug on a physical machine) if you perform this
 operation from the command line. (If you perform this operation from
 the Administrator Console, a warning message appears before the
 virtual machine is stopped.)

 2: Create a virtual machine checkpoint for a specific virtual machine async
 hronously.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VM -name "VM02" | New-VMCheckpoint -RunAsynchronously -JobVaria
 ble "NewCkPtJob"
 PS C:\> $NewCkPtJob

 This example is the same as Example 1 except that the second command uses t
 he RunAsynchronously parameter to return control to the shell immediately a
 nd uses the JobVariable parameter to track job progress and store a record
 of this progress in variable NewCkPtJob. For JobVariable, you do not use th
 e dollar sign ($) when the variable is created.

 The virtual machine checkpoint object that represents VM02 is returned init
 ially in a "creating" state. After the checkpoint is created, the state cha
 nges to "available."

 The last command displays the contents of $NewCkPtJob.

 CAUTION: You cannot create a new a checkpoint on a running virtual machine
 if the virtual machine is deployed on a Virtual Server host. Therefore, if
 the virtual machine is on a Virtual Server host and you have not stopped or
 shut down the virtual machine, the New-VMCheckpoint cmdlet shuts down or s
 tops the virtual machine while the cmdlet processes the operation. For more
 information, see the CAUTION in Example 1.

REMARKS
 For more information, type: "get-help New-VMCheckpoint -detailed".
 For technical information, type: "get-help New-VMCheckpoint -full".

[bookmark: _Toc225244559]Remove-VMCheckpoint

SYNOPSIS
 Removes a virtual machine checkpoint object from the Virtual Machine Manage
 r database.

 NOTE: In VMM 2007, this cmdlet was named Merge-VMCheckpoint.

SYNTAX
 Remove-VMCheckpoint -VMCheckpoint <VMCheckpoint> [-Confirm] [-JobGroup <Gui
 d>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<Commo
 nParameters>]

DETAILED DESCRIPTION
 Removes a checkpoint object for a virtual machine from the Virtual Machine
 Manager database.

PARAMETERS
 -VMCheckpoint <VMCheckpoint>
 Specifies a VMM virtual machine checkpoint object.

 -Confirm
 Prompts for confirmation before running the command.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove the most recent checkpoint for a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Checkpoints = Get-VMCheckpoint -VM "VM01"
 PS C:\> Remove-VMCheckpoint -VMCheckpoint $Checkpoints[0] -Confirm

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets from the VMM database all checkpoint objects for th
 e virtual machine called VM01 and stores these objects in variable $Checkpo
 ints (an object array). This example assumes that VM01 has several checkpoi
 nts.

 The third command removes the first checkpoint in the array ($Checkpoints[0
]). The Confirm parameter prompts you to confirm whether you want to remove
 the checkpoint.

 CAUTION: You cannot remove a checkpoint from a running virtual machine if t
 he virtual machine is deployed on a Virtual Server host. Therefore, if the
 virtual machine is on a Virtual Server host, the Remove-VMCheckpoint cmdlet
 shuts down or stops the virtual machine while the cmdlet processes the ope
 ration. Whether the virtual machine is shut down or stopped depends on whet
 her or not the virtualization guest service appropriate for a virtual machi
 ne on a Virtual Server host (Virtual Machine Additions) is installed on the
 virtual machine:

 * If Virtual Machine Additions is installed on the virtual machine,
 VMM shuts down the virtual machine (comparable to using Shut Down
 from the Start menu) before the checkpoint is removed.

 * If Virtual Machine Additions is not installed on the virtual machine,
 the virtual machine is stopped without warning (comparable to
 pulling out the power plug on a physical machine) if you perform this
 operation from the command line. (If you perform this operation from
 the Administrator Console, a warning message appears before the
 virtual machine is stopped.)

 2: Remove the specified checkpoint for a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Checkpoints = Get-VMCheckpoint -VM "VM02"
 PS C:\> Remove-VMCheckpoint -VMCheckpoint $Checkpoints[1]

 The first command connects to VMMServer1.

 The second command gets all virtual machine checkpoint objects for VM02 and
 stores these objects in variable $Checkpoints (an object array). This exam
 ple assumes that VM02 has two checkpoints, so $Checkpoints contains two che
 ckpoint objects.

 The third command removes the second checkpoint ($Checkpoints[1])

 CAUTION: You cannot remove a checkpoint from a running virtual machine if t
 he virtual machine is deployed on a Virtual Server host. For more informati
 on, see the CAUTION in Example 1.

REMARKS
 For more information, type: "get-help Remove-VMCheckpoint -detailed".
 For technical information, type: "get-help Remove-VMCheckpoint -full".

[bookmark: _Toc225244560]Restore-VMCheckpoint

SYNOPSIS
 Restores a virtual machine on a host managed by Virtual Machine Manager to
 the specified checkpoint.

SYNTAX
 Restore-VMCheckpoint -VMCheckpoint <VMCheckpoint> [-Confirm] [-JobVariable
 <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Restores a virtual machine on a host managed by Virtual Machine Manager to
 the state of the virtual machine at the time that the specified checkpoint
 was created.

 If the restore operation is successful, the Restore-VMCheckpoint cmdlet ret
 urns (displays) the checkpoint object. If the operation fails, the cmdlet r
 eturns an error message.

 If you use the optional RunAsynchronously parameter, the cmdlet returns a v
 irtual machine checkpoint object in the "Restoring" state. If the operation
 then completes successfully, the cmdlet returns the virtual machine checkp
 oint in the "Available" state.

PARAMETERS
 -VMCheckpoint <VMCheckpoint>
 Specifies a VMM virtual machine checkpoint object.

 -Confirm
 Prompts for confirmation before running the command.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Restore one or more virtual machines named VM01 to the most recent check
 point.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMCheckpoint -VM "VM01" -MostRecent | Restore-VMCheckpoint

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets the most recent checkpoint object for all virtual m
 achines named VM01 in the VMM database and restores each of these virtual m
 achines to the state that it was in at the time its most recent checkpoint
 was created.

 CAUTION: Restoring a virtual machine to a checkpoint operates differently d
 epending on the virtualization platform of the host:

 * VMs ON A HYPER-V OR VMWARE HOST. Restoring a virtual machine to the
 specified checkpoint discards all changes made to the virtual
 machine since the most recent checkpoint was created. Therefore,
 a good practice is to first create a new checkpoint before you
 restore the virtual machine to the earlier checkpoint to ensure
 that the current state of the virtual machine is available (if
 needed) after the restore operation.

 After the virtual machine is restored to the specified checkpoint,
 any checkpoints that were created earlier than that checkpoint are
 still available -- including (if you create it) the checkpoint made
 immediately before you perform the restore operation.

 * VMs ON A VIRTUAL SERVER HOST. Restoring a virtual machine to the
 specified checkpoint discards all changes made to the virtual machine
 after the specified checkpoint was created, including any checkpoints
 that were created after the checkpoint to which you are restoring the
 virtual machine.

 After the restoration operation completes:

 * If the virtual machine is deployed on a Hyper-V or VMware host and
 the checkpoint to which it is restored was taken on the virtual
 machine while it was in a running state or saved state, the virtual
 machine will be restored in a running state.

 * If the virtual machine is deployed on a Virtual Server host and was in
 a running or paused state when the restore operation began, the virtual
 machine will be restored in a running state.

 2: Restore a virtual machine to the specified checkpoint.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Checkpoints = Get-VMCheckpoint -VM "VM02"
 PS C:\> Restore-VMCheckpoint –VMCheckpoint $Checkpoints[$Checkpoints.count
 - 2]

 The first command connects to VMMServer1.

 The second command gets all checkpoint objects for the virtual machine call
 ed VM02 and stores these checkpoint objects in $Checkpoints (an object arra
 y). This example assumes that only one host in the VMM environment contains
 a virtual machine named VM02.

 The third command restores VM02 to the second-from-last checkpoint. (This
 example assumes you have at least 2 checkpoints.) The command deletes any e
 xisting checkpoints that were created later than this checkpoint.

 CAUTION: Restoring a virtual machine to a checkpoint operates differently d
 epending on the virtualization platform of the host. For more information,
 see the CAUTION in Example 1.

REMARKS
 For more information, type: "get-help Restore-VMCheckpoint -detailed".
 For technical information, type: "get-help Restore-VMCheckpoint -full".

[bookmark: _Toc225244561]Set-VMCheckpoint

SYNOPSIS
 Changes the Description property of a virtual machine checkpoint object in
 Virtual Machine Manager.

SYNTAX
 Set-VMCheckpoint -VMCheckpoint <VMCheckpoint> [-Description <String>] [-Job
 Variable <String>] [-Name <String>] [-PROTipID <Guid>] [-RunAsynchronously]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Changes a property of a virtual machine checkpoint object in Virtual Machin
 e Manager. The only property that you can change by using the Set-VMCheckpo
 int cmdlet is the Description property.

PARAMETERS
 -VMCheckpoint <VMCheckpoint>
 Specifies a VMM virtual machine checkpoint object.

 -Description <String>
 Specifies a description for the specified object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Name <String>
 Specifies the name of a VMM object.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Set the description for all checkpoints to the specified string.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMCheckpoint | Set-VMCheckpoint -Description "All checkpoints c
 reated prior to upgrade"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets all objects that represent checkpoints that current
 ly exist from the VMM database and specifies a description for these checkp
 oints.

 2: Set the name and description for all checkpoints to the specified string
 .

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMCheckpoint | Set-VMCheckpoint –Name “Checkpoint Before Upgrad
 e” -Description "All checkpoints created prior to upgrade"

 The first command connects to VMMServer1.

 The second command gets all objects that represent virtual machine checkpoi
 nts and specifies a name and description for each checkpoint.

 3: Update one checkpoint in an array of checkpoints.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VMget VM03
 PS C:\> Set-VMCheckpoint -VMCheckpoint $VM.VMCheckpoints[0] -Description “C
 heckpoint Before Upgrade”

 The first command connects to VMMServer1.

 The second command gets the object that represents a virtual machine named
 VM03 and stores the virtual machine object in $VM (an object array).

 The last command specifies the description "Checkpoint for Beta" for the fi
 rst checkpoint retrieved from VM01 ($VM.VMCheckpoints[0]).

REMARKS
 For more information, type: "get-help Set-VMCheckpoint -detailed".
 For technical information, type: "get-help Set-VMCheckpoint -full".

[bookmark: _Toc225244562]VMDK
[bookmark: _Toc225244563]Copy-VMDK

SYNOPSIS
 Copies a VMware virtual hard disk file (a .vmdk file) to a Microsoft-compat
 ible virtual hard disk file (a .vhd file) and converts the virtual hard dis
 k for use in a Virtual Machine Manager environment.

SYNTAX
 Copy-VMDK -Path <String> -VMDKPath <String> -VMHost [<String Host>] [-JobVa
 riable <String>] [-LibraryServer [<String LibraryServer>]] [-Owner <String>
] [-PROTipID <Guid>] [-RunAsynchronously] [-SourceVMHost <Host>] [-VMMServe
 r [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Copies a VMware virtual hard disk file (a .vmdk file) to a Microsoft-compat
 ible virtual hard disk file (a .vhd file) and converts the virtual hard dis
 k for use in a Virtual Machine Manager environment. The disk's contents are
 preserved by this copy operation.

 VMware virtual hard disks, stored in .vmdk files, contain the virtual machi
 ne's guest operating system, applications, and data. VMWare virtual hard di
 sk formats supported by the Copy-VMDK cmdlet include:

 - monolithicSparse
 - monolithicFlat
 - vmfs
 - twoGbMaxExtentSparse
 - twoGbMaxExtentFlat

 The Copy-VMDK cmdlet takes as its input the .vmdk file that the .vmx file p
 oints to:

 * The .vmx file points to a .vmdk file that contains metadata, which in
 turn points to the binary .vmdk file.

 * The .vmdk file that you specify with the Copy-VMDK cmdlet is the
 .vmdk file that contains the metadata (not the binary .vmdk file).

 For more information about VMWare .vmx and .vmdk files, type:
 Get-Help New-V2V -detailed

PARAMETERS
 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -VMDKPath <String>
 Specifies the path to a VMware virtual hard disk file (a .vmdk file) to
 be converted to a Windows-based virtual hard disk file (a .vhd file).
 Example format: -VMDKPath "\\FileServer01\MSSCVMMLibrary\VMDKS\VM01.vmd
 k"
 Example format: -VMDKPath "[storage1] /VM01/VM01.vmdk"

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -Owner <String>
 Specifies the owner of a VMM object in the form of a valid domain user
 account.
 Example format: -Owner “Contoso\RachelValdez”
 Example format: -Owner “RachelValdez@Contoso”

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SourceVMHost <Host>
 Specifies the source virtual machine host object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Convert a VMware .vmdk file in the VMM library to a Windows-based .vhd f
 ile on a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $LibServ = Get-LibraryServer -ComputerName "FileServer01.Contoso.co
 m"

 PS C:\> $VMHost = Get-VMHost –ComputerName “VMMHost01.Contoso.com”

 PS C:\> Copy-VMDK -LibraryServer $LibServ -VMDKPath "\\FileServer01\MSSCVMM
 Library\VMDKS\VM01.vmdk" –VMHost $VMHost -Path "C:\StoredWindowsVMs"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the library server named
 FileServer01 from the VMM database and stores the library object in variab
 le $LibServ.

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in variable $VMHost. VMHost01 is either a Hyper-V
 host or a Virtual Server host (but not a VMware ESX host).

 The last command copies and converts the .vmdk file located at the specifie
 d path (\\FileServer01\MSSCVMMLibrary\VMDKS\VM01.vmdk) on the library serve
 r and stores the resulting .vhd file at the specified path (C:\StoredWindow
 sVMs) on VMHost01. Note that the -Path parameter, when used with Copy-VMDK,
 cannot take a UNC path.

 IMPORTANT:

 The Copy-VMDK cmdlet takes as its input the .vmdk file that the .vmx file p
 oints to:

 * The .vmx file points to a .vmdk file that contains metadata, which in tur
 n points to the binary .vmdk file.

 * The .vmdk file that you specify with the Copy-VMDK cmdlet is the .vmdk fi
 le that contains the metadata (not the binary .vmdk file).

 2: Convert a VMware-based .vmdk file on an ESX host to a Windows-based .vhd
 file and move it to a Windows host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName “WindowsVMHost02.Contoso.com”

 PS C:\> $SourceVMHost = Get-VMHost -ComputerName “ESXVMHost02”

 PS C:\> Copy-VMDK -SourceVMHost $SourceVMHost -VMDKPath "[storage1] /VM01/V
 M01.vmdk" -VMHost $VMHost -Path "C:\VM01"

 The first command connects to VMMServer1.

 The second command gets the object that represents the Windows host named W
 indowsVMHost02 and stores the host object in $VMHost. WindowsVMHost02 is ei
 ther a Hyper-V host or a Virtual Server host (but not a VMware ESX host).

 The third command gets the object that represents the ESX host named ESXVMH
 ost02 by specifying its name and stores the host object in $SourceVMHost. (
 If the host object is not returned, use the IP address with the ComputerNam
 e parameter. DNS must be configured to resolve computer names to the corres
 ponding IP addresses in order to retrieve the server object by specifying t
 he server name.)

 The last command performs the following operations:

 * Copies and converts the .vmdk file located at the specified path
 ("[storage1] /VM02/VM02.vmdk") on the ESX host.

 * Transfers the resulting .vhd file to the specified path (C:\VM02)
 on the Windows host. Note that the -Path parameter, when used
 with Copy-VMDK, cannot take a UNC path.

 IMPORTANT:

 The Copy-VMDK cmdlet takes as its input the .vmdk file that the .vmx file p
 oints to, as explained in detail in example 1.

REMARKS
 For more information, type: "get-help Copy-VMDK -detailed".
 For technical information, type: "get-help Copy-VMDK -full".

[bookmark: _Toc225244564]VMHost
[bookmark: _Toc225244565]Add-VMHost

SYNOPSIS
 Adds a computer as a virtual machine host to the Virtual Machine Manager da
 tabase.

SYNTAX
 Add-VMHost [-ComputerName] <String> -Credential <PSCredential> -VMHostClust
 er <VMHostCluster> [-AvailableForPlacement <Boolean>] [-CPUPercentageReserv
 e <Int32>] [-Description <String>] [-DiskSpaceReserveMB <Int32>] [-JobVaria
 ble <String>] [-MaintenanceHost] [-MaxDiskIOReservation <Int32>] [-MemoryRe
 serveMB <Int32>] [-NetworkPercentageReserve <Int32>] [-PROTipID <Guid>] [-R
 eassociate] [-RemoteConnectEnabled <Boolean>] [-RemoteConnectMultipleConnec
 tionsEnabled <Boolean>] [-RemoteConnectPort <Int32>] [-RemoteConnectTimeout
 Enabled <Boolean>] [-RemoteConnectTimeoutMinutes <Int32>] [-RunAsynchronous
 ly] [-VMMServer [<String ServerConnection>]] [-VMPaths <String>] [<CommonPa
 rameters>]

 Add-VMHost [-ComputerName] <String> -Credential <PSCredential> -Virtualizat
 ionManager <VirtualizationManager> [-AvailableForPlacement <Boolean>] [-Cer
 tificate] [-CPUPercentageReserve <Int32>] [-Description <String>] [-DiskSpa
 ceReserveMB <Int32>] [-JobVariable <String>] [-MaintenanceHost] [-MaxDiskIO
 Reservation <Int32>] [-MemoryReserveMB <Int32>] [-NetworkPercentageReserve
 <Int32>] [-PROTipID <Guid>] [-Reassociate] [-RemoteConnectEnabled <Boolean>
] [-RemoteConnectMultipleConnectionsEnabled <Boolean>] [-RemoteConnectPort
 <Int32>] [-RemoteConnectTimeoutEnabled <Boolean>] [-RemoteConnectTimeoutMin
 utes <Int32>] [-RunAsynchronously] [-SshPublicKey <ClientSshPublicKey>] [-S
 shPublicKeyFile <String>] [-SshTcpPort <Int32>] [-TCPPort <Int32>] [-VMHost
 Group <HostGroup>] [-VMMServer [<String ServerConnection>]] [-VMPaths <Stri
 ng>] [<CommonParameters>]

 Add-VMHost [-ComputerName] <String> [-AvailableForPlacement <Boolean>] [-CP
 UPercentageReserve <Int32>] [-Description <String>] [-DiskSpaceReserveMB <I
 nt32>] [-JobVariable <String>] [-MaintenanceHost] [-MaxDiskIOReservation <I
 nt32>] [-MemoryReserveMB <Int32>] [-NetworkPercentageReserve <Int32>] [-PRO
 TipID <Guid>] [-Reassociate] [-RemoteConnectEnabled <Boolean>] [-RemoteConn
 ectMultipleConnectionsEnabled <Boolean>] [-RemoteConnectPort <Int32>] [-Rem
 oteConnectTimeoutEnabled <Boolean>] [-RemoteConnectTimeoutMinutes <Int32>]
 [-RunAsynchronously] [-VMHost [<String Host>]] [-VMMServer [<String ServerC
 onnection>]] [-VMPaths <String>] [<CommonParameters>]

 Add-VMHost [-ComputerName] <String> -Credential <PSCredential> [-AvailableF
 orPlacement <Boolean>] [-CPUPercentageReserve <Int32>] [-Description <Strin
 g>] [-DiskSpaceReserveMB <Int32>] [-JobVariable <String>] [-MaintenanceHost
] [-MaxDiskIOReservation <Int32>] [-MemoryReserveMB <Int32>] [-NetworkPerce
 ntageReserve <Int32>] [-PROTipID <Guid>] [-Reassociate] [-RemoteConnectEnab
 led <Boolean>] [-RemoteConnectMultipleConnectionsEnabled <Boolean>] [-Remot
 eConnectPort <Int32>] [-RemoteConnectTimeoutEnabled <Boolean>] [-RemoteConn
 ectTimeoutMinutes <Int32>] [-RunAsynchronously] [-VMHostGroup <HostGroup>]
 [-VMMServer [<String ServerConnection>]] [-VMPaths <String>] [<CommonParame
 ters>]

 Add-VMHost [-ComputerName] <String> -Credential <PSCredential> -NonTrustedD
 omainHost [-AvailableForPlacement <Boolean>] [-CPUPercentageReserve <Int32>
] [-Description <String>] [-DiskSpaceReserveMB <Int32>] [-JobVariable <Stri
 ng>] [-MaintenanceHost] [-MaxDiskIOReservation <Int32>] [-MemoryReserveMB <
 Int32>] [-NetworkPercentageReserve <Int32>] [-PROTipID <Guid>] [-Reassociat
 e] [-RemoteConnectEnabled <Boolean>] [-RemoteConnectMultipleConnectionsEnab
 led <Boolean>] [-RemoteConnectPort <Int32>] [-RemoteConnectTimeoutEnabled <
 Boolean>] [-RemoteConnectTimeoutMinutes <Int32>] [-RunAsynchronously] [-VMH
 ostGroup <HostGroup>] [-VMMServer [<String ServerConnection>]] [-VMPaths <S
 tring>] [<CommonParameters>]

 Add-VMHost [-ComputerName] <String> -EncryptionKey <PSCredential> -Perimete
 rNetworkHost -SecurityFile <String> [-AvailableForPlacement <Boolean>] [-CP
 UPercentageReserve <Int32>] [-Description <String>] [-DiskSpaceReserveMB <I
 nt32>] [-JobVariable <String>] [-MaintenanceHost] [-MaxDiskIOReservation <I
 nt32>] [-MemoryReserveMB <Int32>] [-NetworkPercentageReserve <Int32>] [-PRO
 TipID <Guid>] [-Reassociate] [-RemoteConnectEnabled <Boolean>] [-RemoteConn
 ectMultipleConnectionsEnabled <Boolean>] [-RemoteConnectPort <Int32>] [-Rem
 oteConnectTimeoutEnabled <Boolean>] [-RemoteConnectTimeoutMinutes <Int32>]
 [-RunAsynchronously] [-VMHostGroup <HostGroup>] [-VMMServer [<String Server
 Connection>]] [-VMPaths <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Adds one or more computers as virtual machine hosts to the Virtual Machine
 Manager database. A virtual machine host (also called a "host") is a physic
 al computer managed by Virtual Machine Manager whose role is to host one or
 more virtual machines.

 TYPES OF VIRTUAL MACHINE HOST SUPPORTED IN VMM 2008

 From the perspective of networking and domains, the types of host that VMM
 2008 supports include:

 * Domain-joined Windows host - The host can be located in either a
 trusted or untrusted domain.

 * Perimeter network Windows host - A non-domain-joined Windows host
 can be managed in the same way as a perimeter network Windows
 host that is located in a domain.

 * A VMware ESX host - ESX hosts do not use Windows Active Directory
 domains.

 From the perspective of virtualization platform and operating system, the t
 ypes of host that VMM 2008 supports include:

 * Virtual Server hosts - A Windows-based server running the Microsoft
 Virtual Server virtualization service. In VMM 2007, Virtual Server
 hosts are the only supported type of host.

 * Hyper-V hosts - A server running Windows Server 2008 with the Hyper-V
 role enabled. Hyper-V is the hypervisor-based virtualization feature
 introduced in Windows Server 2008.

 * VMware ESX hosts – A VMware ESX server running proprietary software,
 including a hypervisor, that is managed by a VMware VirtualCenter
 Server running Windows.

 VMM 2008 manages all three types of host, even though each host type implem
 ents virtualization in a different way. The following sections describe eac
 h type of host in more detail.

 WHAT YOU NEED TO KNOW BEFORE YOU ADD A VIRTUAL SERVER HOST
 --
 * Windows Server 2003 R2, Windows Server 2003 Service Pack 2 (SP2), or
 Windows Server 2008 must be installed on the computer that you want to
 use as a Virtual Server host. The server operating system on a
 Virtual Server host can have either a 32-bit or 64-bit CPU.

 * The current version of Virtual Server is Microsoft Virtual Server 2005
 R2 Service Pack 1 (SP1) update version 1.1.629.0. For more information,
 see KB 948515 at:

 http://support.microsoft.com/kb/948515

 If your computer does not have Virtual Server installed or if Virtual
 Server 2005 R2 SP1 is installed, Virtual Machine Manager will install
 the current version of Virtual Server automatically for you.

 * If you have a version of Virtual Server installed that is
 earlier than Virtual Server 2005 R2 SP1, Add-VMHost will fail. You
 will need to upgrade your Virtual Server to 2005 R2 SP1 with update
 KB 948515, and then retry Add-VMHost.

 WHAT YOU NEED TO KNOW BEFORE YOU ADD A HYPER-V HOST

 * Your computer must meet the following hardware virtualization
 assistance requirements:

 - 64-bit CPU
 - VT (Virtualization Technology feature from Intel) or
 AMD-V (from AMD) enabled on the BIOS
 - NX/XD (No eXecute / eXecute Disable)
 - Full BIOS support for hardware virtualization

 * Your computer must have Windows Server 2008 or later installed.

 * Your computer must have the Hyper-V RTM software update installed.
 The Add-VMHost cmdlet will enable the Hyper-V server role for you,
 but you must first configure the Virtualization option in the BIOS
 manually.

 WHAT YOU NEED TO KNOW BEFORE YOU ADD A WINDOWS-BASED PERIMETER NETWORK HOST

 When you add a Windows-based host located in a perimeter network to Virtual
 Machine Manager, you must specify credentials to be used as an encryption
 key.

 You use the Get-Credential cmdlet to store credentials to use as the encryp
 tion key in a variable, and then use the -EncryptionKey parameter in conjun
 ction with the -SecurityFile parameter to decrypt the contents of the secur
 ity file associated with the encryption key.

 Example format: -SecurityFile "C:\SecurityFile.txt" -EncryptionKey $Key

 The user name stored in the variable (such as $Key shown in the example) ca
 n be any user name, but the password must be the same encryption key that w
 as used when the Virtual Machine Manager agent was installed on the perimet
 er network computer.

 The source of the encryption key and of the path to the SecurityFile.txt fi
 le are as follows:

 * To manage a Windows-based host in a perimeter network, you must first
 install the Virtual Machine Manager agent locally on that host.

 * When you run VMM Setup and choose the Setup option to install the host
 in a perimeter network, the Setup wizard prompts you to:

 - Provide an encryption key for the security file.
 - Specify where you want to store (export) the security file.

 * After you run Setup and then use the Add-VMHost cmdlet to add a host
 located in a perimeter network to the Virtual Machine Manager database,
 you must specify this same encryption key and security file (as shown in
 the example format) to complete the operation.

 WHAT YOU NEED TO KNOW BEFORE YOU ADD A VMWARE ESX HOST
 --
 * You must have added at least one VMware VirtualCenter Server to VMM.
 * Your VMware VirtualCenter Server must be running version 2.0 or above.
 * Your VMware ESX host must be running version 3.0, 3.5, or 3i.

 For more information about hosts, type:
 Get-Help about_VMM_2008_Multiple_Host_Platforms

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -EncryptionKey <PSCredential>
 Specifies credentials to be used as an encryption key when you add a Wi
 ndows-based host (a Hyper-V host or a Virtual Server host) located in a
 perimeter network to VMM.
 Example format: -SecurityFile "C:\SecurityFile.txt" -EncryptionKey $Key

 -NonTrustedDomainHost
 Specifies that the host to be added to VMM belongs to a non-trusted dom
 ain.

 -PerimeterNetworkHost
 Specifies that this host is located in a perimeter network.

 -SecurityFile <String>
 Specifies the path to a file that contains the certificate and credenti
 als to use for authentication of a Hyper-V host or a Virtual Server hos
 t located in a perimeter network.
 Example format: -SecurityFile "C:\SecurityFile.txt" -EncryptionKey $Key
 Note: This parameter does not apply to a VMware ESX host.

 -VirtualizationManager <VirtualizationManager>
 Specifies a virtualization manager object currently managed by VMM. VMM
 2008 supports the following non-Microsoft virtualization managers:
 -VMware VirtualCenter 2.0: manages hosts running ESX Server 3.0 or 3.5
 -VMware VirtualCenter 2.5: manages hosts running ESX Server 3.0, 3.5, o
 r 3i

 -VMHostCluster <VMHostCluster>
 Specifies a VMM host cluster object.

 -AvailableForPlacement <Boolean>
 Specifies (when set to TRUE) that the VMM placement process will consid
 er this host server (when used with Add-VMHost or Set-VMHost) or this v
 olume on a host (when used with Set-VMHostVolume) to be eligible as a p
 ossible location on which to deploy virtual machines. If this parameter
 is set to FALSE, you can, optionally, choose to deploy virtual machine
 s on this host or volume anyway. The default value is TRUE.

 -Certificate
 Specifies a security certificate object.

 -CPUPercentageReserve <Int32>
 Specifies the percentage of CPU to set aside for the use of the host op
 erating system on the physical host computer. If you do not use this pa
 rameter to specify the reserve, the default setting for the host group
 is used: 10 percent. The Virtual Machine Manager placement process will
 not recommend that a virtual machine be placed on a host unless its re
 source requirements can be met without using host reserves.

 -Description <String>
 Specifies a description for the specified object.

 -DiskSpaceReserveMB <Int32>
 Specifies, in megabytes (MB), the amount of disk space to set aside for
 the use of the host operating system on the physical host computer. If
 you do not use this parameter to specify the reserve, the default sett
 ing for the host group is used: 100 MB. The Virtual Machine Manager pla
 cement process will not recommend that a virtual machine be placed on a
 host unless its resource requirements can be met without using host re
 serves.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -MaintenanceHost
 This parameter is obsolete. Use AvailableForPlacement instead.

 -MaxDiskIOReservation <Int32>
 Specifies the maximum number of disk I/O operations per second (IOPS) f
 or the operating system on the physical host computer. If you do not us
 e this parameter to specify the reserve, the default setting for the ho
 st group is used: 10000 IOPS. The Virtual Machine Manager placement pro
 cess will not recommend that a virtual machine be placed on a host unle
 ss its resource requirements can be met without using host reserves.

 -MemoryReserveMB <Int32>
 Specifies, in megabytes (MB), the amount of memory to set aside for the
 use of the host operating system on the physical host computer. If you
 do not use this parameter to specify the reserve, the default setting
 for the host group is used: 256 MB. The Virtual Machine Manager placeme
 nt process will not recommend that a virtual machine be placed on a hos
 t unless its resource requirements can be met without using host reserv
 es.

 -NetworkPercentageReserve <Int32>
 Specifies the percentage of network capacity to set aside for the use o
 f the host operating system on the physical host computer. If you do no
 t use this parameter to specify the reserve, the default setting for th
 e host group is used: 10 percent. The Virtual Machine Manager placement
 process will not recommend that a virtual machine be placed on a host
 unless its resource requirements can be met without using host reserves
 .

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -Reassociate
 Reassociates a host currently managed by one VMM server with another VM
 M server.

 -RemoteConnectEnabled <Boolean>
 Enables (when set to TRUE) a connection on a host server that lets user
 s connect to their virtual machines remotely.
 TYPE OF HOST TYPE OF REMOTE CONNECTION
 ------------ -------------------------
 Virtual Server Enables Virtual Machine Remote Control (VMRC)
 Hyper-V Enables Virtual Machine Connection (VMConnect)
 VMware ESX This parameter does not apply to VMs on ESX hosts
 Note: In VMM 2007, this parameter was named VMRCEnabled.

 -RemoteConnectMultipleConnectionsEnabled <Boolean>
 Enables (when set to TRUE) two or more simultaneous remote connections
 between virtual machine and its Virtual Server host. This lets users es
 tablish multiple remote connections to the same virtual machine on a Vi
 rtual Server host. This parameter does not apply to Hyper-V hosts or VM
 ware ESX Server hosts.
 Note: In VMM 2007, this parameter was named VMRCMultipleConnectionsEnab
 led.

 -RemoteConnectPort <Int32>
 Specifies a default value for the TCP port to use when a remote user co
 nnects to a virtual machine. Typically, the default port for a Virtual
 Server host is 5900 (for a VMRC connection), and the default port for a
 Hyper-V host is 2179 (for a VMConnect connection). This parameter does
 not apply to a VMware ESX host.
 Note: In VMM 2007, the Virtual Server default remote connect port param
 eter was named VMRCPort.

 -RemoteConnectTimeoutEnabled <Boolean>
 Enables (when set to TRUE) timing out a remote connection between a vir
 tual machine and its a Virtual Server host. This parameter does not app
 ly to Hyper-V hosts or VMware ESX Server hosts.
 Note: In VMM 2007, this parameter was named VMRCTimeoutEnabled.

 -RemoteConnectTimeoutMinutes <Int32>
 Specifies the number of minutes that a remote connection between a virt
 ual machine and its Virtual Server host can remain idle before it is di
 sconnected. This parameter does not apply to Hyper-V hosts or VMware ES
 X Server hosts.
 Note: In VMM 2007, this parameter was named VMRCTimeoutMinutes.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SshPublicKey <ClientSshPublicKey>
 Specifies the public key used by Secure Shell (SSH) communications.

 -SshPublicKeyFile <String>
 Specifies the path to the public key file for establishing a secured SS
 H channel with the target hosts.

 -SshTcpPort <Int32>
 Specifies the TCP port number used by the Secure Shell (SSH) protocol.

 -TCPPort <Int32>
 Specifies a numeric value that represents a TCP port.
 Note: In VMM 2007, this parameter, when used with the Get-VMMServer cmd
 let, was named Port.

 -VMHostGroup <HostGroup>
 Specifies a virtual machine host group object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -VMPaths <String>
 Specifies a set of default paths (as strings separated by the pipeline
 operator) on a host where virtual machine files can be stored.
 Example format: -VMPaths "C:\Folder1|C:\Folder2|C:\Folder3"

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add a host in the same domain as the VMM server to VMM.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Add-VMHost "VMHost01.Contoso.com" -Description "This is my new host
 " -RemoteConnectEnabled $TRUE -RemoteConnectPort 5900 -Credential $Credenti
 al

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are either a local Administrator account
 or a domain account with administrator rights on the computer that you want
 to add as a host.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following command uses this
 server by default.

 The last command adds the host object that represents VMHost01 in the Conto
 so domain to the VMM database as a managed host, specifies a description, e
 nables remote connections, and specifies that TCP port 5900 will be used fo
 r remote connections to VMHost01. As the last command is processed, $Creden
 tial provides your credentials to Add-VMHost.

 2: Add a host located in a perimeter network to VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Key = Get-Credential
 PS C:\> Add-VMHost "VMHost02" -Description "This is my new perimeter networ
 k host" -RemoteConnectEnabled $FALSE -PerimeterNetworkHost -SecurityFile "C
 :\SecurityFile.txt" -EncryptionKey $Key

 The first command connects to VMMServer1.

 The second command prompts you for a user name and password and stores the
 credentials in $Key. The user name can be any user name, but the password m
 ust be the same encryption key that was used when the VMM agent was install
 ed on this computer. The VMM agent must be installed locally on a computer
 located in a perimeter network by choosing the local agent option when you
 run Setup. You specify the encryption key for the security file on the Secu
 rity File Folder page of the System Center Virtual Machine Manager Agent Se
 tup wizard.

 The last command adds a host object that represents the computer named VMHo
 st02 to the VMM database as a managed host. The command adds a description,
 disables remote connections, and specifies that this host is located in a
 perimeter network. This command uses the credentials stored in $Key to decr
 ypt the contents of SecurityFile.txt (which, in this example, is located at
 C:\) and then uses the contents of SecurityFile.txt to authenticate the ne
 w host.

 3: Add a host located in a non-trusted domain to VMM.

 PS C:\> $Credential = Get-Credential
 PS C:\> Add-VMHost "VMHost03.NonTrustedDomain.com" -VMMServer VMMServer1.Co
 ntoso.com –NonTrustedDomainHost –Credential $Credential

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in $Credential. The required creden
 tials for this operation are an account with administrator rights to add a
 host located in the non-trusted domain to the VMM server in the Contoso.com
 domain.

 The second command adds VMHost03, located in a domain that is not trusted b
 y Contoso.com, to the VMM database as a managed host. As this command is pr
 ocessed, $Credential provides your credentials to Add-VMHost.

 4: Add an ESX Server as a host to VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Manager = Get-VirtualizationManager -ComputerName "VirtualCenterSe
 rver04"
 PS C:\> $HostGroup = Get-VMHostGroup "HostGroup04"
 PS C:\> $Credential = Get-Credential
 PS C:\> Add-VMHost -ComputerName "nnn.nnn.nnn.nnn" –Credential $Credential
 –VMHostGroup $HostGroup –VirtualizationManager $Manager

 The first command connects to VMMServer1.

 The second command gets the object that represents VirtualCenterServer04 an
 d stores the object in $Manager.

 The third command gets the object that represents HostGroup04 and stores th
 e object in $HostGroup.

 The fourth command uses Get-Credential to prompt you to supply a user name
 and password and stores your credentials in $Credential. The required crede
 ntials for this operation are an account with administrator rights to add a
 n ESX server managed by VirtualCenterServer04 to the VMM database.

 The last command adds an ESX Server, which is managed by VirtualCenterServe
 r04, as a host to HostGroup04 in VMM. The command identifies the ESX server
 by specifying its IP address (indicated by "nnn.nnn.nnn.nnn") and provides
 the credentials stored in $Credential required to let you add this server
 to VMM.

REMARKS
 For more information, type: "get-help Add-VMHost -detailed".
 For technical information, type: "get-help Add-VMHost -full".

[bookmark: _Toc225244566]Associate-VMHost

SYNOPSIS
 Associates a VMware ESX Server with Virtual Machine Manager as a virtual ma
 chine host and specifies credentials to manage this host.

SYNTAX
 Associate-VMHost [-VMHost] [<String Host>] [-Certificate] [-Credential <PSC
 redential>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously]
 [-SshPublicKey <ClientSshPublicKey>] [-SshPublicKeyFile <String>] [-SshTcp
 Port <Int32>] [-TCPPort <Int32>] [<CommonParameters>]

DETAILED DESCRIPTION
 Associates a VMware ESX Server with Virtual Machine Manager as a virtual ma
 chine host and specifies the credentials to use with this ESX host when it
 is managed by Virtual Machine Manager.

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -Certificate
 Specifies a security certificate object.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SshPublicKey <ClientSshPublicKey>
 Specifies the public key used by Secure Shell (SSH) communications.

 -SshPublicKeyFile <String>
 Specifies the path to the public key file for establishing a secured SS
 H channel with the target hosts.

 -SshTcpPort <Int32>
 Specifies the TCP port number used by the Secure Shell (SSH) protocol.

 -TCPPort <Int32>
 Specifies a numeric value that represents a TCP port.
 Note: In VMM 2007, this parameter, when used with the Get-VMMServer cmd
 let, was named Port.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Set the credentials for a specific VMware ESX Server host.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $ESXHost = Get-VMHost -ComputerName "nnn.nnn.nnn.nnn"
 PS C:\> Associate-VMHost -VMHost $ESXHost -Credential $Credential

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password, and stores these credentials in variable $Credential. The requ
 ired credentials for this operation are either a root account (root/<passwo
 rd>) or the account for the VMware delegated administrator defined earlier
 in VirtualCenter Server for this ESX host.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following commands use this
 server by default.

 The third command gets the object that represents a VMware ESX Server named
 ESXHost01 by specifying its IP address (indicated by "nnn.nnn.nnn.nnn") an
 d stores the ESX host object in variable $ESXHost.

 The last command associates this VMware ESX Server with VMM as a managed ho
 st, and it specifies that the credentials used to access ESXHost01 are thos
 e stored in $Credential.

 NOTE: You can use this command to set the credentials initially, when VMM f
 irst starts to manage this server; or, alternatively, to change the credent
 ials at a later time.

 2: Set the credentials, public key, and certificate for a specific VMware E
 SX Server host.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $ESXHost = Get-VMHost -ComputerName "nnn.nnn.nnn.nnn"
 PS C:\> $Cert = Get-Certificate -ComputerName "nnn.nnn.nnn.nnn"
 PS C:\> $PublicKey = Get-SshPublicKey -ComputerName "nnn.nnn.nnn.nnn"
 PS C:\> Associate-VMHost -VMHost $ESXHost -Credential $Credential -Certific
 ate $Cert -SshPublicKey $PublicKey

 The first command uses Get-Credential to prompt you to supply an appropriat
 e user name and password, and stores these credentials in $Credential. The
 required credentials for this operation are either a root account (root/<pa
 ssword>) or the account for the VMware delegated administrator defined earl
 ier in VirtualCenter Server for this ESX host..

 The second command connects to VMMServer1.

 The third command gets the object that represents a VMware ESX Server named
 ESXHost02 by specifying its IP address (indicated by "nnn.nnn.nnn.nnn") an
 d stores the ESX host object in $ESXHost.

 The fourth command uses the Get-Certificate cmdlet to get the certificate o
 bject from ESXHost02 and stores the certificate object in $Cert.

 The fifth command uses the Get-SshPublicKey cmdlet to get the public key ob
 ject from ESXHost02 and stores the public key object in $PublicKey.

 The last command associates this VMware ESX Server with VMM as a managed ho
 st and specifies that the credentials used to access ESXHost02 are those st
 ored in $Credential.

 NOTE: You can use this command to set the credentials initially, when VMM f
 irst starts to manage this server; or, alternatively, to change the credent
 ials at a later time.

REMARKS
 For more information, type: "get-help Associate-VMHost -detailed".
 For technical information, type: "get-help Associate-VMHost -full".

[bookmark: _Toc225244567]Get-VMHost

SYNOPSIS
 Gets virtual machine host objects from the Virtual Machine Manager database
 .

SYNTAX
 Get-VMHost [[-ComputerName] <String>] [-ID <Guid>] [-VMMServer [<String Ser
 verConnection>]] [<CommonParameters>]

 Get-VMHost [[-ComputerName] <String>] -VMHostCluster <VMHostCluster> [<Comm
 onParameters>]

 Get-VMHost [[-ComputerName] <String>] -VMHostGroup <HostGroup> [<CommonPara
 meters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent virtual machine hosts from the Virt
 ual Machine Manager database. Virtual machine hosts are physical computers
 that are managed by Virtual Machine Manager on which you can deploy virtual
 machines.

 Virltual Machine Manager supports three types of host:

 * Virtual Server hosts
 * Hyper-V hosts
 * VMware ESX Server hosts

 For more information about virtual machine hosts in Virtual Machine Manager
 , type:
 Get-Help Add-VMHost -detailed

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -VMHostCluster <VMHostCluster>
 Specifies a VMM host cluster object.

 -VMHostGroup <HostGroup>
 Specifies a virtual machine host group object.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all hosts managed by this VMM server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMHost

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets all host objects for all hosts (on which you deploy
 virtual machines) currently managed by VMMServer1 and displays the host pr
 operties to the user.

 2: Get a host by name.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMHost -ComputerName "VMHost01.Contoso.com"

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost01
 in the Contoso.com domain and displays the host properties to the user.

 3: Get all hosts in a specific host group and display information about the
 m to the user.

 PS C:\> $LabHG = Get-VMHostGroup -Name "Lab" -VMMServer VMMServer1.Contoso.
 com
 PS C:\> $HostsInLabHG = Get-VMHost -VMHostGroup $LabHG
 PS C:\> $HostsInLabHG | Format-Table -property Name, VMs

 The first command gets the object that represents the host group named Lab
 from VMMServer1 and stores the host group object in $LabHG.

 The second command gets all objects that represent hosts in the Lab host gr
 oup and stores the host objects in $HostsInLabHG.

 The last command passes all host objects stored in $HostsInLabHG to the For
 mat-Table cmdlet, which displays the name of each host and the virtual mach
 ines deployed on that host in a table.

 4: Get all hosts in a specific host cluster and display information about t
 hem to the user.

 PS C:\> $Cluster = Get-VMHostCluster -Name "Cluster04.Contoso.com" -VMMServ
 er VMMServer1.Contoso.com
 PS C:\> $HostsInCluster = Get-VMHost -VMHostCluster $Cluster
 PS C:\> $HostsInCluster | Format-Table -property Name, VirtualizationPlatfo
 rm

 The first command gets the object that represents the host cluster named Cl
 uster04 from VMMServer1 and stores the cluster object in $Cluster.

 The second command gets all objects that represent hosts in Cluster04 and s
 tores the host objects in $HostsInCluster.

 The last command passes all host objects stored in $HostsInCluster to the F
 ormat-Table cmdlet, which displays the name and virtualization platform of
 each host in Cluster04.

 5: Get a specific host located on a perimeter network by its IP address.

 PS C:\> $VMHost = Get-VMHost -ComputerName 10.199.53.5 -VMMServer VMMServer
 1.Contoso.com
 PS C:\> $VMHost | Select-Object -property ComputerName, OperatingSystem

 The first command gets the object that represents a host located on a perim
 eter network whose IP address is 10.199.53.5 from VMMServer1 and stores the
 host object in $VMHost.

 The second command passes the host object in $VMHost to the Select-Object c
 mdlet, which displays the computer name and operating system for this host.

REMARKS
 For more information, type: "get-help Get-VMHost -detailed".
 For technical information, type: "get-help Get-VMHost -full".

[bookmark: _Toc225244568]Move-VMHost

SYNOPSIS
 Moves a virtual machine host object managed by Virtual Machine Manager from
 one host group to another.

SYNTAX
 Move-VMHost [-VMHost] [<String Host>] -ParentHostGroup [<String HostGroup>]
 [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonPa
 rameters>]

DETAILED DESCRIPTION
 Moves one or more objects that represent virtual machine hosts managed by V
 irtual Machine Manager from the current host group to a new parent host gro
 up. Before you can move a host, its new parent host group must exist.

 If the host is a computer that is managed by members of a Self Service User
 or Delegated Administrator user role, moving the host from one host group
 to another might affect the roles that have access to the host or to virtua
 l machines on that host.

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -ParentHostGroup [<String HostGroup>]
 Specifies the parent host group that contains one or more hosts, host g
 roups, or host clusters.
 Note: In VMM 2007, this parameter was named ParentVMHostGroup.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Move a single host to a new parent host group.

 PS C:\> Get-VMMServer –ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MyHost = Get-VMHost | where { $_.Name -eq "VMHost01" }
 PS C:\> $NewHG = Get-VMHostGroup | where {$_.Name -eq "MyNewGroup"}
 PS C:\> Move-VMHost -VMHost $MyHost -ParentHostGroup $NewHG

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents a host named VMHost01 fr
 om the VMM database and stores the host object in variable $MyHost.

 The third command gets the object that represents the host group named MyNe
 wGroup and stores the host group object in variable $NewHG.

 The last command moves VMHost01 (represented by $MyHost) from its current l
 ocation to MyNewGroup (represented by $NewHG).

 2: Move all hosts to a new parent host group.

 PS C:\> Get-VMMServer –ComputerName VMMServer1.Contoso.com
 PS C:\> $AllHosts = Get-VMHost
 PS C:\> $NewHG = Get-VMHostGroup | where { $_.Name -eq "MyNewGroup" }
 PS C:\> $AllHosts | Move-VMHost -ParentHostGroup $NewHG

 The first command connects to VMMServer1.

 The second command gets all objects that represent hosts and stores the hos
 t objects in $AllHosts.

 The third command gets the object that represents the host group named MyNe
 wGroup and stores the host group object in $NewHG.

 The last command moves each host object in $AllHosts to a new parent host g
 roup called MyNewGroup (represented by $NewHG).

 3: Move a set of hosts from one host group to a new parent host group.

 PS C:\> Get-VMMServer –ComputerName "VMMServer1.Contoso.com"
 PS C:\> $SpecificHosts = Get-VMHost | where { $_.VMHostGroup -like "*OldGro
 up*" }
 PS C:\> $NewHG = Get-VMHostGroup | where { $_.Name -eq "MyNewGroup" }
 PS C:\> $SpecificHosts | Move-VMHost -ParentHostGroup $NewHG

 The first command connects to VMMServer1.

 The second command gets all objects that represent hosts whose host group c
 ontains the string "OldGroup" and stores these host objects in $SpecificHos
 ts.

 The third command gets the object that represents the host group named MyNe
 wGroup and stores the host group object in $NewHG.

 The last command moves each host object in $SpecificHosts to a new parent h
 ost group called MyNewGroup (represented by $NewHG).

REMARKS
 For more information, type: "get-help Move-VMHost -detailed".
 For technical information, type: "get-help Move-VMHost -full".

[bookmark: _Toc225244569]Refresh-VMHost

SYNOPSIS
 Refreshes virtual machine host properties in the Virtual Machine Manager Ad
 ministrator Console.

SYNTAX
 Refresh-VMHost [-VMHost] [<String Host>] [-JobVariable <String>] [-PROTipID
 <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Refreshes the properties of a virtual machine host so that the Virtual Mach
 ine Manager Administrator Console displays updated information about the ho
 st.

 Host properties that this cmdlet updates include:

 - Name
 - Operating system
 - Status (such as Responding)
 - Host volumes (typically, addition or removal of drive letters,
 mount points, as well as used and available space)
 - Network adapters (addition or removal)
 - If the host is a Virtual Server host, changes in VMRC settings

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Refresh information about a specific host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> Refresh-VMHost -VMHost $VMHost

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the host object in variable $VMHost.

 The last command refreshes the properties for VMHost01 so that current info
 rmation about this host will appear in the Administrator Console.

 2: Refresh information about all hosts.

 Get-VMHost -VMMServer VMMServer1.Contoso.com | Refresh-VMhost

 Refreshes information about all hosts currently managed by VMMServer1 so th
 at current information about each host will appear in the Administrator Con
 sole.

REMARKS
 For more information, type: "get-help Refresh-VMHost -detailed".
 For technical information, type: "get-help Refresh-VMHost -full".

[bookmark: _Toc225244570]Remove-VMHost

SYNOPSIS
 Removes a virtual machine host object from Virtual Machine Manager.

SYNTAX
 Remove-VMHost [-VMHost] [<String Host>] [-Confirm] [-Credential <PSCredenti
 al>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<Comm
 onParameters>]

 Remove-VMHost [-VMHost] [<String Host>] -Force [-Confirm] [-JobVariable <St
 ring>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent virtual machine hosts from the V
 irtual Machine Manager database.

 The Remove-VMHost cmdlet operates as follows:

 * HOST SERVER ONLY - If this computer is a Windows-based virtual machine
 host server (Virtual Server or Hyper-V) but is not also a library
 server, the host is removed. That is, the host object is removed from
 the Virtual Machine Manager database, and the Virtual Machine Manager
 agent software is uninstalled from the physical host server.

 If the host is a VMware ESX host, the host object is removed from the
 Virtual Machine Manager database. Virtual Machine Manager does not
 install an agent on ESX hosts.

 * HOST AND LIBRARY SERVER - If this computer is a Windows-based virtual
 machine host (Virtual Server or Hyper-V) and is also a library server,
 this command removes only the host functionality but leaves the
 library server component in place. That is, the host object is
 removed from the Virtual Machine Manager database, but the Virtual
 Machine Manager agent software is not uninstalled from the physical
 server. The library server object remains in the database.

 If the host is a VMware ESX host, it can function only as a virtual
 machine host in Virtual Machine Manager. It cannot be both a host
 and a library server.

 * CREDENTIALS - If a Windows-based host (Virtual Server or Hyper-V) is
 joined to an Active Directory domain, you must provide credentials for
 an account with appropriate permissions to remove that host computer
 from Virtual Machine Manager.

 You do not need to provide Active Directory credentials to remove a
 perimeter network host or VMware ESX host from Virtual Machine Manager.

 * VIRTUAL MACHINES - When you remove a host, the host is no longer
 managed by Virtual Machine Manager. However, any virtual machines
 currently on the host server will not be removed or disassociated
 from the server. Any running virtual machines are not shut down.
 Although the virtual machines are no longer managed by Virtual
 Machine Manager, they are not affected in any other way.

 * FORCED REMOVAL - You can use the Force parameter with the Remove-VMHost
 cmdlet to remove a virtual machine host from Virtual Machine Manager
 when you do not have appropriate credentials to manage that host or
 when the Virtual Machine Manager server can no longer communicate with
 that host.

 When you specify the Force parameter, Virtual Machine Manager will
 not ask or check for credentials, nor will Virtual Machine Manager
 attempt to connect to the host and uninstall the Virtual Machine
 Manager agent. Hence, using the Force parameter is recommended only
 when cleaning up stale host records from the Virtual Machine Manager
 database.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -Confirm
 Prompts for confirmation before running the command.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific domain-joined host from VMM.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> Remove-VMHost -VMHost $VMHost -Credential $Credential -Confirm

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are a domain account with administrator r
 ights to remove a Windows-based host server (a Virtual Server host or a Hyp
 er-V host) joined to an Active Directory domain from VMM.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following commands use this
 server by default.

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in variable $VMHost.

 The last command removes the VMHost01 object from the VMM database. As this
 command is processed, $Credential provides your credentials to Remove-VMHo
 st, and the Confirm parameter prompts you to confirm that you do want to re
 move this host from VMM.

 2: Remove all hosts that are not nodes in a host cluster from VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> Get-VMHost | where {$_.HostCluster -eq $NULL} | where {$_.Virtualiz
 ationPlatform -eq "VMwareESX" -or $_.PerimeterNetworkHost -eq 1 -or $_.Non
 TrustedDomainHost -eq 1} | Remove-VMHost -Confirm

 PS C:\> $Credential = Get-Credential

 PS C:\> Get-VMHost | where {$_.HostCluster -eq $NULL -and $_.Virtualization
 Platform -ne "VMwareESX" -and $_.PerimeterNetworkHost -eq 0 -and $_.NonTru
 stedDomainHost -eq 0} | Remove-VMHost -Credential $Credential -Confirm

 The first command connects to VMMServer1.

 The second command gets all host objects; excludes any hosts that are nodes
 in a host cluster; selects only those objects that represent VMware ESX ho
 sts, perimeter network hosts, or non-trusted domain hosts; and removes thos
 e objects from VMM if you confirm that you want to remove them. Credentials
 are not required to remove these hosts.

 The third command prompts you to supply a user name and password for an acc
 ount with permissions to remove domain-joined Windows hosts from VMM and st
 ores your credentials in $Credential.

 The last command selects the objects that represent all hosts except cluste
 red hosts, ESX hosts, perimeter network hosts, or non-trusted domain hosts
 -- that is, the command selects domain-joined Windows-based hosts that are
 not part of a host cluster -- and passes these objects to the Remove-VMHost
 cmdlet. As this command is processed, $Credential provides your credential
 s to Remove-VMHost, and the Confirm parameter prompts you to confirm that y
 ou do want to remove these hosts from VMM.

 3: Remove a specific host that you can no longer access from VMM.�

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost03"
 PS C:\> Remove-VMHost -VMHost $VMHost -Force -Confirm

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost03
 and stores the host object in $VMHost.

 The last command switches on the Force parameter to ensure that the object
 that represents VMHost03 is removed from the VMM database. Credentials are
 not needed for this operation. The Confirm parameter prompts you to confirm
 that you do want to remove this host.

 NOTE:

 You can use the Force parameter to remove a host from VMM when you do not h
 ave the credentials for that host or when the VMM server can no longer comm
 unicate with that host.

REMARKS
 For more information, type: "get-help Remove-VMHost -detailed".
 For technical information, type: "get-help Remove-VMHost -full".

[bookmark: _Toc225244571]Set-VMHost

SYNOPSIS
 Changes properties of a virtual machine host managed by Virtual Machine Man
 ager.

SYNTAX
 Set-VMHost [-VMHost] [<String Host>] [-AvailableForPlacement <Boolean>] [-C
 PUPercentageReserve <Int32>] [-Custom1 <String>] [-Custom10 <String>] [-Cus
 tom2 <String>] [-Custom3 <String>] [-Custom4 <String>] [-Custom5 <String>]
 [-Custom6 <String>] [-Custom7 <String>] [-Custom8 <String>] [-Custom9 <Stri
 ng>] [-Description <String>] [-DiskSpaceReserveMB <Int32>] [-JobGroup <Guid
 >] [-JobVariable <String>] [-MaintenanceHost] [-MaxDiskIOReservation <Int32
 >] [-MemoryReserveMB <Int32>] [-NetworkPercentageReserve <Int32>] [-PROTipI
 D <Guid>] [-RemoteConnectCertificatePath <String>] [-RemoteConnectEnabled <
 Boolean>] [-RemoteConnectMultipleConnectionsEnabled <Boolean>] [-RemoteConn
 ectPort <Int32>] [-RemoteConnectTimeoutEnabled <Boolean>] [-RemoteConnectTi
 meoutMinutes <Int32>] [-RemoveRemoteConnectCertificate <Boolean>] [-RunAsyn
 chronously] [-SecureRemoteConnectEnabled <Boolean>] [-VMHostManagementCrede
 ntial <PSCredential>] [-VMPaths <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a virtual machine host managed by Virtual
 Machine Manager. Settings that you can modify with the Set-VMHost cmdlet a
 re summarized as follows.

 AVAILABILITY AS A HOST FOR VIRTUAL MACHINES

 You can specify whether a host is currently considered by the Virtual Machi
 ne Manager placement process as a candidate on which to place virtual machi
 nes.

 HOST RESERVE SETTINGS

 You can configure the following host reserve settings:

 * Percentage of CPU usage to set aside for use by the host.
 * Amount of disk space (MB) to set aside for use by the host.
 * Maximum number of disk I/O operations per second (IOPS) to set asside for
 use by the host.
 * Amount of memory (MB) to set asside for use by the host.
 * Percentage of network capacity to set aside for use by the host.

 The Virtual Machine Manager placement process will not recommend placing a
 virtual machine on a host unless the resource requirements of the virtual m
 achine can be met without using the host reserves. If you do not specify re
 serve settings, Virtual Machine Manager uses default settings.

 VIRTUAL MACHINE PATHS

 You can specify, as a set of default paths, locations on a host where virtu
 al machine files can be stored.

 CREDENTIAL FOR MANAGING HOSTS IN A PERIMETER NETWORK OR NON-TRUSTED DOMAIN
 --
 You can specify the password for an account used to manage Hyper-V or Virtu
 al Server hosts that are located in a perimeter network or in a non-trusted
 domain.

 REMOTE CONNECTION SETTINGS

 You can configure remote connection settings for Hyper-V hosts (VMConnect)
 or Virtual Server hosts (VMRC) that enable users to connect to virtual mach
 ines remotely. This setting does not apply to virtual machines on VMware ES
 X hosts.

 For Virtual Server hosts only, you can configure a set of additional remote
 connection settings, including specifying timeout settings, enabling multi
 ple connections, and configuring settings that enable secure connections.

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -AvailableForPlacement <Boolean>
 Specifies (when set to TRUE) that the VMM placement process will consid
 er this host server (when used with Add-VMHost or Set-VMHost) or this v
 olume on a host (when used with Set-VMHostVolume) to be eligible as a p
 ossible location on which to deploy virtual machines. If this parameter
 is set to FALSE, you can, optionally, choose to deploy virtual machine
 s on this host or volume anyway. The default value is TRUE.

 -CPUPercentageReserve <Int32>
 Specifies the percentage of CPU to set aside for the use of the host op
 erating system on the physical host computer. If you do not use this pa
 rameter to specify the reserve, the default setting for the host group
 is used: 10 percent. The Virtual Machine Manager placement process will
 not recommend that a virtual machine be placed on a host unless its re
 source requirements can be met without using host reserves.

 -Custom1 <String>
 Specifies a custom property on a VMM object.

 -Custom10 <String>
 Specifies a custom property on a VMM object.

 -Custom2 <String>
 Specifies a custom property on a VMM object.

 -Custom3 <String>
 Specifies a custom property on a VMM object.

 -Custom4 <String>
 Specifies a custom property on a VMM object.

 -Custom5 <String>
 Specifies a custom property on a VMM object.

 -Custom6 <String>
 Specifies a custom property on a VMM object.

 -Custom7 <String>
 Specifies a custom property on a VMM object.

 -Custom8 <String>
 Specifies a custom property on a VMM object.

 -Custom9 <String>
 Specifies a custom property on a VMM object.

 -Description <String>
 Specifies a description for the specified object.

 -DiskSpaceReserveMB <Int32>
 Specifies, in megabytes (MB), the amount of disk space to set aside for
 the use of the host operating system on the physical host computer. If
 you do not use this parameter to specify the reserve, the default sett
 ing for the host group is used: 100 MB. The Virtual Machine Manager pla
 cement process will not recommend that a virtual machine be placed on a
 host unless its resource requirements can be met without using host re
 serves.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -MaintenanceHost
 This parameter is obsolete. Use AvailableForPlacement instead.

 -MaxDiskIOReservation <Int32>
 Specifies the maximum number of disk I/O operations per second (IOPS) f
 or the operating system on the physical host computer. If you do not us
 e this parameter to specify the reserve, the default setting for the ho
 st group is used: 10000 IOPS. The Virtual Machine Manager placement pro
 cess will not recommend that a virtual machine be placed on a host unle
 ss its resource requirements can be met without using host reserves.

 -MemoryReserveMB <Int32>
 Specifies, in megabytes (MB), the amount of memory to set aside for the
 use of the host operating system on the physical host computer. If you
 do not use this parameter to specify the reserve, the default setting
 for the host group is used: 256 MB. The Virtual Machine Manager placeme
 nt process will not recommend that a virtual machine be placed on a hos
 t unless its resource requirements can be met without using host reserv
 es.

 -NetworkPercentageReserve <Int32>
 Specifies the percentage of network capacity to set aside for the use o
 f the host operating system on the physical host computer. If you do no
 t use this parameter to specify the reserve, the default setting for th
 e host group is used: 10 percent. The Virtual Machine Manager placement
 process will not recommend that a virtual machine be placed on a host
 unless its resource requirements can be met without using host reserves
 .

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RemoteConnectCertificatePath <String>
 Specifies the path to the certificate to use for a secure remote connec
 tion between a user and a virtual machine on a Virtual Server host. To
 generate a request for a signed certificate to use with this parameter,
 use the New-VMRCCertificateRequest cmdlet. Use the file generated by t
 his cmdlet to submit a request to your Certification Authority (CA), an
 d then, after receiving a certificate, use the certificate path with th
 is parameter. This parameter does not apply to Hyper-V hosts or VMware
 ESX Server hosts.
 Note: In VMM 2007, this parameter was named VMRCCertificatePath.

 -RemoteConnectEnabled <Boolean>
 Enables (when set to TRUE) a connection on a host server that lets user
 s connect to their virtual machines remotely.
 TYPE OF HOST TYPE OF REMOTE CONNECTION
 ------------ -------------------------
 Virtual Server Enables Virtual Machine Remote Control (VMRC)
 Hyper-V Enables Virtual Machine Connection (VMConnect)
 VMware ESX This parameter does not apply to VMs on ESX hosts
 Note: In VMM 2007, this parameter was named VMRCEnabled.

 -RemoteConnectMultipleConnectionsEnabled <Boolean>
 Enables (when set to TRUE) two or more simultaneous remote connections
 between virtual machine and its Virtual Server host. This lets users es
 tablish multiple remote connections to the same virtual machine on a Vi
 rtual Server host. This parameter does not apply to Hyper-V hosts or VM
 ware ESX Server hosts.
 Note: In VMM 2007, this parameter was named VMRCMultipleConnectionsEnab
 led.

 -RemoteConnectPort <Int32>
 Specifies a default value for the TCP port to use when a remote user co
 nnects to a virtual machine. Typically, the default port for a Virtual
 Server host is 5900 (for a VMRC connection), and the default port for a
 Hyper-V host is 2179 (for a VMConnect connection). This parameter does
 not apply to a VMware ESX host.
 Note: In VMM 2007, the Virtual Server default remote connect port param
 eter was named VMRCPort.

 -RemoteConnectTimeoutEnabled <Boolean>
 Enables (when set to TRUE) timing out a remote connection between a vir
 tual machine and its a Virtual Server host. This parameter does not app
 ly to Hyper-V hosts or VMware ESX Server hosts.
 Note: In VMM 2007, this parameter was named VMRCTimeoutEnabled.

 -RemoteConnectTimeoutMinutes <Int32>
 Specifies the number of minutes that a remote connection between a virt
 ual machine and its Virtual Server host can remain idle before it is di
 sconnected. This parameter does not apply to Hyper-V hosts or VMware ES
 X Server hosts.
 Note: In VMM 2007, this parameter was named VMRCTimeoutMinutes.

 -RemoveRemoteConnectCertificate <Boolean>
 Removes the current VMRC-based remote connect certificate for virtual m
 achines on Virtual Server hosts. This parameter does not apply to Hyper
 -V hosts or VMware ESX Server hosts.
 Note: In VMM 2007, this parameter was named RemoveVMRCCertificate.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SecureRemoteConnectEnabled <Boolean>
 Enables (when set to TRUE) a secure remote connection between a user an
 d a virtual machine on a Virtual Server host. By default, an unsigned c
 ertificate is used to encrypt the remote connection. Alternatively, you
 can use this parameter with the RemoteConnectCertificatePath parameter
 to specify a signed certificate. This parameter does not apply to Hype
 r-V hosts or VMware ESX Server hosts.
 Note: In VMM 2007, this parameter was named SecureVMRCEnabled.

 -VMHostManagementCredential <PSCredential>
 Specifies the password for an account that has permission to manage Win
 dows-based hosts managed by VMM that are located in a perimeter network
 or in a non-trusted domain.
 Note: In VMM 2007, this parameter was named PerimeterNetworkHostCredent
 ial.

 -VMPaths <String>
 Specifies a set of default paths (as strings separated by the pipeline
 operator) on a host where virtual machine files can be stored.
 Example format: -VMPaths "C:\Folder1|C:\Folder2|C:\Folder3"

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Make a host available for placement.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> Set-VMHost -VMHost $VMHost -AvailableForPlacement $TRUE

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the host named VMHost01
 from the VMM database and stores the host object in variable $VMHost.

 The last command makes VMHost01 available as a host for virtual machines. S
 etting the parameter AvailableForPlacement to TRUE enables the VMM placemen
 t process to evaluate this host as a possible candidate on which to deploy
 virtual machines.

 2: Enable remote connections on a Virtual Server host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02"
 PS C:\> Set-VMHost -VMHost $VMHost -RemoteConnectEnabled $TRUE -RemoteConne
 ctPort 5900 -RemoteConnectTimeoutEnabled $TRUE -RemoteConnectTimeoutMinutes
 35

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost02
 and stores the host object in $VMHost.

 The last command enables remote connections on VMHost02 and sets the follow
 ing options:

 * Sets the port used for remote connections to 5900
 * Enables the remote connecton timeout feature
 * Specifies that remote connections time out (disconnect) at 35 minutes

 Enabling remote connections on this Virtual Server host lets users access a
 nd manage their virtual machines deployed on this host remotely.

 3. Update the virtual machine paths for a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost03"
 PS C:\> Set-VMHost -VMHost $VMHost -VMPaths "Z:\MySpecialVMPath1|Z:MySpecia
 lVMPath2"

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost03
 and stores the host object in $VMHost.

 The last command updates the VMPaths property for the object that represent
 s VMHost03 in the VMM database by adding the path "Z:\MySpecialVMPath" to t
 he list of virtual machine paths on that host.

 4. Update the resource reserves for a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost04"
 PS C:\> Set-VMHost -VMHost $VMHost -CPUPercentageReserve 40 -DiskSpaceReser
 veMB 1024 -MaxDiskIOReservation 500 -MemoryReserve 1024 -NetworkPercentageR
 eserve 40

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost04
 and stores the host object in $VMHost.

 The last command updates the specified properties (for CPU, disk, memory, a
 nd network reserve settings) for VMHost04.

REMARKS
 For more information, type: "get-help Set-VMHost -detailed".
 For technical information, type: "get-help Set-VMHost -full".

[bookmark: _Toc225244572]Update-VMHost

SYNOPSIS
 Updates Virtual Server 2005 R2 software installed on a virtual machine host
 to the latest version of Virtual Server supported by Virtual Machine Manag
 er.

SYNTAX
 Update-VMHost [-VMHost] [<String Host>] [-JobVariable <String>] [-PROTipID
 <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Updates Virtual Server 2005 R2 Service Pack 1 (SP1) software installed on a
 virtual machine host to the latest version of Virtual Server supported by
 Virtual Machine Manager.

 You need to use this cmdlet only if you have added a server to Virtual Mach
 ine Manager as a host that is running Virtual Server 2005 R2 SP1 and that h
 as not been updated.

 If the server is running Virtual Server 2005 R2, the cmdlet will block the
 update and request that you manually upgrade to Virtual Server 2005 R2 SP1,
 and then run Update-VMHost again.

 CAUTION: When you run the Update-VMHost cmdlet to update the Virtual Server
 software on a host, the cmdlet puts all virtual machines running on the ho
 st into a stopped state and might reboot the host server.

 For more information about hosts supported by VMM 2008, including Virtual S
 erver hosts, type: Get-Help Add-VMHost -detailed

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Update a host running Virtual Server 2005 R2 SP1 to the latest version o
 f Virtual Server supported by VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> Update-VMHost -VMHost $VMHost

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the host object in variable $VMHost.

 The last command updates the Virtual Server 2005 R2 SP1 software installed
 on VMHost01 to the latest version of Virtual Server supported by VMM.

 2: Update all hosts running running Virtual Server 2005 R2 SP1 to the lates
 t version of Virtual Server supported by VMM.

 PS C:\> Get-VMHost -VMMServer VMMServer1.Contoso.com | where {$_.VirtualSer
 verVersionState -eq "UpgradeAvailable"} | Update-VMHost -RunAsynchronously

 This command performs the following actions:

 * Gets all objects that represent hosts managed by VMMServer1.

 * Selects only those host objects whose version state property indicates
 that an upgrade for Virtual Server is available.

 * Updates the Virtual Server 2005 R2 SP1 software installed on each host
 to the latest version of Virtual Server supported by Virtual Machine
 Manager. Specifying the -RunAsynchronously parameter returns control
 to the command shell immediately (before the command completes).

REMARKS
 For more information, type: "get-help Update-VMHost -detailed".
 For technical information, type: "get-help Update-VMHost -full".

[bookmark: _Toc225244573]VMHostCluster
[bookmark: _Toc225244574]Add-VMHostCluster

SYNOPSIS
 Adds an object to Virtual Machine Manager that represents a host cluster.

SYNTAX
 Add-VMHostCluster [-Name] <String> -Credential <PSCredential> [-AddVMHostJo
 bsListVariable <JobVariable[]>] [-ClusterReserve <Int32>] [-Description <St
 ring>] [-JobVariable <String>] [-PROTipID <Guid>] [-Reassociate] [-RemoteCo
 nnectEnabled <Boolean>] [-RemoteConnectPort <Int32>] [-RunAsynchronously] [
 -VMHostGroup <HostGroup>] [-VMMServer [<String ServerConnection>]] [-VMPath
 s <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Adds an existing Windows Server 2008 failover host cluster to the Virtual M
 achine Manager database so that Virtual Machine Manager can start managing
 the host cluster.

 Before you can use the Add-VMHostCluster cmdlet to add a Windows Server 200
 8 host cluster to Virtual Machine Manager, you must use the Failover Cluste
 r Management tool to create and configure the host cluster.

 You cannot use the Add-VMHostCluster cmdlet to add a VMware host cluster to
 Virtual Machine Manager. Instead, you use the Add-VirtualizationManager cm
 dlet to add a VMware VirtualCenter Server to your Virtual Machine Manager e
 nvironment and import its data. After adding the VirtualCenter Server to Vi
 rtual Machine Manager, Virtual Machine Manager can manage VMware ESX hosts
 (including host clusters) and the virtual machines deployed on those hosts.

 For more information, type:
 Get-Help about_VMM_2008_Failover_Clusters
 Get-Help Add-VirtualizationManager -detailed

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -AddVMHostJobsListVariable <JobVariable[]>
 Returns an array of job variable objects for jobs that are created for
 each node when hosts in a host cluster are added to VMM. VMM uses these
 job variables to track the progress of each job individually.

 -ClusterReserve <Int32>
 Specifies the number of host failures that a host cluster can sustain b
 efore VMM designates the cluster as over-committed. The default value i
 s 1.

 -Description <String>
 Specifies a description for the specified object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -Reassociate
 Reassociates a host currently managed by one VMM server with another VM
 M server.

 -RemoteConnectEnabled <Boolean>
 Enables (when set to TRUE) a connection on a host server that lets user
 s connect to their virtual machines remotely.
 TYPE OF HOST TYPE OF REMOTE CONNECTION
 ------------ -------------------------
 Virtual Server Enables Virtual Machine Remote Control (VMRC)
 Hyper-V Enables Virtual Machine Connection (VMConnect)
 VMware ESX This parameter does not apply to VMs on ESX hosts
 Note: In VMM 2007, this parameter was named VMRCEnabled.

 -RemoteConnectPort <Int32>
 Specifies a default value for the TCP port to use when a remote user co
 nnects to a virtual machine. Typically, the default port for a Virtual
 Server host is 5900 (for a VMRC connection), and the default port for a
 Hyper-V host is 2179 (for a VMConnect connection). This parameter does
 not apply to a VMware ESX host.
 Note: In VMM 2007, the Virtual Server default remote connect port param
 eter was named VMRCPort.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMHostGroup <HostGroup>
 Specifies a virtual machine host group object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -VMPaths <String>
 Specifies a set of default paths (as strings separated by the pipeline
 operator) on a host where virtual machine files can be stored.
 Example format: -VMPaths "C:\Folder1|C:\Folder2|C:\Folder3"

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add a failover cluster to VMM.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostGroup = Get-VMHostGroup | where {$_.Path -eq "All Hosts"}
 PS C:\> Add-VMHostCluster -Name "VMHostCluster01.Contoso.com" -VMHostGroup
 $VMHostGroup -RemoteConnectEnabled $TRUE -RemoteConnectPort 5900 -Credentia
 l $Credential

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are a domain account with administrator r
 ights on all the nodes of the failover cluster that you want to add.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following commands use this
 server by default.

 The third command gets the object that represents the host group "All Hosts
 ". This is the host group that will be the container for the nodes in this
 host cluster, which are added to VMM in the last command.

 The last command adds the failover cluster VMHostCluster01 in the Contoso d
 omain to the VMM database, specifies "All Hosts" as the host group, enables
 remote connections, and specifies that TCP port 5900 will be used for remo
 te connections to each node of the cluster. As the last command is processe
 d, variable $Credential provides your credentials to Add-VMHostCluster.

REMARKS
 For more information, type: "get-help Add-VMHostCluster -detailed".
 For technical information, type: "get-help Add-VMHostCluster -full".

[bookmark: _Toc225244575]Get-VMHostCluster

SYNOPSIS
 Gets a host cluster object, or an array of host cluster objects, from the V
 irtual Machine Manager database.

SYNTAX
 Get-VMHostCluster [[-Name] <String>] -VMHostGroup <HostGroup> [<CommonParam
 eters>]

 Get-VMHostCluster [[-Name] <String>] [-VMMServer [<String ServerConnection>
]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets a host cluster object, or an array of host cluster objects, from the V
 irtual Machine Manager database.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMHostGroup <HostGroup>
 Specifies a virtual machine host group object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all host clusters managed by this VMM server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMHostCluster

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets from the VMM database all objects that represent al
 l host clusters currently managed by VMMServer1 and displays information ab
 out each host cluster object to the user.

 2: Get all host clusters, and display the host cluster name and virtualizat
 ion platform.

 PS C:\> Get-VMHostCluster -VMMServer VMMServer1.Contoso.com | select -prope
 rty Name, VirtualizationPlatform

 Gets all objects that represent host clusters from VMMServer1 and passes ea
 ch host cluster object to "select" (the alias for the Select-Object cmdlet)
 , which displays the name of each host cluster and the virtualization platf
 orm of the hosts that belong to that host cluster.

 3: Get a host cluster by name.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMHostCluster -Name "VMHostCluster03.Contoso.com"

 The first command connects to VMMServer1.

 The second command gets fthe host cluster object that represents VMHostClus
 ter03.

 4: Display the object type, methods, and properties for a host cluster mana
 ged by VMM.

 PS C:\> $VMHostCluster = Get-VMHostCluster -VMMServer VMMServer1.Contoso.co
 m
 PS C:\> $VMHostCluster | Get-Member

 The first command gets the object that represents a host cluster from VMMSe
 rver1 and stores the host cluster object in $VMHostCluster. This example as
 sumes that only one host cluster is managed by Virtual Machine Manager.

 The second command passes the host cluster object to the Get-Member cmdlet,
 which displays the .NET type for a host cluster object:

 TypeName: Microsoft.SystemCenter.VirtualMachineManager.HostCluster

 The command also displays a list of methods and properties associated with
 this object.

REMARKS
 For more information, type: "get-help Get-VMHostCluster -detailed".
 For technical information, type: "get-help Get-VMHostCluster -full".

[bookmark: _Toc225244576]Move-VMHostCluster

SYNOPSIS
 Moves a Windows Server 2008 host cluster object managed by Virtual Machine
 Manager from one host group to another.

SYNTAX
 Move-VMHostCluster [-VMHostCluster] <VMHostCluster> -ParentHostGroup [<Stri
 ng HostGroup>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronous
 ly] [<CommonParameters>]

DETAILED DESCRIPTION
 Moves an object that represents a Windows Server 2008 host cluster managed
 by Virtual Machine Manager from one host group to another.

 You cannot use the Move-VMHostCluster cmdlet to move a VMware host cluster.
 Instead, use VirtualCenter Server to move a VMware host cluster.

PARAMETERS
 -VMHostCluster <VMHostCluster>
 Specifies a VMM host cluster object.

 -ParentHostGroup [<String HostGroup>]
 Specifies the parent host group that contains one or more hosts, host g
 roups, or host clusters.
 Note: In VMM 2007, this parameter was named ParentVMHostGroup.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Move a single host cluster to a new parent host group.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostCluster = Get-VMHostCluster -Name "VMHostCluster01.Contoso.c
 om"
 PS C:\> $DestinationHostGroup = Get-VMHostGroup | where {$_.Name -eq "MyNew
 Group"}
 PS C:\> Move-VMHostCluster -VMHostCluster $VMHostCluster -ParentHostGroup $
 DestinationHostGroup

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents failover cluster VMHostC
 luster01.Contoso.com from the VMM database and stores the host cluster obje
 ct in variable $VMHostCluster.

 The third command gets the object that represents the host group named MyNe
 wGroup and stores the host group object in variable $DestinationHostGroup.

 The last command moves host cluster VMHostCluster01.Contoso.com (represente
 d by $VMHostCluster) from its current host group to a new parent host group
 called MyNewGroup (represented by $DestinationHostGroup).

REMARKS
 For more information, type: "get-help Move-VMHostCluster -detailed".
 For technical information, type: "get-help Move-VMHostCluster -full".

[bookmark: _Toc225244577]Refresh-VMHostCluster

SYNOPSIS
 Refreshes host cluster properties in the Virtual Machine Manager Administra
 tor Console.

SYNTAX
 Refresh-VMHostCluster [-VMHostCluster] <VMHostCluster> [-JobVariable <Strin
 g>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Refreshes host cluster properties so that the Virtual Machine Manager Admin
 istrator Console displays updated information about the host cluster.

PARAMETERS
 -VMHostCluster <VMHostCluster>
 Specifies a VMM host cluster object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Refresh information about a specific host cluster.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostCluster = Get-VMHostCluster -Name "VMHostCluster01.Contoso.C
 om"
 PS C:\> Refresh-VMHostCluster -VMHostCluster $VMHostCluster

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents failover cluster VMHostC
 luster01.Contoso.com from the VMM database and stores the host cluster obje
 ct in variable $VMHostCluster.

 The last command refreshes the properties for VMHostCluster01 so that curre
 nt information about this host cluster will appear in the Administrator Con
 sole.

REMARKS
 For more information, type: "get-help Refresh-VMHostCluster -detailed".
 For technical information, type: "get-help Refresh-VMHostCluster -full".

[bookmark: _Toc225244578]Remove-VMHostCluster

SYNOPSIS
 Removes a host cluster object from Virtual Machine Manager.

SYNTAX
 Remove-VMHostCluster [-VMHostCluster] <VMHostCluster> [-Confirm] [-Credenti
 al <PSCredential>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchro
 nously] [<CommonParameters>]

 Remove-VMHostCluster [-VMHostCluster] <VMHostCluster> -Force [-Confirm] [-J
 obVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParame
 ters>]

DETAILED DESCRIPTION
 Removes one or more host cluster objects from Virtual Machine Manager.

 CAUTION:

 Do not use this cmdlet to remove a VMware host cluster from Virtual Machine
 Manager unless you also want to remove the cluster from VirtualCenter Serv
 er.

 The cmdlet removes the VMware host cluster from VirtualCenter Server at the
 same time that it removes the cluster from Virtual Machine Manager.

PARAMETERS
 -VMHostCluster <VMHostCluster>
 Specifies a VMM host cluster object.

 -Force
 Forces the removal of an object from the VMM database and removes any a
 ssociation between this object and other objects.

 -Confirm
 Prompts for confirmation before running the command.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove a specific host cluster from VMM.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostCluster = Get-VMHostCluster -Name "VMHostCluster01.Contoso.c
 om"
 PS C:\> Remove-VMHostCluster -VMHostCluster $VMHostCluster -Credential $Cre
 dential -Confirm

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in variable $Credential. The requir
 ed credentials for this operation are a domain account with administrator r
 ights on all of the nodes of the failover cluster that you want to remove.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following commands use this
 server by default.

 The third command gets the object that represents failover cluster VMHostCl
 uster01.Contoso.com from the VMM database and stores the host cluster objec
 t in variable $VMHostCluster.

 The last command removes the VMHostCluster01 object from the VMM database a
 nd stops managing that host cluster. It does not modify the host cluster se
 ttings or its existing virtual machines in any way. As this command is proc
 essed, $Credential provides your credentials to Remove-VMHostCluster. This
 example assumes that there is only one host cluster object. For an example
 that shows how to change the syntax to remove multiple cluster objects, see
 the next example.

 CAUTION:

 Do not use this cmdlet to remove a VMware host cluster from Virtual Machine
 Manager unless you also want to remove the cluster from VirtualCenter Serv
 er. The cmdlet removes the VMware host cluster from VirtualCenter Server at
 the same time that it removes the cluster from Virtual Machine Manager.

 NOTE: You cannot use the Remove-VMHost cmdlet to remove individual hosts fr
 om a host cluster. VMM does not allow partial management of host clusters -
 you can manage all of the hosts in the host cluster or none of them. The R
 emove-VMHostCluster cmdlet removes the host cluster and its nodes from VMM.
 If your goal is to remove the host cluster entirely but continue to use VM
 M to manage the hosts, use these steps:

 1. Use Remove-VMHostCluster to remove the host cluster
 from VMM (as shown in this example).

 2. On the server on which the host cluster was originally
 created, used the appropriate tool (such as the Windows
 Server 2008 Failover Cluster Management console or the
 VMware Virtual Infrastructure Client) to remove the host
 cluster entirely.

 3. In VMM, use Add-VMHost to add the hosts (which were nodes
 in the host cluster) to VMM. Virtual machines on those
 hosts will remain intact throughout this process.

 2: Remove all host clusters from VMM.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMHostCluster | Remove-VMHostCluster -Credential $Credential -C
 onfirm

 The first command uses Get-Credential to prompt you to supply a user name a
 nd password and stores your credentials in $Credential. The required creden
 tials for this operation are a domain account with administrator rights on
 all of the nodes of the failover cluster that you want to remove.

 The second command connects to VMMServer1.

 The last command gets all host cluster objects and passes those host cluste
 r objects to the Remove-VMHostCluster cmdlet, which removes each host clust
 er object from Virtual Machine Manager and stops managing the corresponding
 host cluster. The command does not modify the host cluster settings or its
 existing virtual machines in any way. As this command is processed, $Crede
 ntial provides your credentials to Remove-VMHostCluster.

 CAUTION:

 Do not use this cmdlet to remove a VMware host cluster from Virtual Machine
 Manager unless you also want to remove the cluster from VirtualCenter Serv
 er. The cmdlet removes the VMware host cluster from VirtualCenter Server at
 the same time that it removes the cluster from Virtual Machine Manager.

REMARKS
 For more information, type: "get-help Remove-VMHostCluster -detailed".
 For technical information, type: "get-help Remove-VMHostCluster -full".

[bookmark: _Toc225244579]Set-VMHostCluster

SYNOPSIS
 Modifies the properties of a virtual machine host cluster managed by Virtua
 l Machine Manager.

SYNTAX
 Set-VMHostCluster [-VMHostCluster] <VMHostCluster> [-ClusterReserve <Int32>
] [-Description <String>] [-InheritPROSettings <Boolean>] [-JobGroup <Guid>
] [-JobVariable <String>] [-PROAutomationLevel <Int32>] [-PROMonitoringLeve
 l <Int32>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Modifies the properties of a host cluster managed by Virtual Machine Manage
 r. Properties that you can modify include changing the cluster reserve sett
 ing and enabling Performance and Resource Optimization (PRO) settings.

 CLUSTER RESERVE

 The cluster reserve setting specifies the number of host failures that a ho
 st cluster can sustain before Virtual Machine Manager considers the cluster
 to be over-committed. An over-committed host cluster is one that cannot wi
 thstand the specified number of host failures and still keep all of the vir
 tual machines in the cluster running.

 Virtual Machine Manager uses the following processes to determine over-comm
 itment:

 * Host Placement. The placement process calculates whether adding a new
 virtual machine to the host cluster will over-commit the host cluster
 and, if so, placement stops recommending the deployment of additional
 virtual machines on hosts in that cluster.

 * Cluster Refresher. The host cluster refresher calculates, at periodic
 intervals, whether a host cluster is over-committed or not based on any
 of the following events:

 - A change in the value specified for -ClusterReserve.
 - The failure or removal of nodes from the host cluster.
 - The addition of nodes to the host cluster.
 - The discovery of new virtual machines on nodes in the host cluster.

 The following examples illustrate how over-commitment works:

 * Example of over-commitment when all nodes are functioning:

 If you specify a cluster reserve of 2 for an 8-node host cluster,
 and all 8 nodes are functioning, the host cluster is over-committed if
 any combination of 6 (8-2) nodes lacks the capacity to accommodate
 existing virtual machines.

 * Example of over-commitment when some nodes are not functioning:

 If you specify a cluster reserve of 2 for an 8-node host cluster,
 but only 5 nodes are functioning, the host cluster is over-committed if
 any combination of 3 (5-2) nodes lacks the capacity to accommodate
 existing virtual machines.

 PRO MONITORING AND RECOMMENDED ACTIONS

 PRO can, if enabled, monitor workload- and application-aware resources for
 hosts in a host cluster (and for virtual machines deployed on those hosts)
 and can provide recommended actions (such as move a virtual machine to a ne
 w host, or add a CPU to the virtual machine) that you can implement manuall
 y or automatically.

 You can use the Set-VMHostCluster cmdlet with the PROAutomationLevel and PR
 OMonitoringLevel parameters to enable PRO monitoring and tip implementation
 for a host cluster only if Virtual Machine Manager is configured to use Sy
 stem Center Operations Manager 2007 to manage those hosts and if the System
 Center Virtual Machine Manager 2008 Management Pack has been imported into
 that Operations Manager Server.

 You can use the InheritPROSettings parameter with this cmdlet to specify wh
 ether child host clusters will inherit the same PRO monitoring and PRO auto
 mation settings configured for the parent host cluster.

PARAMETERS
 -VMHostCluster <VMHostCluster>
 Specifies a VMM host cluster object.

 -ClusterReserve <Int32>
 Specifies the number of host failures that a host cluster can sustain b
 efore VMM designates the cluster as over-committed. The default value i
 s 1.

 -Description <String>
 Specifies a description for the specified object.

 -InheritPROSettings <Boolean>
 Specifies (when set to TRUE) that the host servers in a child host grou
 p or child host cluster will have the same values for the PROMonitoring
 Level and PROAutomationLevel parameters as the values specified for tho
 se parameters for the parent container.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROAutomationLevel <Int32>
 Specifies the severity level of tips that PRO will implement.
 Valid values:
 0 (Off) Respond to a PRO tip manually
 1 (Critical) Implement critical PRO tips automatically
 2 (CriticalAndWarning) Implement critical or warning PRO tips automatic
 ally
 Note: Applies only to Hyper-V or VMware ESX hosts or to VMs deployed on
 those hosts.

 -PROMonitoringLevel <Int32>
 Specifies the severity level of tips that PRO will monitor.
 Valid values:
 0 (Off) Do not monitor PRO tips
 1 (Critical) Monitor critical PRO tips
 2 (CriticalAndWarning) Monitor critical and warning PRO tips
 Note: Applies only to Hyper-V or VMware ESX hosts or to VMs deployed on
 those hosts.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the setting for the cluster reserve for a host cluster.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostCluster = Get-VMHostCluster -Name "VMHostCluster01.Contoso.c
 om"
 PS C:\> Set-VMHostCluster -VMHostCluster $VMHostCluster -ClusterReserve 2

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents failover cluster VMHostC
 luster01.Contoso.com from the VMM database and stores the host cluster obje
 ct in variable $VMHostCluster.

 The last command changes value for the cluster reserve for host cluster VMH
 ostCluster01 to 2 by setting the parameter ClusterReserve to 2.

 2: Enable PRO for a specific host cluster.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostCluster = Get-VMHostCluster -Name "VMHostCluster02.Contoso.c
 om"
 PS C:\> Set-VMHostCluster -VMHostCluster $VMHostCluster -PROMonitoringLevel
 2 -PROAutomationLevel 1

 The first command connects to VMMServer1.

 The second command gets the object that represents failover cluster VMHostC
 luster02.Contoso.com and stores the host cluster object in variable $VMHost
 Cluster.

 The last command enables PRO Monitoring on the cluster for both warning ale
 rts and critical alerts, and it turns on automatic resolution for critical
 alerts.

REMARKS
 For more information, type: "get-help Set-VMHostCluster -detailed".
 For technical information, type: "get-help Set-VMHostCluster -full".

[bookmark: _Toc225244580]VMHostDisk
[bookmark: _Toc225244581]Get-VMHostDisk

SYNOPSIS
 Gets a hard disk drive object for the specified host from the Virtual Machi
 ne Manager database.

SYNTAX
 Get-VMHostDisk [[-Name] <String>] -VMHost [<String Host>] [<CommonParameter
 s>]

DETAILED DESCRIPTION
 Gets one or more hard disk drive objects for the specified host from the Vi
 rtual Machine Manager database. You can use this cmdlet with the New-Virtua
 lDiskDrive cmdlet to attach a pass-through disk on a virtual machine to a p
 hysical hard disk on the host on which that virtual machine is deployed.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all hard disk drives on the specified host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> Get-VMHostDisk -VMHost $VMHost

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object for VMHost01 from the VMM database and s
 tores the host object in variable $VMHost.

 The last command gets all hard disk drive objects from VMHost01 and display
 s information about those objects to the user.

 2. Get a specific hard disk drive on the host by name.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostDisk = Get-VMHost -ComputerName "VMHost02.Contoso.com" | Get
 -VMHostDisk –Name "\\.\PhysicalDrive0"
 PS C:\> $VMHostDisk

 The first command connects to VMMServer1.

 The second command gets the object from VMHost02 that represents the host h
 ard disk drive with a name that matches the pattern "PhysicalDrive0" and st
 ores the hard disk drive object in $VMHostDisk.

 The last command displays the contents of $VMHostDisk to the user.

REMARKS
 For more information, type: "get-help Get-VMHostDisk -detailed".
 For technical information, type: "get-help Get-VMHostDisk -full".

[bookmark: _Toc225244582]VMHostGroup
[bookmark: _Toc225244583]Get-VMHostGroup

SYNOPSIS
 Gets a host group object from the Virtual Machine Manager database.

SYNTAX
 Get-VMHostGroup [[-Name] <String>] [-VMMServer [<String ServerConnection>]]
 [<CommonParameters>]

 Get-VMHostGroup [[-Name] <String>] -ID <Guid> [<CommonParameters>]

 Get-VMHostGroup [[-Name] <String>] -ParentHostGroup [<String HostGroup>] [<
 CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent host groups from the Virtual Machin
 e Manager database. Virtual Machine Manager provides a default parent host
 group, called All Hosts. Host groups within All Hosts are user-created cont
 ainers that can contain any of the following:

 * A host or set of hosts
 * A host group or set of host groups, and hosts within those host groups
 * A host cluster, and hosts (called nodes) within that host cluster

 For more information about host groups, type:
 Get-Help New-VMHostGroup -detailed

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -ID <Guid>
 Specifies the numerical identifier (as a globally unique identifier, or
 GUID) for a specific object.

 -ParentHostGroup [<String HostGroup>]
 Specifies the parent host group that contains one or more hosts, host g
 roups, or host clusters.
 Note: In VMM 2007, this parameter was named ParentVMHostGroup.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all host groups at the specified path.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMHostGroup | where { $_.Path -eq "All Hosts\Production" }

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets the objects that represent one or more host groups
 located at host path "All Hosts\Production" and displays information about
 these host groups to the user.

 2: Display the name and path properties for all host groups.

 PS C:\> Get-VMHostGroup -VMMServer VMMServer1 | select -Property Name,Path

 Gets all host group objects from VMMServer1, selects the name and host grou
 p path properties, and displays those properties to the user.

REMARKS
 For more information, type: "get-help Get-VMHostGroup -detailed".
 For technical information, type: "get-help Get-VMHostGroup -full".

[bookmark: _Toc225244584]Move-VMHostGroup

SYNOPSIS
 Moves a host group object managed by Virtual Machine Manager from the curre
 nt location to a new location under a different host group parent.

SYNTAX
 Move-VMHostGroup [-VMHostGroup] <HostGroup> -ParentHostGroup [<String HostG
 roup>] [-JobGroup <Guid>] [-JobVariable <String>] [-PROTipID <Guid>] [-RunA
 synchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Moves one or more objects that represent host groups (which contain virtual
 machine hosts managed by Virtual Machine Manager) from the current locatio
 n to a new location under a different host group parent. You can locate hos
 t groups under the default root host group or under any other host group cr
 eated by an administrator.

 All hosts within a moved host group acquire a new host path relative to the
 root host group. Changing the structure of host groups might change which
 Self Service User or Delegated Administrator user roles have access to the
 hosts contained within the affected host groups, or to the virtual machines
 deployed on those hosts.

PARAMETERS
 -VMHostGroup <HostGroup>
 Specifies a virtual machine host group object.

 -ParentHostGroup [<String HostGroup>]
 Specifies the parent host group that contains one or more hosts, host g
 roups, or host clusters.
 Note: In VMM 2007, this parameter was named ParentVMHostGroup.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Move one host group to a new parent host group.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $OldHostGroup = Get-VMHostGroup | where { $_.Name -eq "MyOldGroup"
 }
 PS C:\> $HostGroup = Get-VMHostGroup | where { $_.Name -eq "MyNewGroup" }
 PS C:\> Move-VMHostGroup -VMHostGroup $OldHostGroup -ParentHostGroup $HostG
 roup

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the host group named MyO
 ldGroup from the VMM database and stores the host group object in variable
 $OldHostGroup.

 The third command gets the object that represents the host group named MyNe
 wGroup and stores this host group object in variable $HostGroup.

 The last command moves the host group MyOldGroup (represented by $OldHostGr
 oup) to a location under its new parent host group, MyNewGroup (represented
 by $HostGroup).

 2: Move all host groups to a new parent host group.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $AllGroups = Get-VMHostGroup
 PS C:\> $HostGroup = New-VMHostGroup -Name "Lab04"
 PS C:\> $AllGroups | Move-VMHostGroup -ParentHostGroup $HostGroup

 The first command connects to VMMServer1.

 The second command gets all objects that represent host groups and stores t
 hese host group objects in $AllGroups. $AllGroups contains the object for e
 very host group -- including the default parent host group (AllHosts).

 The third command creates a host group object called Lab04 and stores the n
 ew host group object in $HostGroup.

 The last command passes each host group object in $AllGroups to the Move-VM
 HostGroup cmdlet, which moves each host group object to a new location unde
 r $HostGroup - except for AllHosts because AllHosts is the default parent h
 ost group and cannot be moved.

REMARKS
 For more information, type: "get-help Move-VMHostGroup -detailed".
 For technical information, type: "get-help Move-VMHostGroup -full".

[bookmark: _Toc225244585]New-VMHostGroup

SYNOPSIS
 Creates a Virtual Machine Manager host group object that can contain virtua
 l machine host servers, other host groups, or host clusters.

SYNTAX
 New-VMHostGroup [-Name] <String> [-Description <String>] [-JobVariable <Str
 ing>] [-ParentHostGroup [<String HostGroup>]] [-PROTipID <Guid>] [-RunAsync
 hronously] [-VMMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a Virtual Machine Manager host group object that can contain host s
 ervers on which one or more virtual machines are deployed, and that might c
 ontain other host groups or host clusters.

 Virtual Machine Manager provides a default parent host group called All Hos
 ts, to which you can add child host groups. A new host group is empty until
 you move hosts into it and/or create one or more child host groups under t
 hat host group. Host groups are organized into a hierarchical and customiza
 ble tree structure. In the host group tree, the parent of a new host group
 is either the default root host group (All Hosts) or a user-created host gr
 oup.

 A host group can be a parent container for any of the following:

 * A host or set of hosts
 * A host group or set of host groups, and hosts within those host groups
 * A host cluster, and hosts (called nodes) within that host cluster

 Hosts contained in a specific host group have a host path property that sho
 ws the location of that host in the host group hierarchy, as illustrated in
 the following table.

 Name Path
 ---- ----
 All Hosts All Hosts
 ChildHostGroup1 All Hosts\ChildHostGroup1
 ChildHostGroup2 All Hosts\ChildHostGroup2
 New Datacenter All Hosts\New Datacenter
 nested1 All Hosts\New Datacenter\nested1
 nested2 All Hosts\New Datacenter\nested\nested2

 For an example that shows you how to display the host group path property,
 type:
 Get-Help Get-VMHostGroup -example

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -Description <String>
 Specifies a description for the specified object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -ParentHostGroup [<String HostGroup>]
 Specifies the parent host group that contains one or more hosts, host g
 roups, or host clusters.
 Note: In VMM 2007, this parameter was named ParentVMHostGroup.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a host group for virtual machines under the root host group.

 PS C:\> New-VMHostGroup -VMMServer "VMMServer1.Contoso.com" -Name "HostGrou
 p01"

 Creates a host group named HostGroup01 and stores its object in the VMM dat
 abase on VMMServer1 in the Contoso.com domain.

 By default, VMM places this host group under the root host group, which is
 called All Hosts.

 2: Create a host group for virtual machines under the specified parent host
 group.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $ParentGroup = Get-VMHostGroup | where { $_.Name -eq "HostGroup02"
 }
 PS C:\> New-VMHostGroup -Name "ChildGroup02" -ParentHostGroup $ParentGroup

 The first command connects to VMMServer1.

 The second command gets the object that represents the host group named Hos
 tGroup02 and stores the host group object in $ParentGroup.

 The third command creates a host group called ChildGroup02 and places it un
 der the parent host group, HostGroup (represented by $ParentGroup).

REMARKS
 For more information, type: "get-help New-VMHostGroup -detailed".
 For technical information, type: "get-help New-VMHostGroup -full".

[bookmark: _Toc225244586]Remove-VMHostGroup

SYNOPSIS
 Removes a host group object from Virtual Machine Manager.

SYNTAX
 Remove-VMHostGroup [-VMHostGroup] <HostGroup> [-JobVariable <String>] [-PRO
 TipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent host groups from the Virtual Mac
 hine Manager database. This cmdlet also deletes a host group's child host g
 roups (if any exist) if the host group and its child host groups do not con
 tain any virtual machine hosts.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VMHostGroup <HostGroup>
 Specifies a virtual machine host group object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove the specified host group.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $HostGroup = Get-VMHostGroup | where { $_.Name -eq "MyNewGroup" }
 PS C:\> Remove-VMHostGroup -VMHostGroup $HostGroup

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the host group named MyN
 ewGroup from the VMM database and stores the host group object in variable
 $HostGroup.

 The third command removes the object that represents the host group stored
 in $HostGroup from the VMM database.

REMARKS
 For more information, type: "get-help Remove-VMHostGroup -detailed".
 For technical information, type: "get-help Remove-VMHostGroup -full".

[bookmark: _Toc225244587]Set-VMHostGroup

SYNOPSIS
 Changes properties of a host group in Virtual Machine Manager.

SYNTAX
 Set-VMHostGroup [-VMHostGroup] <HostGroup> [-ApplyReservesToChildHostGroups
 <Boolean>] [-CPUPercentageReserve <Int32>] [-Description <String>] [-DiskS
 paceReserveMB <Int32>] [-InheritPROSettings <Boolean>] [-JobGroup <Guid>] [
 -JobVariable <String>] [-MaxDiskIOReservation <Int32>] [-MemoryReserveMB <I
 nt32>] [-Name <String>] [-NetworkPercentageReserve <Int32>] [-PROAutomation
 Level <Int32>] [-PROMonitoringLevel <Int32>] [-PROTipID <Guid>] [-RunAsynch
 ronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of a host group that contains hosts managed
 by Virtual Machine Manager. Properties that you can change include settings
 for name, description, multiple settings that specify host reserves, and s
 ettings that enable computers in the host group to be monitored by Performa
 nce and Resource Optimization (PRO) and to implement actions recommended by
 PRO.

 HOST RESERVES

 Host reserve settings that you can specify for hosts in a host group by usi
 ng the Set-VMHostGroup cmdlet include the percentage of CPU, memory, disk s
 pace, and network throughput that are set aside for the use of the host ope
 rating system on the physical host computer. A virtual machine cannot be pl
 aced on a host if the virtual machine’s resource requirements cannot be met
 without using host reserves.

 You can also specify whether child host groups will inherit the same host r
 eserve settings configured for the parent host group.

 PRO MONITORING AND RECOMMENDED ACTIONS

 PRO can, if enabled, monitor workload- and application-aware resources for
 hosts in a host group (and virtual machines deployed on those hosts) and ca
 n provide recommended actions (such as move a virtual machine to a new host
 , or add a CPU to the virtual machine) that you can implement manually or a
 utomatically.

 You can use the Set-VMHostGroup cmdlet with the PROAutomationLevel and PROM
 onitoringLevel parameters to enable PRO monitoring and tip implementation f
 or a host group only if VMM is configured to use System Center Operations M
 anager 2007 to manage those hosts and if the System Center Virtual Machine
 Manager 2008 Management Pack has been imported into that Operations Manager
 Server.

 You can use the InheritPROSettings parameter with this cmdlet to specify wh
 ether child host groups will inherit the same PRO monitoring and PRO automa
 tion settings configured for the parent host group.

PARAMETERS
 -VMHostGroup <HostGroup>
 Specifies a virtual machine host group object.

 -ApplyReservesToChildHostGroups <Boolean>
 Specifies (when set to TRUE) that child host groups will inherit the se
 ttings for host reserves specified for the parent host group, and overw
 rites any previous values.

 -CPUPercentageReserve <Int32>
 Specifies the percentage of CPU to set aside for the use of the host op
 erating system on the physical host computer. If you do not use this pa
 rameter to specify the reserve, the default setting for the host group
 is used: 10 percent. The Virtual Machine Manager placement process will
 not recommend that a virtual machine be placed on a host unless its re
 source requirements can be met without using host reserves.

 -Description <String>
 Specifies a description for the specified object.

 -DiskSpaceReserveMB <Int32>
 Specifies, in megabytes (MB), the amount of disk space to set aside for
 the use of the host operating system on the physical host computer. If
 you do not use this parameter to specify the reserve, the default sett
 ing for the host group is used: 100 MB. The Virtual Machine Manager pla
 cement process will not recommend that a virtual machine be placed on a
 host unless its resource requirements can be met without using host re
 serves.

 -InheritPROSettings <Boolean>
 Specifies (when set to TRUE) that the host servers in a child host grou
 p or child host cluster will have the same values for the PROMonitoring
 Level and PROAutomationLevel parameters as the values specified for tho
 se parameters for the parent container.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -MaxDiskIOReservation <Int32>
 Specifies the maximum number of disk I/O operations per second (IOPS) f
 or the operating system on the physical host computer. If you do not us
 e this parameter to specify the reserve, the default setting for the ho
 st group is used: 10000 IOPS. The Virtual Machine Manager placement pro
 cess will not recommend that a virtual machine be placed on a host unle
 ss its resource requirements can be met without using host reserves.

 -MemoryReserveMB <Int32>
 Specifies, in megabytes (MB), the amount of memory to set aside for the
 use of the host operating system on the physical host computer. If you
 do not use this parameter to specify the reserve, the default setting
 for the host group is used: 256 MB. The Virtual Machine Manager placeme
 nt process will not recommend that a virtual machine be placed on a hos
 t unless its resource requirements can be met without using host reserv
 es.

 -Name <String>
 Specifies the name of a VMM object.

 -NetworkPercentageReserve <Int32>
 Specifies the percentage of network capacity to set aside for the use o
 f the host operating system on the physical host computer. If you do no
 t use this parameter to specify the reserve, the default setting for th
 e host group is used: 10 percent. The Virtual Machine Manager placement
 process will not recommend that a virtual machine be placed on a host
 unless its resource requirements can be met without using host reserves
 .

 -PROAutomationLevel <Int32>
 Specifies the severity level of tips that PRO will implement.
 Valid values:
 0 (Off) Respond to a PRO tip manually
 1 (Critical) Implement critical PRO tips automatically
 2 (CriticalAndWarning) Implement critical or warning PRO tips automatic
 ally
 Note: Applies only to Hyper-V or VMware ESX hosts or to VMs deployed on
 those hosts.

 -PROMonitoringLevel <Int32>
 Specifies the severity level of tips that PRO will monitor.
 Valid values:
 0 (Off) Do not monitor PRO tips
 1 (Critical) Monitor critical PRO tips
 2 (CriticalAndWarning) Monitor critical and warning PRO tips
 Note: Applies only to Hyper-V or VMware ESX hosts or to VMs deployed on
 those hosts.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change host reserves on an existing host group.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHostGroup = Get-VMHostGroup | where { $_.Name -eq "HostGroup01"
 }
 PS C:\> Set-VMHostGroup -VMHostGroup $HostGroup -CPUPercentageReserve 10 -D
 iskSpaceReserveMB 200 -MemoryReserveMB 512

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the host group named Hos
 tGroup01 and stores the host group object in variable $HostGroup.

 The last command changes the value of the following host reserves for all h
 osts in $HostGroup:

 * Sets the percentage of CPU reserved for each host to 10 percent.
 * Sets the amount of disk space reserved for each host to 200 MB.
 * Sets the amount of memory reserved for each host to 512 MB.

 A virtual machine cannot be placed on a host in this host group if the virt
 ual machine’s resource requirements cannot be met without using host reserv
 es.

REMARKS
 For more information, type: "get-help Set-VMHostGroup -detailed".
 For technical information, type: "get-help Set-VMHostGroup -full".

[bookmark: _Toc225244588]VMHostNetworkAdapter
[bookmark: _Toc225244589]Add-VMHostNetworkAdapter

SYNOPSIS
 Adds a physical network adapter on a host server managed by Virtual Machine
 Manager to a virtual network.

SYNTAX
 Add-VMHostNetworkAdapter [-VMHostNetworkAdapter] <HostNetworkAdapter[]> -Vi
 rtualNetwork <VirtualNetwork> [-JobGroup <Guid>] [-JobVariable <String>] [-
 PROTipID <Guid>] [-RunAsynchronously] [-VLANEnabled] [-VLANID <Int32>] [-VL
 ANMode <String>] [-VLANTrunkID <Int32[]>] [<CommonParameters>]

DETAILED DESCRIPTION
 Adds a physical network adapter (also called a network interface card, or N
 IC) on a host managed by Virtual Machine Manager to a virtual network. Each
 virtual machine on that host can also connect (through a virtual network a
 dapter) to that virtual network.

 A virtual network configured on a host can connect to multiple virtual netw
 ork adapters on virtual machines deployed on that host. However, the number
 of physical host network adapters that connect to a virtual network on the
 host varies by the type of host.

 TYPE OF HOST NUMBER OF HOST NIC CONNECTIONS TO VIRTUAL NETWORKS
 -------------- --
 Virtual Server 1 physical adapter can connect to multiple virtual networks
 Hyper-V 1 physical adapter can connect to 1 virtual network
 VMware ESX Multiple physical adapters can connect to 1 virtual network

 VMM 2008 extends virtual networking support to include support for configur
 ing one or more virtual area networks (VLANs) on a host. You can use the Ad
 d-VMHostNetworkAdapter cmdlet (or the Set-VMHostNetworkAdapter cmdlet) to c
 onfigure a single VLAN or multiple VLANs on a host. To configure correspond
 ing VLAN settings on a virtual machine, use the New-VirtualNetworkAdapter o
 r the Set-VirtualNetworkAdapter cmdlet.

 For an illustration of each type of VLAN, see the examples for this cmdlet.

 For more information about VLANs, type:
 Get-Help about_VMM_2008_Virtual_Networking

PARAMETERS
 -VMHostNetworkAdapter <HostNetworkAdapter[]>
 Specifies an array of one or more physical network adapter objects on a
 host to which virtual machines deployed on that host can connect.
 Example format: -VMHostNetworkAdapters $VMHostNICs

 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VLANEnabled
 Enables a virtual LAN (a VLAN) for use by virtual machines on a Hyper-V
 or VMware ESX host.
 Example format for a single VLAN:
 -VLANEnabled -VLANMode "Access" -VLANID 35
 Example format for multiple VLANs:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 -VLANID <Int32>
 Assigns a numerical identifier in the range 1-4094 to a virtual network
 adapter on a virtual machine or to a physical network adapter on a Hyp
 er-V or VMware ESX host.
 Configure a VLANID on a Hyper-V or VMware ESX host:
 * On an externally bound physical network adapter.
 Configure a VLANID on a virtual network adapter of a virtual machine:
 * Bound to a physical network adapter on the host, or
 * Bound to an internal virtual network on the host.
 Example format:
 -VLANEnabled
 -VLANMode "Access" -VLANID 35

 -VLANMode <String>
 Specifies whether a virtual LAN (a VLAN) on a Hyper-V or VMware ESX hos
 t supports traffic across a single VLAN ("Access" mode) or across multi
 ple VLANs ("Trunk" mode).
 Valid values: "Trunk" or "Access"

 -VLANTrunkID <Int32[]>
 Assigns a list of numerical identifiers in the range 1-4094 to a physic
 al network adapter on a Hyper-V host.
 Example format:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add a physical host network adapter to a virtual network.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"

 PS C:\> $VirtualNetwork = Get-VirtualNetwork -VMHost $VMHost -Name "Externa
 lNetwork01"

 PS C:\> $VMHostNetworkAdapter = Get-VMHostNetworkAdapter -VMHost $VMHost -N
 ame "HostAdapter01"

 PS C:\> Add-VMHostNetworkAdapter -VirtualNetwork $VirtualNetwork -VMHostNet
 workAdapter $VMHostNetworkAdapter

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the host named VMHost01
 from the VMM database and stores the host object in variable $VMHost.

 The third command gets the object that represents a virtual network on VMHo
 st01 named ExternalNetwork01 and stores the virtual network object in varia
 ble $VirtualNetwork.

 The fourth command gets the object that represents the physical network ada
 pter on VMHost01 named HostAdapter01 and stores the adapter object in varia
 ble $VMHostNetworkAdapter.

 The last command adds HostAdapter01 to the virtual network named ExternalNe
 twork01.

 NOTE: You can add only one physical host adapter per virtual network, so th
 e last command will fail if an adapter is already associated with the speci
 fied virtual network. If that is the case, you must first remove the existi
 ng host adapter from the virtual network and then retry the command.

 2: Add a physical host network adapter to a VLAN that uses "Trunk" mode.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02"

 PS C:\> $VirtualNetwork = Get-VirtualNetwork -VMHost $VMHost -Name "Externa
 lNetwork02"

 PS C:\> $VMHostNetworkAdapter = Get-VMHostNetworkAdapter -VMHost $VMHost -N
 ame "HostAdapter02"

 PS C:\> Add-VMHostNetworkAdapter -VirtualNetwork $VirtualNetwork -VMHostNet
 workAdapter $VMHostNetworkAdapter –VLANEnabled –VLANMode "Trunk" –VLANTrunk
 ID 1,2,100,200,1124

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost02
 and stores the host object in $VMHost.

 The third command gets the object that represents a virtual network on VMHo
 st02 called ExternalNetwork02 and stores the virtual network object in $Vir
 tualNetwork.

 The fourth command gets the object that represents the physical network ada
 pter on VMHost02 named HostAdapter02 and stores the adapter object in $VMHo
 stNetworkAdapter.

 The last command adds HostAdapter02 to the ExternalNetwork02 virtual networ
 k and enables access from ExternalNetwork02 to an external networking devic
 e using 802.1Q tagged VLANs 1, 2, 100, 200, and 1124.

 NOTE: You can add only one host adapter per virtual network, so the last co
 mmand will fail if an adapter is already associated with the specified virt
 ual network.

 3: Add a physical host network adapter to a VLAN that uses "Access" mode.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost03"

 PS C:\> $VirtualNetwork = Get-VirtualNetwork -VMHost $VMHost -Name "Externa
 lNetwork03"

 PS C:\> $VMHostNetworkAdapter = Get-VMHostNetworkAdapter -VMHost $VMHost -N
 ame "HostAdapter03"

 PS C:\> Add-VMHostNetworkAdapter -VirtualNetwork $VirtualNetwork -VMHostNet
 workAdapter $VMHostNetworkAdapter –VLANEnabled –VLANMode "Access" –VLANID 2
 2

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost03
 and stores the host object in $VMHost.

 The third command gets the object that represents a virtual network on VMHo
 st03 called ExternalNetwork03 and stores the virtual network object in $Vir
 tualNetwork.

 The fourth command gets the object that represents the physical network ada
 pter on VMHost03 named HostAdapter03 and stores the adapter object in $VMHo
 stNetworkAdapter.

 The last command adds HostAdapter03 to the ExternalNetwork03 virtual networ
 k and restricts access to ExternalNetwork03 to VLANID 22.

 NOTE: You can add only one host adapter per virtual network, so the last co
 mmand will fail if an adapter is already associated with the specified virt
 ual network.

 CAUTION: This example assumes that that your host is already connected to a
 VLAN or, if not, that your host has two network adapters. If your host has
 a single network adapter (as might be the case if you are experimenting wi
 th VMM cmdlets in a lab setting), assigning the adapter to a VLAN that is u
 navailable to the VMM server will prevent VMM from managing the host. You c
 an perform the steps in this example on a host that has only one network ad
 apter if you first install the Microsoft Loopback Adapter on your server.

REMARKS
 For more information, type: "get-help Add-VMHostNetworkAdapter -detailed".
 For technical information, type: "get-help Add-VMHostNetworkAdapter -full".

[bookmark: _Toc225244590]Get-VMHostNetworkAdapter

SYNOPSIS
 Gets physical network adapter objects on a host managed by Virtual Machine
 Manager.

SYNTAX
 Get-VMHostNetworkAdapter [[-Name] <String>] -VMHost [<String Host>] [<Commo
 nParameters>]

 Get-VMHostNetworkAdapter [[-Name] <String>] [-VMMServer [<String ServerConn
 ection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent physical network adapters on a host
 managed by Virtual Machine Manager.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all physical network adapters on the specified host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> $HostAdapter = Get-VMHostNetworkAdapter -VMHost $VMHost
 PS C:\> $HostAdapter
 PS C:\> $HostAdapter | select -property Name, ConnectionState

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the host object in variable $VMHost.

 The third command gets from VMHost01 all objects that represent physical ne
 twork adapters on this host and stores the adapter objects in variable $Hos
 tAdapter.

 The fourth command displays the properties of all of the adapters in $HostA
 dapter.

 The last command displays only the name and connection state for each adapter.

 2: Get all physical network adapters in the VMM database.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMHostNetworkAdapter | Format-List Name, MacAddress, VMHost, Ma
 xBandwidth

 The first command connects to VMMServer1.

 The second command gets all objects that represent physical network adapter
 s on all hosts managed by VMMServer1 and displays each adapter's name, its
 MAC address, its host name, and its maximum bandwidth.

 3: Get a physical network adapter by name from a specific host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost03"
 PS C:\> $HostAdapter = Get-VMHostNetworkAdapter -VMHost $VMHost -Name "Host
 Adapter03"
 PS C:\> $HostAdapter | Format-List -property Name,NetworkLocation,VLANEnabl
 ed,VLANMode

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost03 and stores the
 host object in $VMHost.

 The second command gets from VMHost03 the object that represents the networ
 k adapter named HostAdapter03 and stores the adapter object in $HostAdapter
 .

 The last command passes the adapter object stored in $HostAdapter to the Fo
 rmat-List cmdlet, which displays the name, network location, whether or not
 a virtual LAN is enabled, and the current value for the VLAN mode (either
 Trunk or Access).

 4: Get each host network adapter that includes "Broadcom" in its name.

 PS C:\> Get-VMHostNetworkAdapter -VMMServer VMMServer1.Contoso.com | where
 { $_.Name -match "Broadcom" } | format-list -property Name,IPAddresses

 Gets from VMMServer1 objects for each host network adapter that includes th
 e string "Broadcom" in its name and displays the name and IP addresses for
 each adapter.

REMARKS
 For more information, type: "get-help Get-VMHostNetworkAdapter -detailed".
 For technical information, type: "get-help Get-VMHostNetworkAdapter -full".

[bookmark: _Toc225244591]Remove-VMHostNetworkAdapter

SYNOPSIS
 Removes a physical host network adapter object from a virtual network that
 is configured on a host managed by Virtual Machine Manager.

SYNTAX
 Remove-VMHostNetworkAdapter [-VirtualNetwork] <VirtualNetwork> -Confirm -VM
 HostNetworkAdapter <HostNetworkAdapter[]> [-JobGroup <Guid>] [-JobVariable
 <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent physical host network adapters f
 rom a virtual network that is configured on a host managed by Virtual Machi
 ne Manager.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VirtualNetwork <VirtualNetwork>
 Specifies a virtual network object.

 -Confirm
 Prompts for confirmation before running the command.

 -VMHostNetworkAdapter <HostNetworkAdapter[]>
 Specifies an array of one or more physical network adapter objects on a
 host to which virtual machines deployed on that host can connect.
 Example format: -VMHostNetworkAdapters $VMHostNICs

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove the physical host network adapter from a specific virtual network.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> $VirtualNetwork = Get-VirtualNetwork -VMHost $VMHost -Name "Externa
 lNetwork01"
 PS C:\> Remove-VMHostNetworkAdapter -VirtualNetwork $VirtualNetwork -Confir
 m

 The first command connects to VMMServer1 in the Contoso.com domain and retr
 ieves the server object from the VMM database. The following commands use t
 his server by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the host object in variable $VMHost.

 The third command gets from VMHost01 the object that represents the virtual
 network named ExternalNetwork01 and stores the virtual network object in v
 ariable $VirtualNetwork.

 The last command removes the host network adapter from ExternalNetwork01. T
 he Confirm parameter prompts you to confirm whether you want to delete the
 adapter from VMM.

REMARKS
 For more information, type: "get-help Remove-VMHostNetworkAdapter -detailed
 ".
 For technical information, type: "get-help Remove-VMHostNetworkAdapter -ful
 l".

[bookmark: _Toc225244592]Set-VMHostNetworkAdapter

SYNOPSIS
 Changes network-related properties of the specified physical network adapte
 r on a host managed by Virtual Machine Manager.

SYNTAX
 Set-VMHostNetworkAdapter [-VMHostNetworkAdapter] <HostNetworkAdapter[]> [-D
 escription <String>] [-JobGroup <Guid>] [-JobVariable <String>] [-NetworkLo
 cation <String>] [-OverrideNetworkLocation <Boolean>] [-PROTipID <Guid>] [-
 RunAsynchronously] [-VLANEnabled] [-VLANID <Int32>] [-VLANMode <String>] [-
 VLANTrunkID <Int32[]>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes network-related properties of the specified physical network adapte
 r on a host managed by Virtual Machine Manager.

 Properties that you can change with this cmdlet include:

 * NETWORK LOCATION: You can use the OverrideNetworkLocation parameter
 with the NetworkLocation parameter to change the default network
 location of the specified physical network adapter. See example 1.

 * VLAN SETTINGS: You can use the VLAN parameters to create or modify a
 single VLAN or multiple VLANs. For an illustration of how to specify
 VLAN settings, see examples 2 and 3.

 For more information about VLANs and additional examples that illustrate VL
 AN settings, type:

 Get-Help Add-VMHostNetworkAdapter -detailed

PARAMETERS
 -VMHostNetworkAdapter <HostNetworkAdapter[]>
 Specifies an array of one or more physical network adapter objects on a
 host to which virtual machines deployed on that host can connect.
 Example format: -VMHostNetworkAdapters $VMHostNICs

 -Description <String>
 Specifies a description for the specified object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -NetworkLocation <String>
 Specifies the network location for a physical network adapter or for a
 virtual network adapter, or changes the default network location of a h
 ost's physical network adapter.
 Example formats:
 -NetworkLocation $NetLoc ($NetLoc might contain "Corp.Contoso.com")
 -OverrideNetworkLocation $TRUE –NetworkLocation "HostNICNewLocation.Co
 ntoso.com"

 -OverrideNetworkLocation <Boolean>
 Changes the discovered network location for a host's physical network a
 dapter to a new network location.
 Example format:
 -OverrideNetworkLocation $TRUE –NetworkLocation "HostNICNewLocation.Con
 toso.com"

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VLANEnabled
 Enables a virtual LAN (a VLAN) for use by virtual machines on a Hyper-V
 or VMware ESX host.
 Example format for a single VLAN:
 -VLANEnabled -VLANMode "Access" -VLANID 35
 Example format for multiple VLANs:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 -VLANID <Int32>
 Assigns a numerical identifier in the range 1-4094 to a virtual network
 adapter on a virtual machine or to a physical network adapter on a Hyp
 er-V or VMware ESX host.
 Configure a VLANID on a Hyper-V or VMware ESX host:
 * On an externally bound physical network adapter.
 Configure a VLANID on a virtual network adapter of a virtual machine:
 * Bound to a physical network adapter on the host, or
 * Bound to an internal virtual network on the host.
 Example format:
 -VLANEnabled
 -VLANMode "Access" -VLANID 35

 -VLANMode <String>
 Specifies whether a virtual LAN (a VLAN) on a Hyper-V or VMware ESX hos
 t supports traffic across a single VLAN ("Access" mode) or across multi
 ple VLANs ("Trunk" mode).
 Valid values: "Trunk" or "Access"

 -VLANTrunkID <Int32[]>
 Assigns a list of numerical identifiers in the range 1-4094 to a physic
 al network adapter on a Hyper-V host.
 Example format:
 -VLANEnabled -VLANMode "Trunk" -VLANTrunkID 1,2,100,200,1124

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Change the network location on a host network adapter.

 PS C:\> Get-VMMServer –Computername “VMMServer1.Contoso.com”

 PS C:\> $VMHost = Get-VMHost -Computername "VMHost01.Contoso.com"

 PS C:\> $VMHostNIC = Get-VMHostNetworkAdapter -VMHost $VMHost

 PS C:\> Set-VMHostNetworkAdapter -VMHost $VMHost -VMHostNetworkAdapter $VMH
 ostNIC -OverrideNetworkLocation $TRUE –NetworkLocation "Corp.Contoso.com"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the host object in variable $VMHost.

 The third command gets the object that represents the host network adapter
 on VMHost01 (this example assumes that VMHost01 has only one network adapte
 r) and stores the adapter object in variable $VMHostNIC.

 The last command overrides the default network location for this network ad
 apter (which this example assumes is Contoso.com) and resets the network lo
 cation to Corp.Contoso.com.

 2: Create a new virtual network on a host network adapter and specify a VLA
 N ID for the virtual network.

 PS C:\> Get-VMMServer -Computername “VMMServer1.Contoso.com”

 PS C:\> $VMHost = Get-VMHost -Computername "VMHost02.Contoso.com"

 PS C:\> if ($VMHost.VirtualizationPlatformString -eq "Virtual Server")
 {
 Write-Warning "Set-VMHostNetworkAdapter does not support adding VLANs t
 o a Virtual Server host."
 }
 Else
 {
 $HostAdapter = Get-VMHostNetworkAdapter -VMHost $VMHost | where {$_.Na
 me -like "Intel(R) PRO/1000*" }
 New-VirtualNetwork -Name "Network1" -VMHost $VMHost -VMHostNetworkAdapt
 er $HostAdapter
 Set-VMHostNetworkAdapter -VMHostNetworkAdapter $HostAdapter -VLANEnable
 d -VLANMode "Access" -VLANID 35
 }

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost02 and stores the
 host object in $VMHost.

 The third command uses an If statement to check the virtualization platform
 :

 * If the platform is Virtual Server, the fourth command displays a
 warning to the user that this host does not support VLANs and stops
 execution.

 * If the platform is not Virtual Server (that is, the host is a Hyper-V
 or VMware host), the following commands execute:

 The Get-VMHostNetworkAdapter cmdlet gets the object that represents a
 specific host network adapter on VMHost02 (this example assumes that
 VMHost02 has only one network adapter) with a name that starts with
 "Intel(R) PRO/1000") and stores the adapter object in $HostAdapter.

 The New-VirtualNetwork cmdlet creates a new virtual network on
 VMHost02 that is bound to the host adapter, and names the virtual
 network "Network1".

 The Set-VMHostNetworkAdapter cmdlet enables a VLAN, sets the mode to
 "Access" (which routes traffic internally within a single VLAN), and
 assigns a VLAN ID of 35 on this network adapter.

 CAUTION: This example assumes that that your host is already connected to a
 VLAN or, if not, that your host has two network adapters. If your host has
 a single network adapter (as might be the case if you are experimenting wi
 th VMM cmdlets in a lab setting), assigning the adapter to a VLAN that is u
 navailable to the VMM server will prevent VMM from managing the host. You c
 an perform the steps in this example on a host that has only one network ad
 apter if you first install the Microsoft Loopback Adapter on your server an
 d then substitute "Microsoft*" in step 3.

 3: Add additional VLAN tags to a host network adapter configured in "Trunk"
 mode.

 PS C:\> Get-VMMServer –Computername “VMMServer1.Contoso.com”

 PS C:\> $VMHost = Get-VMHost -Computername "VMHost03.Contoso.com"

 PS C:\> $VMHostNIC = Get-VMHostNetworkAdapter -VMHost $VMHost -Name "Broadc
 om BCM5708C NetXtreme II GigE (NDIS VBD Client) #3"

 PS C:\> $NewVlanTags = $VMHostNIC.VlanTags + @(177,355,1012)

 PS C:\> Set-VMHostNetworkAdapter -VMHostNetworkAdapter $VMHostNIC -VLANEnab
 led $TRUE -VLANMode "Trunk" -VLANTrunkID $NewVLANTags

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost03 and stores the
 host object in $VMHost.

 The third command gets the object that represents the host network adapter
 by specifying the adapter name and stores the adapter object in $VMHostNIC.

 The fourth command uses the VlanTags property of the object that represents
 the host network adapter ($VMHostNIC.VlanTags) and concatenates a new arra
 y. Concatenation retains exisiting VlanTags and adds additional tags to th
 e array. The results of the concatenation are assigned to $NewVlanTags.

 The last command passes the new list of VLAN tags to the -VLANTrunkID param
 eter of the Set-VMHostNetworkAdapter command. The parameter -VLANMode must
 be specified with the value "Trunk" whenever the -VLANTrunkID parameter is
 used to modify the list of VLAN trunk numerical identifiers.

REMARKS
 For more information, type: "get-help Set-VMHostNetworkAdapter -detailed".
 For technical information, type: "get-help Set-VMHostNetworkAdapter -full".

[bookmark: _Toc225244593]VMHostRating
[bookmark: _Toc225244594]Get-VMHostRating

SYNOPSIS
 Calculates the placement rating for one or more virtual machine hosts manag
 ed by Virtual Machine Manager on which you might want to deploy a specific
 virtual machine.

SYNTAX
 Get-VMHostRating -DiskSpaceGB <Int32> -HardwareProfile <HardwareProfile> -V
 MHostGroup [<HostGroup[] HostGroup>] -VMName <String> [-CPUPriority <Int32>
] [-DiskPriority <Int32>] [-ExpectedCPUUtilization <Int32>] [-ExpectedDiskI
 O <Int32>] [-ExpectedNetworkUtilization <Int32>] [-IsMigration] [-JobGroup
 <Guid>] [-MemoryPriority <Int32>] [-NetworkPriority <Int32>] [-OperatingSys
 tem <OperatingSystem>] [-PlacementGoal <EnginePlacementGoals>] [-RequiredLU
 NCount <Int32>] [-UseDefaultPath] [-VirtualizationPlatform <VirtualizationP
 latform>] [<CommonParameters>]

 Get-VMHostRating -VMHost [<Host[] Host>] -VMList <VM[]> [-CPUPriority <Int3
 2>] [-DiskPriority <Int32>] [-ExpectedCPUUtilization <Int32>] [-ExpectedDis
 kIO <Int32>] [-IsMigration] [-MemoryPriority <Int32>] [-NetworkPriority <In
 t32>] [-PlacementGoal <EnginePlacementGoals>] [-UseDefaultPath] [<CommonPar
 ameters>]

 Get-VMHostRating -VM [<String VM>] -VMHost [<Host[] Host>] [-CPUPriority <I
 nt32>] [-DiskPriority <Int32>] [-ExpectedCPUUtilization <Int32>] [-Expected
 DiskIO <Int32>] [-ExpectedNetworkUtilization <Int32>] [-IsMigration] [-Memo
 ryPriority <Int32>] [-NetworkPriority <Int32>] [-PlacementGoal <EnginePlace
 mentGoals>] [-UseDefaultPath] [<CommonParameters>]

 Get-VMHostRating -VM [<String VM>] -VMHostGroup [<HostGroup[] HostGroup>] [
 -CPUPriority <Int32>] [-DiskPriority <Int32>] [-ExpectedCPUUtilization <Int
 32>] [-ExpectedDiskIO <Int32>] [-ExpectedNetworkUtilization <Int32>] [-IsMi
 gration] [-MemoryPriority <Int32>] [-NetworkPriority <Int32>] [-PlacementGo
 al <EnginePlacementGoals>] [-UseDefaultPath] [<CommonParameters>]

 Get-VMHostRating -DiskSpaceGB <Int32> -Template [<Template String>] -VMHost
 [<Host[] Host>] -VMName <String> [-CPUPriority <Int32>] [-DiskPriority <In
 t32>] [-ExpectedCPUUtilization <Int32>] [-ExpectedDiskIO <Int32>] [-Expecte
 dNetworkUtilization <Int32>] [-IsMigration] [-MemoryPriority <Int32>] [-Net
 workPriority <Int32>] [-PlacementGoal <EnginePlacementGoals>] [-UseDefaultP
 ath] [-VirtualizationPlatform <VirtualizationPlatform>] [<CommonParameters>
]

 Get-VMHostRating -DiskSpaceGB <Int32> -HardwareProfile <HardwareProfile> -V
 MHost [<Host[] Host>] -VMName <String> [-CPUPriority <Int32>] [-DiskPriorit
 y <Int32>] [-ExpectedCPUUtilization <Int32>] [-ExpectedDiskIO <Int32>] [-Ex
 pectedNetworkUtilization <Int32>] [-IsMigration] [-JobGroup <Guid>] [-Memor
 yPriority <Int32>] [-NetworkPriority <Int32>] [-OperatingSystem <OperatingS
 ystem>] [-PlacementGoal <EnginePlacementGoals>] [-RequiredLUNCount <Int32>]
 [-UseDefaultPath] [-VirtualizationPlatform <VirtualizationPlatform>] [<Com
 monParameters>]

 Get-VMHostRating -DiskSpaceGB <Int32> -Template [<Template String>] -VMHost
 Group [<HostGroup[] HostGroup>] -VMName <String> [-CPUPriority <Int32>] [-D
 iskPriority <Int32>] [-ExpectedCPUUtilization <Int32>] [-ExpectedDiskIO <In
 t32>] [-ExpectedNetworkUtilization <Int32>] [-IsMigration] [-MemoryPriority
 <Int32>] [-NetworkPriority <Int32>] [-PlacementGoal <EnginePlacementGoals>
] [-UseDefaultPath] [-VirtualizationPlatform <VirtualizationPlatform>] [<Co
 mmonParameters>]

DETAILED DESCRIPTION
 Calculates the placement rating for one or more virtual machine hosts manag
 ed by Virtual Machine Manager on which you might want to deploy a specific
 virtual machine.

 The rating indicates the suitability of a computer to serve as a host for a
 virtual machine that requires a specific hardware configuration. The ratin
 g can be computed by individual host, for an array of hosts, or for each ho
 st that belongs to a specific host group or set of host groups.

 When you run the Get-VMHostRating cmdlet, Virtual Machine Manager returns a
 n object that represents the virtual machine host rating (VMHostRating) for
 each of the specified hosts based on the hardware configuration that you w
 ant on the virtual machine. You can also specify additional placement optio
 ns in order to modify how the ratings are calculated.

PARAMETERS
 -DiskSpaceGB <Int32>
 Specifies, in gigabytes (GB), the amount of hard disk space on the host
 that can be used by a specific virtual machine.
 Example: -DiskSpaceGB 20 (to specify 20 GB of disk space)

 -HardwareProfile <HardwareProfile>
 Specifies a hardware profile object.

 -Template [<Template String>]
 Specifies a VMM template object used to create virtual machines.

 -VM [<String VM>]
 Specifies a virtual machine object.

 -VMHost [<Host[] Host>]
 Specifies a virtual machine host object or an array of host objects. VM
 M 2008 supports Hyper-V hosts, Virtual Server hosts, and VMware ESX Ser
 ver hosts. For more information about each type of host, type: Get-Help
 Add-VMHost -detailed. See the examples for a specific cmdlet to determ
 ine how that cmdlet uses this parameter.

 -VMHostGroup [<HostGroup[] HostGroup>]
 Specifies a virtual machine host group object or an array of host group
 objects.

 -VMList <VM[]>
 Specifies a list of virtual machines (an object array) to rate hosts ag
 ainst when VMM calculates the placement rating. The host rating returne
 d is based on placing all listed virtual machines on the host.
 Example format: -VMList $MyVMs

 -VMName <String>
 Specifies the name of a virtual machine to be placed on a physical host
 server. Use this parameter to verify that another virtual machine with
 the same name is not already deployed on that host.

 -CPUPriority <Int32>
 Specifies the relative importance of CPU utilization for a virtual mach
 ine on a host. To make CPU utilization a higher priority relative to ot
 her factors (such as disk I/O performance, memory utilization, and netw
 ork utilization), set this value to a higher number.
 Default value: 5. Range: 0 through 10.

 -DiskPriority <Int32>
 Specifies the relative importance of disk input/output (I/O) performanc
 e for a virtual machine on a host. To make disk I/O performance a highe
 r priority relative to other factors (such as CPU utilization, memory u
 tilization, and network utilization), set this value to a higher number
 .
 Default value: 2. Range: 0 through 10.

 -ExpectedCPUUtilization <Int32>
 Specifies (as a percentage) the amount of CPU on the host that you expe
 ct this virtual machine to use. This value is used only when VMM determ
 ines a suitable host for the virtual machine.

 -ExpectedDiskIO <Int32>
 Specifies the number of disk input/output operations per second (IOPS)
 that you expect this virtual machine to use.
 Example: -DiskIO 1500 (to specify 1500 IOPS).

 -ExpectedNetworkUtilization <Int32>
 Specifies, in megabits per second (Mbps), the amount of traffic on the
 host’s physical network that you expect this virtual machine to use.

 -IsMigration
 Specifies that a rating indicating a computer’s suitability as a host t
 o which to move a virtual machine will be calculated even if the source
 and destination host is the same computer.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -MemoryPriority <Int32>
 Specifies the relative importance of memory utilization by a virtual ma
 chine on a host. To make memory utilization a higher priority relative
 to other factors (such as CPU utilization, disk I/O performance, and ne
 twork utilization), set this value to a higher number.
 Default value: 8. Range: 0 through 10.

 -NetworkPriority <Int32>
 Specifies the relative importance of network utilization by a virtual m
 achine on a host. To make network utilization a higher priority relativ
 e to other factors (such as CPU utilization, disk I/O performance, and
 memory utilization), set this value to a higher number.
 Default value: 2. Range: 0 through 10.

 -OperatingSystem <OperatingSystem>
 Specifies the type of operating system for a virtual machine. To list t
 he names of all available operating systems in VMM, type: Get-Operating
 System

 -PlacementGoal <EnginePlacementGoals>
 Specifies the placement algorithm to use when VMM selects the most suit
 able host on which to deploy a virtual machine. Load balancing among ho
 sts lets VMM minimize the processing load on any one host. Consolidatio
 n lets VMM maximize resources by combining multiple low-utilization wor
 kloads on a single host.
 Valid values: LoadBalance or Consolidate

 -RequiredLUNCount <Int32>
 Specifies the number of LUNs required by a virtual machine when evaluat
 ing which computers (among all available computers) are suitable hosts
 on which to deploy this virtual machine.

 -UseDefaultPath
 Specifies that only volumes for which a default path has been set on th
 e host will be evaluated as possible candidates for virtual machine pla
 cement. If you omit this parameter or if no default paths are set on th
 e host, all volumes will be evaluated by the placement process.
 Note: In VMM 2007, this parameter was plural: UseDefaultPaths.

 -VirtualizationPlatform <VirtualizationPlatform>
 Specifies the virtualization platform of a virtual machine host managed
 by VMM.
 Valid values: VirtualServer, Hyper-V, or VMwareESX.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Calculate host ratings for a specific server as a possible host for an e
 xisting VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> $HostRating = Get-VMHostRating -VM $VM -VMHost $VMHost
 PS C:\> Write-Output $HostRating

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents a virtual machine named
 VM01 from the VMM database and stores the virtual machine object in variabl
 e $VM.

 The third command gets the object that represents the host named VMHost01 a
 nd stores the host object in variable $VMHost.

 The fourth command returns the placement rating for VMHost01 that indicates
 its suitability as a host for VM01 and stores the rating information in va
 riable $HostRating.

 The last command displays the host ratings stored in $HostRating to the use
 r.

 2: Calculate host ratings for each server in a host group as a possible hos
 t for an existing VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM | where { $_.Name -eq "VM02" }
 PS C:\> $VMHostGroup = Get-VMHostGroup -Name "HostGroup02"
 PS C:\> $HostRatings = Get-VMHostRating -VM $VM -VMHostGroup $VMHostGroup
 PS C:\> Write-Output $HostRatings

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM02 and stores the virtual machine object in $VM.

 The third command gets the object that represents the host group named Host
 Group02 and stores the host group object in $VMHostGroup.

 The fourth command returns the placement ratings for all hosts in the speci
 fied host group and indicates the suitability of each host in that host gro
 up as a host for VM02. The command stores the rating information in $HostRa
 tings.

 The last command displays the host ratings stored in $HostRating to the use
 r.

 3: Calculate host ratings for each server in a host group as a possible hos
 t for a new VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $VMHostGroup = Get-VMHostGroup -Name "HostGroup03"

 PS C:\> $HWProfile = Get-HardwareProfile -Name "MyHWProfile-1"

 PS C:\> $HostRatings = Get-VMHostRating -VMHostGroup $VMHostGroup -Hardware
 Profile $HWProfile -DiskSpaceGB 20 -VMName "MyVM-1" -CPUPriority 8 -MemoryP
 riority 5 -DiskPriority 3 -NetworkPriority 1

 PS C:\> Write-Output $HostRatings

 The first command connects to VMMServer1.

 The second command gets the object that represents the host group named Hos
 tGroup03 and stores the host group object in $VMHostGroup.

 The third command gets the hardware profile object that represents the hard
 ware profile named "MyHWProfile-1" and stores the profile object in $HWProf
 ile.

 The fourth command returns the placement ratings for all hosts in the speci
 fied host group for a new virtual machine and stores the placement ratings
 in $HostRatings. Before determining the host ratings, this command modifies
 the priorities for various factors by using the following parameters to sp
 ecify these values:

 * DiskSpaceGB. The amount of hard disk space, in gigabytes, needed on
 the host for a new virtual machine's hard disk drive is set to 200.

 * CPUPriority. The relative importance of CPU utilization on the host
 for a new virtual machine is set to 8.

 * MemoryPriority. The relative importance of memory utilzation on the
 host for a new virtual machine is set to 5.

 * DiskPriority. The relative importance of disk input/output (I/O)
 performance on the host for a new virtual machine is set to 3.

 * NetworkPriority. The relative importance of network utilization on
 the host for a new virtual machine is set to 1.

 NOTE: For more information about each of these settings and default values,
 see the description for each parameter.

 The last command displays the host ratings stored in $HostRatings to the us
 er.

 4: Calculate host ratings for each host in an array as a possible host for
 a VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 PS C:\> $OS = Get-OperatingSystem | where {$_.Name -eq "64-bit edition of W
 indows Server 2008 Standard"}

 PS C:\> $JobGroupID = [guid]::NewGuid().ToString()

 PS C:\> New-VirtualDiskDrive -SCSI -Fixed -Bus 0 -Lun 2 -Size 10 -JobGroup
 $JobGroupID -FileName "TestDiskDrive"

 PS C:\> $VMHosts = Get-VMHost

 PS C:\> $HWProfile = Get-HardwareProfile | where { $_.Name -eq "MyHWProfile
 -1" }

 PS C:\> $HostRatings = Get-VMHostRating -DiskSpaceGB 10 -HardwareProfile $
 HWProfile -VMHost $VMHosts -VMName "MyNewVM" -OperatingSystem $OS -JobGroup
 $JobGroupID

 PS C:\> Write-Output $HostRatings

 The first command connects to VMMServer1.

 The second command gets the operating system object that represents a 64-bi
 t edition of Windows Server 2008 Standard edition and stores the object in
 $OS.

 The third command generates a GUID and stores the GUID string in $JobGroupI
 D. The job group ID functions as an identifier that groups subsequent comma
 nds into a single job group.

 The fourth command will create a new virtual disk drive with the specified
 properties, but uses the job group ID to specify that the virtual disk driv
 e is not created until just before the Get-VMHostRating cmdlet (in the last
 command) runs.

 The fifth and sixth commands retrieve an array of host objects and a specif
 ic hardware profile object to pass into the Get-VMHostRating cmdlet in the
 next command.

 The seventh command returns the placement ratings for all hosts in the spec
 ified host list and indicates the suitability of each host in that host lis
 t for the new virtual machine with the specified characteristics. The comma
 nd stores the rating information in $HostRatings.

 Before the Get-VMHostRating cmdlet returns the host ratings, the command us
 es the JobGroup parameter to run the earlier New-VirtualDiskDrive command s
 o that the Get-VMHostRating cmdlet includes the virtual disk drive and its
 settings when calculating placement ratings.

 The last command displays the host ratings stored in $HostRatings to the us
 er.

 5: Calculate host ratings for specific server as a possible host for a list
 of VMs.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMList = Get-VM | where { $_.Name -like "*VM0*" }
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost05.Contoso.com"
 PS C:\> $HostRatings = Get-VMHostRating -VMHost $VMHost -VMList $VMList
 PS C:\> Write-Output $HostRatings

 The first command connects to VMMServer1.

 The second command gets all objects that represent virtual machines whose n
 ames include the string "VM0" and stores the virtual machine objects in $VM
 List.

 The third command gets the object that represents the host named VMHost05 a
 nd stores the host object in $VMHost.

 The fourth command returns the placement ratings for this host if all the v
 irtual machines represented in the array object $VMList are to be placed on
 this host. The command stores the rating information in $HostRatings.

 The last command displays the host ratings stored in $HostRatings to the us
 er.

 6: Calculate host ratings for a specific server as a possible host for an e
 xisting VM based on specific characteristics.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM06"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost06.Contoso.com"
 PS C:\> $HostRating = Get-VMHostRating -VM $VM -VMHost $VMHost -CPUPriority
 6 -DiskPriority 5 -MemoryPriority 4 -NetworkPriority 4 -PlacementGoal "Con
 solidate"
 PS C:\> Write-Output $HostRating

 The first command connects to VMMServer1.

 The second command gets the object that represents the virtual machine name
 d VM06 and stores the virtual machine object in $VM.

 The third command gets the object that represents the host named VMHost06 a
 nd stores the host object in $VMHost.

 The fourth command returns the placement rating for VMHost06 that indicates
 its suitability as a host for VM06 based on a particular set of customized
 priority ratings and based on consolidation as the placement goal (as oppo
 sed to the default, load balancing). The command stores the rating informat
 ion in $HostRating.

 The last command displays the host rating stored in $HostRating to the user.

 7: Calculate host ratings for a VM to be created based on a specific template.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MyTemplate = Get-Template | where {$_.Name -eq "Template1"}
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> $HostRating = Get-VMHostRating -DiskSpaceGB 5 -Template $MyTemplate
 -VMHost $VMHost -VMName "VM05"
 PS C:\> Write-Output $HostRating

 The first command connects to VMMServer1.

 The second command gets the object that represents the template named "Temp
 late1" and stores the template object in $MyTemplate.

 The third command gets the object represents the host machine VMHost07 and
 stores the host object in $VMHost.

 The fourth command returns the placement ratings for a new VM if it were cr
 eated by using Template1 and if it were to be placed on host VMHost01. The
 command stores the ratings in $HostRating.

 The last command displays the host ratings stored in $HostRating to the use
 r.

 NOTE: The DiskSpaceGB parameter is required even though the template might
 already have a virtual hard disk with a specified amount of disk space. Req
 uiring the DiskSpaceGB parameter ensures that a certain minumum amount of h
 ard disk space is available on the host that can be used by the virtual mac
 hine. If the amount of space specified for the virtual hard disk on the tem
 plate is larger than the size specified by using the DiskSpaceGB parameter,
 the larger of the two sizes is taken into consideration when computing the
 host ratings.

 8. Calculate host ratings for a specific server as a possible host for ever
 y VM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost08.Contoso.com"
 PS C:\> $VMArray = Get-VM
 PS C:\> $RatingArray = @(ForEach ($VM in $VMArray) {Get-VMHostRating -VM $
 VM -VMHost $VMHost})
 PS C:\> Write-Output $RatingArray

 The first command connects to VMMServer1.

 The second command gets the object that represents the host named VMHost08
 and stores the host object in $VMHost.

 The third command gets all virtual machine objects in your environment and
 saves these virtual machine objects in $VMArray (an object array). (If your
 environment has a very large number of VMs, you might want to use a filter
 to select a subset of virtual machines.)

 The fourth command returns the placement ratings for VMHost08 that indicate
 s its suitability as a host for each of the virtual machine objects in $VMA
 rray and stores the rating information in $RatingArray.

 The final command displays the ratings calculated in the preceding command.

 NOTE: This example computes the ratings for each virtual machine individual
 ly on a host. If you want to place multiple virtual machines on a host, see
 the example that uses VMList instead.

 NOTE: For more information about the standard Windows PowerShell foreach lo
 op statement, type: Get-Help about_ForEach. The foreach loop statement is n
 ot the same as the Foreach-Object cmdlet, which uses “foreach” as an alias.

REMARKS
 For more information, type: "get-help Get-VMHostRating -detailed".
 For technical information, type: "get-help Get-VMHostRating -full".

[bookmark: _Toc225244595]VMHostVolume
[bookmark: _Toc225244596]Get-VMHostVolume

SYNOPSIS
 Gets drive volume objects from a host managed by Virtual Machine Manager.

SYNTAX
 Get-VMHostVolume [[-Name] <String>] -VMHost [<String Host>] [<CommonParamet
 ers>]

DETAILED DESCRIPTION
 Gets one or more objects that represent drive volumes on a virtual machine
 host managed by Virtual Machine Manager.

 The information returned includes:

 * Name - The name of each host volume (such as C:\, D:\, E:\).

 * HostVolumeID - The volume ID (a GUID) for each host volume.
 The host volume ID is unique across your Virtual Machine Manager
 environment.

 * MountPoints - The mount points for each volume.
 A single volume, such as C:\, can contain multiple mount points.

 * Capacity - The storage capacity of each volume.

 * FreeSpace - The amount of free space on each volume.

 * Volume Label - A user-defined label for this volume (if any).

 * IsSANMigrationPossible - A flag indicating whether or not SAN
 migration is available.

 * IsClustered - A flag indicating whether the volume is local storage or
 shared storage (that is, uses external storage, such as SAN or iSCSI)
 and a clustered disk resource exists for this volume.

 * InUse - A flag that is set to TRUE when one of the highly available
 virtual machines managed by Virtual Machine Manager is using this
 volume.

 * VMHost - The FQDN name of the host on which each volume resides.

 * IsAvailableForPlacement - A flag indicating whether or not this volume
 is available for as a location on which to deploy virtual machines
 on this host.

 * ServerConnection - The Virtual Machine Manager server connection
 that is managing the host that this volume belongs to.

 * ID - The ID (a hexedecimal number) for each volume. This
 ID is an index number for each volume on the current system.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all volumes on the specified host server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01.Contoso.com"
 PS C:\> Get-VMHostVolume -VMHost $VMHost

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the host object in variable $VMHost.

 The last command gets from VMHost01 all objects that represent drive volume
 s on this host and displays information about these volumes to the user.

 NOTE: To translate the capacity and free space from bytes into larger units
 of measure, divide the number of bytes by 1024 to get kilobytes (KB); divi
 de the result by 1024 to get megabytes (MB); and divide that result by 1024
 to get gigabytes (GB).

 2: Get the specified volume on a host.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02.Contoso.com"
 PS C:\> Get-VMHostVolume -VMHost $VMHost -Name "C:\"

 The first command connects to VMMServer1.

 The second command gets the object that represents VMHost02 and stores the
 host object in $VMHost.

 The last command gets from VMHost02 the object that represents the drive vo
 lume named Volume1 and displays information about this volume to the user.

 3: Get all volumes on VMware ESX hosts that contain the string "SharedStora
 ge" in the volume name.

 PS C:\> $VMHost = Get-VMHost -VMMServer VMMServer1.Contoso.com | where { $_
 .VirtualizationPlatform -eq "VMwareESX" }

 PS C:\> $VMHost | Get-VMHostVolume | select -property Name, VMHost | where
 { $_.Name -match "SharedStorage" }

 The first command gets all host objects from VMMServer1, selects only those
 host objects whose virtualization platform is VMware ESX, and then stores
 those host objects in $VMHost.

 NOTE: This example assumes that the names of all volumes on these ESX Serve
 rs include the string "storage", but that only some of those volumes' names
 include the string "SharedStorage."

 The second command passes each ESX host object in $VMHost to the Get-VMHost
 Volume cmdlet, which gets the objects that represent each volume on these h
 osts and then, in turn, passes the volume objects to "select" (the alias fo
 r the Select-Object cmdlet). The Select-Object cmdlet displays the volume n
 ame and the host that volume resides on for those volumes whose name contai
 ns the string "SharedStorage".

REMARKS
 For more information, type: "get-help Get-VMHostVolume -detailed".
 For technical information, type: "get-help Get-VMHostVolume -full".

[bookmark: _Toc225244597]Set-VMHostVolume

SYNOPSIS
 Modifies the setting for a volume on a host server that enables Virtual Mac
 hine Manager to evaluate that volume as available storage during the virtua
 l machine placement process.

SYNTAX
 Set-VMHostVolume [-VMHostVolume] <VMHostVolume> -AvailableForPlacement <Boo
 lean> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<Com
 monParameters>]

DETAILED DESCRIPTION
 Modifies the setting that determines whether or not Virtual Machine Manager
 will evaluate a specific volume on a host server as available storage duri
 ng the virtual machine placement process.

 During the placement process, Virtual Machine Manager evaluates managed hos
 ts, including the volumes on those managed hosts, when calculating a recomm
 endation for the best location on which to deploy a virtual machine. If you
 specify that a volume on the host will not be included when Virtual Machin
 e Manager performs its automatic placement calculation, you can still, opti
 onally, choose to manually deploy a virtual machine on that volume.

PARAMETERS
 -VMHostVolume <VMHostVolume>
 Specifies an object that represents a volume on a specific virtual mach
 ine host.

 -AvailableForPlacement <Boolean>
 Specifies (when set to TRUE) that the VMM placement process will consid
 er this host server (when used with Add-VMHost or Set-VMHost) or this v
 olume on a host (when used with Set-VMHostVolume) to be eligible as a p
 ossible location on which to deploy virtual machines. If this parameter
 is set to FALSE, you can, optionally, choose to deploy virtual machine
 s on this host or volume anyway. The default value is TRUE.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Make a volume (on a host) available for placement.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> $VMHostVol = Get-VMHostVolume -VMHost $VMHost
 PS C:\> Set-VMHostVolume -VMHostVolume $VMHostVol -AvailableForPlacement $T
 RUE

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object for VMHost01 (in the Contoso.com domain)
 from the VMM database and stores the host object in variable $VMHost.

 This example assumes that VMHost01 has only one volume, so the third comman
 d gets the object that represents that volume and stores the volume object
 in variable $VMHostVol.

 The last command makes the volume on VMHost01 available for placement. Sett
 ing the parameter AvailableForPlacement to TRUE enables the VMM placement p
 rocess to evaluate this volume on VMHost01 as a possible candidate to host
 virtual machines.

 2: Make the second volume (on a host) available for placement.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost02"
 PS C:\> $VMHostVols = Get-VMHostVolume -VMHost $VMHost
 PS C:\> Set-VMHostVolume -VMHostVolume $VMHostVols[1] -AvailableForPlacemen
 t $TRUE

 The first command connects to VMMServer1.

 The second command gets the object for VMHost02 and stores the host object
 in variable $VMHost.

 This example assumes that VMHost02 has at least two volumes. The third comm
 and gets all objects that represent volumes on VMHost02 and stores the volu
 me objects in variable $VMHostVols (an object array).

 The last command makes the second volume ($VMHostVols[1]) on VMHost02 avail
 able for placement.

REMARKS
 For more information, type: "get-help Set-VMHostVolume -detailed".
 For technical information, type: "get-help Set-VMHostVolume -full".

[bookmark: _Toc225244598]VMMManagedComputer
[bookmark: _Toc225244599]Get-VMMManagedComputer

SYNOPSIS
 Gets managed computer objects from the Virtual Machine Manager database.

SYNTAX
 Get-VMMManagedComputer [[-ComputerName] <String>] [-VMMServer [<String Serv
 erConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent physical computers managed by Virtu
 al Machine Manager.

 Managed computers include the following types of computers:

 * VMWARE VIRTUALIZATION MANAGER. A server running VMware VirtualCenter
 Server that VMM connects to in order to manage VMware ESX hosts and
 the virtual machines deployed on those hosts.

 * VIRTUAL MACHINE HOST. A Virtual Server host, Hyper-V host, or
 VMware ESX Server host on which you deploy virtual machines.

 * LIBRARY SERVER. A server used to make shares available to store VMM
 library resources.

 * P2V SOURCE COMPUTER. Any physical computer that you want to "clone"
 so that you can use its hardware and software settings to create one
 or more virtual machines.

 For more information, type:
 Get-Help Add-VirtualizationManager -detailed
 Get-Help Add-VMHost -detailed
 Get-Help Add-LibraryServer -detailed
 Get-Help Add-LibraryShare -detailed
 Get-Help New-P2V -detailed

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all computers managed by VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMMManagedComputer

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets all objects that represent computers managed by VMM
 Server1 from the VMM database and displays information about these managed
 computers to the user. When you look at the output, note that the property
 RoleString indicates whether the server is a library server, a host for vir
 tual machines, both a library server and a host, or a VMware VirtualCenter
 Server.

 2: Update the agent software on all host servers managed by VMM.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMManagedComputer | Update-VMMManagedcomputer -Credential $Cre
 dential -RunAsync

 The first command connects to VMMServer1.

 The second command uses Get-Credential to prompt you to supply a user name
 and password and stores your credentials in $Credential. The required crede
 ntials for this operation a domain account with rights to update software o
 n computers managed by Virtual Machine Manager.

 The last command performs the following operations:

 * Gets the objects that represent all computers managed by VMM.

 * Passes each managed computer objec to the
 Update-VMMManagedComputer cmdlet, which updates
 the VMM agent software on each computer.

 As this command is processed, $Credential provides
 your credentials to the Update-VMMManagedComputer cmdlet.

 3: Get a specific computer managed by VMM by IP address.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMMManagedComputer -ComputerName "10.20.30.40"

 The first command connects to VMMServer1.

 The second command gets the object for a computer by specifying its IP addr
 ess.

REMARKS
 For more information, type: "get-help Get-VMMManagedComputer -detailed".
 For technical information, type: "get-help Get-VMMManagedComputer -full".

[bookmark: _Toc225244600]Reassociate-VMMManagedComputer

SYNOPSIS
 Reassociates a managed computer on which Virtual Machine Manager agent soft
 ware is installed (that is, a Windows-based host or library server) with a
 different Virtual Machine Manager server.

SYNTAX
 Reassociate-VMMManagedComputer [-VMMManagedComputer] <VMMManagedComputer> -
 Credential <PSCredential> [-JobVariable <String>] [-PROTipID <Guid>] [-RunA
 synchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Reassociates a managed computer on which Virtual Machine Manager agent soft
 ware is installed (that is, a Windows-based host or library server) with a
 different Virtual Machine Manager server.

 When you initially add a host or library server to Virtual Machine Manager,
 the host or library server is "associated" with the Virtual Machine Manage
 r server that provides the Virtual Machine Manager database to which you ad
 ded that host or library server. The Virtual Machine Manager database might
 be installed either in a Microsoft SQL Server 2005 database on the Virtual
 Machine Manager server itself or on a remote server running Microsoft SQL
 Server 2005.

 After a host or library server is added to (and therefore associated with)
 a Virtual Machine Manager server, it cannot communicate with any other Virt
 ual Machine Manager server. However, you can reassociate it with a differen
 t Virtual Machine Manager server, as described in the following scenarios.

 SCENARIO 1: DISASTER RECOVERY

 In this scenario, VMMServerA fails, or the Virtual Machine Manager service
 running on VMMServerA fails. You might already have VMMServerB available as
 a backup Virtual Machine Manager server. If not, you can reinstall the Vir
 tual Machine Manager service on VMMServerB. At this point, the Virtual Mach
 ine Manager database might be on VMMServerB, or, if you keep the database o
 n a separate SQL Server, you can now point VMMServerB to the Virtual Machin
 e Manager database on that separate SQL Server.

 However, although you now have a functioning Virtual Machine Manager server
 (VMMServerB) and database, hosts and library servers that were managed by
 VMMServerA are still configured to communicate with VMMServerA. VMMServerB
 recognizes these managed computers, but they are in an "Access Denied" stat
 e. At this point, you can use the Reassociate-VMMManagedComputer cmdlet to
 reassociate computers that were managed by VMMServerA with VMMServerB.

 SCENARIO 2: RE-ORGANIZING SERVER GROUPINGS
 --
 In this scenario, VMMServerA and VMMServerB are two existing Virtual Machin
 e Manager servers that manage different sets of hosts and library servers.
 If, for example, VMHost01 is currently managed by VMMServerA, you can add V
 MHost01 to VMMServerB by using the Add-Host cmdlet with that cmdlet's Reass
 ociate parameter. If you do this, VMHost01's state on VMMServerA is now "Ac
 cess Denied" and its state on VMMServerB is "Responding." VMHost01 is now m
 anaged by VMMServerB, so you can remove it from VMMServerA.

 Alternatively, if you decide that you want VMHost01 to be managed by VMMSer
 verA after all, you can use Reassociate-VMMManagedComputer to reassociate H
 ost01 with VMMServerA.

PARAMETERS
 -VMMManagedComputer <VMMManagedComputer>
 Specifies an object that represents a computer that is managed by VMM.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Reassociate all unassociated managed computers with a specific VMM serve
 r.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMManagedComputer | where {$_.State -eq "AccessDenied"} | Reas
 sociate-VMMManagedComputer -Credential $Credential

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command uses Get-Credential to prompt you to supply a user name
 and password and stores your credentials in variable $Credential. The requi
 red credentials for this operation are a domain account with administrator
 rights on the host server that you want to reassociate with a specific Virt
 ual Machine Manager server and the password for that account.

 The last command performs the following operations:

 * Gets all objects from the VMM database on VMMServer1 that
 represent managed computers (both library servers and hosts).

 * Selects only objects for managed computers that are in the
 Access Denied state.

 * Uses the Reassociate-VMMManagedComputer cmdlet to change the
 association of any managed computer currently in the Access
 Denied state to VMMServer1.

 * Uses $Credential to provide your credentials to
 Reassociate-VMMManagedComputer.

REMARKS
 For more information, type: "get-help Reassociate-VMMManagedComputer -detai
 led".
 For technical information, type: "get-help Reassociate-VMMManagedComputer -
 full".

[bookmark: _Toc225244601]Update-VMMManagedComputer

SYNOPSIS
 Updates Virtual Machine Manager agent software installed on a Windows-based
 managed computer.

SYNTAX
 Update-VMMManagedComputer [-VMMManagedComputer] <VMMManagedComputer> -Crede
 ntial <PSCredential> [-JobVariable <String>] [-PROTipID <Guid>] [-RunAsynch
 ronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Updates Virtual Machine Manager agent software installed on a Windows-based
 managed computer to the current version of the software.

 If you upgrade your Virtual Machine Manager server to a later version of th
 e Virtual Machine Manager service, afterward you can use this command to up
 date agent software on computers that are managed by that Virtual Machine M
 anager server.

 Managed computers that you can update by using this cmdlet include:

 - Virtual Server hosts
 - Hyper-V hosts
 - Windows-based library servers
 - Windows-based P2V source computers

 You can use the Update-VMMManagedComputer cmdlet to update the Virtual Mach
 ine Manager agent software on domain-joined trusted hosts and non-trusted d
 omain-joined hosts, but not on hosts located on a perimeter network.

PARAMETERS
 -VMMManagedComputer <VMMManagedComputer>
 Specifies an object that represents a computer that is managed by VMM.

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Update all managed computers.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMMManagedComputer | foreach { Update-VMMManagedComputer -VMMMa
 nagedComputer $_ -Credential $Credential -RunAsynchronously }

 The first command prompts you to provide credentials with appropriate permi
 ssions to perform this operation and stores the credentials in variable $Cr
 edential.

 The second command connects to VMMServer1 in the Contoso.com domain and get
 s the server object from the VMM database. The following commands uses this
 server by default.

 The last command gets all objects that represent computers that are current
 ly managed by VMMServer1 from the VMM database and passes each managed comp
 uter object to "foreach" (the ForEach-Object cmdlet), which uses the Update
 -VMMManagedComputer cmdlet to update the agent software on each managed com
 puter. As this command is processed, $Credential provides your credentials
 to Update-VMMManagedComputer. Note: This example assumes that no managed co
 mputers are located in a perimeter network.

 NOTE: For more information about the standard Windows PowerShell ForEach-Ob
 ject cmdlet (which uses "foreach" as its alias but is not the same as the W
 indows PowerShell foreach loop statement), type: Get-Help ForEach-Object

 2: Update a specific host.

 PS C:\> $Credential = Get-Credential
 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMMManagedHost = Get-VMMManagedComputer -ComputerName "VMHost02.Co
 ntoso.com"
 PS C:\> Update-VMMManagedComputer -VMMManagedComputer $VMMManagedHost -Cred
 ential $Credential

 The first command prompts you to provide credentials with appropriate permi
 ssions to perform this operation and stores the credentials in $Credential.

 The second command connects to VMMServer1.

 The third command gets the object that represents the managed host named VM
 Host02 and stores the host object in $VMMManagedHost.

 The last command updates the agent software on VMHost02, obtaining your cre
 dentials from $Credential.

REMARKS
 For more information, type: "get-help Update-VMMManagedComputer -detailed".
 For technical information, type: "get-help Update-VMMManagedComputer -full".

[bookmark: _Toc225244602]VMMServer
[bookmark: _Toc225244603]Backup-VMMServer

SYNOPSIS
 Backs up the Virtual Machine Manager database.

SYNTAX
 Backup-VMMServer -Path <String> [-JobVariable <String>] [-PROTipID <Guid>]
 [-RunAsynchronously] [-VMMServer [<String ServerConnection>]] [<CommonParam
 eters>]

DETAILED DESCRIPTION
 Backs up the Virtual Machine Manager database on a Virtual Machine Manager
 server to a local folder or to a remote network share. You must back up the
 Virtual Machine Manager database to a server running Microsoft SQL Server
 2005, and the folder to which you back up the database must be accessible t
 o the SQL Server.

 Determining Whether SQL Is Local or on a Remote Server
 --
 If you do not know whether the Virtual Machine Manager database is stored l
 ocally or on a remote server running Microsoft SQL Server 2005, do the foll
 owing:

 1. On the Virtual Machine Manager server, open the Registry Editor.
 2. Navigate to:
 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
 Microsoft System Center Virtual Machine Manager 2008
 Server\Settings\Sql
 3. Look at the value for OnRemoteServer:
 * If it is set to 1, the database is on a remote SQL server.
 * If it is set to 0, the database is on the local Virtual
 Machine Manager server

 Restoring the Backed-up Database

 After you use the Backup-VMMServer cmdlet to back up the Virtual Machine Ma
 nager database (see Examples 1 and 2), you can use the SCVMMRecover.exe com
 mand to restore the database (see Example 3). This command (which is not a
 Windows PowerShell cmdlet) is installed with Virtual Machine Manager. By de
 fault, SCVMMRecover.exe is installed at <%system-drive%>\Program Files\Micr
 osoft System Center Virtual Machine Manager 2008\bin\.

 CAUTION: If you backed up a Virtual Machine Manager 2007 database, you cann
 ot restore it to a Virtual Machine Manager 2008 database.

 IMPORTANT: To back up and restore a server functioning as a virtual machine
 host or as a library server in a Virtual Machine Manager environment, use
 your standard server backup procedures.

PARAMETERS
 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Back up the VMM database to a local folder.

 PS C:\> $VMMServer = Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMMServer | Backup-VMMServer –Path "D:\VMMBackups"

 The first command connects to VMMServer1 in the Contoso.com domain, gets th
 e server object from the VMM database, and stores the server object in vari
 able $VMMServer.

 The second command passes the VMM server object stored in $VMMServer to the
 Backup-VMMServer cmdlet, which backs up the VMM database to the specified
 path on VMMServer1.

 IMPORTANT:

 * Backup-VMMServer must back up the database to a server running Microsoft
 SQL Server. This example assumes that Microsoft SQL Server (for the
 VMM database) is installed on VMMServer1 rather than on a remote server.

 * When you back up the database to a local folder, the folder must be
 write-accessible to the Microsoft SQL Server service.

 2: Back up the VMM database to a network share.

 PS C:\> $VMMServer = Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMMServer | Backup-VMMServer –Path "\\SQLServer01\VMMBackups"

 The first command connects to VMMServer1 and stores the server object in $V
 MMServer.

 The second command passes the VMM server object to Backup-VMMServer, which
 backs up the VMM database to the specified share on a server called SQLSer
 ver01.

 IMPORTANT:

 * Backup-VMMServer must back up the database to a server running Microsoft
 SQL Server, so this example assumes that Microsoft SQL Server (for the
 VMM database) is installed on SQLServer01.

 * When you back up the database to a remote share, the share must be
 write-accessible to the Microsoft SQL Server service.

 3: Restore the VMM database.

 C:\> SCVMMRecover.exe –Path <%backup-folder-path%>\<%backup-file-name%>.bak
 -Confirm

 Where:

 <%backup-folder-path%> is the path on the server running Microsoft SQL Serv
 er 2005 where the .bak file is saved.

 <%backup-file-name%> is the name of the .bak file that was created during t
 he backup operation.

 Restores the VMM database to the VMM server.

 NOTE: You must open a Command Prompt window (not a Windows PowerShell windo
 w) and use the SCVMMRecover.exe command that is installed with VMM, but is
 not a Windows PowerShell cmdlet, to perform this operation. You must run SC
 VMMRecover.exe locally on the VMM server on which you want to restore the d
 atabase.

 This example assumes that SCVMMRecover.exe is installed in the default loca
 tion for VMM at:

 <%system-drive%>\Program Files\Microsoft System Center Virtual Machine Mana
 ger 2008\bin\SCVMMRecover.exe

REMARKS
 For more information, type: "get-help Backup-VMMServer -detailed".
 For technical information, type: "get-help Backup-VMMServer -full".

[bookmark: _Toc225244604]Get-VMMServer

SYNOPSIS
 Connects to a Virtual Machine Manager server (if a connection does not alre
 ady exist) and retrieves the object that represents this server from the Vi
 rtual Machine Manager database.

SYNTAX
 Get-VMMServer [-ComputerName] <String> [-ConnectAs <String>] [-Credential <
 PSCredential>] [-TCPPort <Int32>] [<CommonParameters>]

DETAILED DESCRIPTION
 Connects to a Virtual Machine Manager server (if a connection does not alre
 ady exist) and retrieves the object that represents this server from the Vi
 rtual Machine Manager database. The default port used to connect to a Virtu
 al Machine Manager server is TCP port 8100.

 After a connection to the Virtual Machine Manager server is established, al
 l future commands run at the Windows PowerShell command line that require t
 he Virtual Machine Manager server object will automatically use the existin
 g connection until you close that Windows PowerShell command-shell window.

 The Virtual Machine Manager service running on the Virtual Machine manager
 server supports the Virtual Machine Manager database. This database is stor
 ed either in Microsoft SQL Server 2005 on the Virtual Machine Manager serve
 r itself or on a separate server running Microsoft SQL Server 2005.

 The Virtual Machine Manager service enables you to manage your virtual envi
 ronment, including host servers (which host virtual machines), library serv
 ers (which store Virtual Machine Manager library resources), and virtual ma
 chines deployed on a host or stored in the library.

PARAMETERS
 -ComputerName <String>
 Specifies the name of a computer that VMM can uniquely identify on your
 network.
 Valid formats: FQDN, IPv4 or IPv6 address, or NetBIOS name.
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the computer name.

 -ConnectAs <String>
 Specifies the VMM user role to use, if the user is a member of more tha
 n one role, when connecting to the VMM server from the command line.
 Valid values: Administrator, DelegatedAdmin, or SelfServiceUser.
 USER ROLE MEMBERSHIP PERMISSIONS
 -------------------- -----------
 DelegatedAdmin + Administrator Can manage all VMM objects
 Multiple DelegatedAdmin roles Can manage objects from union of all sc
 opes
 Multiple SelfServiceUser roles Can manage objects from union of all sc
 opes

 -Credential <PSCredential>
 Specifies an object that represents the user name and password of an ac
 count that has permission to complete this task, or (in the case of Res
 tart-Job) to complete a restarted task. For more information, type: Get
 -Help Get-Credential

 -TCPPort <Int32>
 Specifies a numeric value that represents a TCP port.
 Note: In VMM 2007, this parameter, when used with the Get-VMMServer cmd
 let, was named Port.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Connect to a VMM server.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"

 Connects to the VMM server named VMMServer1 that is located in the Contoso
 domain and gets the server object from the VMM database provided by VMMServ
 er1.

 NOTE: The VMM database is stored either in Microsoft SQL Server 2005 on the
 VMM server itself or on another server running Microsoft SQL Server 2005.

 2: Connect to a VMM server through a specific port.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com" -TCPPort 8100

 Connects over TCP port 8100 to the VMM server named VMMServer1 and retrieve
 s the server object from the VMM database.

 3: Get the .NET object type, methods, and properties for the VMM server.

 PS C:\> $VMMServer = Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMMServer | Get-Member
 PS C:\> $VMMServer | Get-Member | Format-List

 The first command gets the object that represents VMMServer1 and stores the
 VMM server object in variable $VMMServer.

 The second command passes the VMM server object to the Get-Member cmdlet, w
 hich retrieves and displays the following:

 * TypeName: The name of the .NET type of the VMM server object:
 Microsoft.SystemCenter.VirtualMachineManager.Remoting.ServerConnection

 * MemberType: A list of the name and definition for each method and each
 property associated wtih this object type.

 The third command retrieves and displays the same information as the second
 command, except that it pipes the output to the Format-List cmdlet so that
 you can see the complete definition for each method and each property for
 the VMM server object.

REMARKS
 For more information, type: "get-help Get-VMMServer -detailed".
 For technical information, type: "get-help Get-VMMServer -full".

[bookmark: _Toc225244605]Set-VMMServer

SYNOPSIS
 Changes properties of the Virtual Machine Manager server.

SYNTAX
 Set-VMMServer [-CEIPOptIn <Boolean>] [-CPUPriority <Int32>] [-DiskIOPriorit
 y <Int32>] [-JobVariable <String>] [-LibraryRefresherEnabled <Boolean>] [-L
 ibraryRefresherFrequency <Int32>] [-MemoryPriority <Int32>] [-NetworkPriori
 ty <Int32>] [-OpsMgrReportingEnabled] [-OpsMgrReportingServerURL <String>]
 [-OpsMgrServer] [-PhysicalAddressRangeEnd <String>] [-PhysicalAddressRangeS
 tart] [-PlacementGoal <EnginePlacementGoals>] [-PROAutomationLevel <Int32>]
 [-PROMonitoringLevel <Int32>] [-PROTipID <Guid>] [-RunAsynchronously] [-Se
 lfServiceContactEmail <String>] [-VMConnectDefaultPort <Int32>] [-VMMServer
 [<String ServerConnection>]] [-VMRCAccessAccount <String>] [-VMRCDefaultPo
 rt <Int32>] [<CommonParameters>]

DETAILED DESCRIPTION
 Changes one or more properties of the Virtual Machine Manager server. Virtu
 al Machine Manager settings that you can change with the Set-VMMServer cmdl
 et are summarized as follows.

 Placement Goal

 You can use the Set-VMMServer cmdlet to specify whether to optimize load ba
 lancing among hosts or to consolidate multiple loads onto a single host. Th
 e Virtual Machine Manager placement process takes this setting into account
 when it evaluates which hosts are the most suitable servers on which to de
 ploy a virtual machine.

 Relative Importance of Resource Usage

 You can use the Set-VMMServer cmdlet to configure settings that specify the
 importance of specific resources relative to each other. Virtual Machine M
 anager takes these resource priorities into account when it calculates whic
 h host servers are the best potential hosts for virtual machines:

 * CPU priority: Sets a higher or lower priority for CPU usage by a
 virtual machine on a host.

 * Disk I/O priority: Sets a higher or lower priority for disk
 input/output (I/O) performance by a virtual machine on a host.

 * Memory priority: Sets a higher or lower priority for the amount of
 memory needed by a virtual machine on a host.

 * Network priority: Sets a higher or lower priority for network
 utilization by a virtual machine on a host.

 Microsoft Customer Experience Improvement Program (CEIP) Participation
 --
 You can use the Set-VMMServer cmdlet to specify whether to enable Service Q
 uality Metrics (SQM) for this Virtual Machine Manager. By default, SQM is e
 nabled and therefore collects information about problems customers encounte
 r in order to improve the software in a later release.

 Library Refresher

 You can use the Set-VMMServer cmdlet to specify whether the Virtual Machine
 Manager library refresher is enabled and, if so, how often objects in the
 library are refreshed.

 System Center Operations Manager 2007 Reporting

 You can use the Set-VMMServer cmdlet to enable Operations Manager reporting
 , specify the Operations Manager server to which VMM connects, and specify
 the URL of the Operations Manager reporting server.

 For more information about using Operations Manager in conjunction with Vir
 tual Machine Manager:

 * See the Operations Manager deployment and configuration URLs in
 "Setting Up Reporting in VMM" (topic in the VMM UI help)

 Performance and Resource Optimization (PRO)

 If your Virtual Machine Manager environment is configured to work with Oper
 ations Manager and to receive Performance and Resource Optimization tips (P
 RO tips), you can use the Set-VMMServer cmdlet to enable monitoring by PRO
 in order to receive PRO tips. A PRO tip recommends an action in response to
 an alert generated by Operations Manager. You can also specify whether and
 at what level to implement PRO tips automatically.

 For more information about PRO tips:

 * Type: Get-Help Get-PROTip -detailed
 * See "About Performance and Resource Optimization" (topic in the VMM UI He
 lp)

 MAC Address Range

 You can use the Set-VMMServer cmdlet to configure a range of physical addre
 sses (MAC addresses) that Virtual Machine Manager can allocate to virtual m
 achines directly or through Virtual Machine Manager templates or hardware p
 rofiles used to create virtual machines.

 Contact for Self-Service Users

 You can use the Set-VMMServer cmdlet to specify the e-mail address of an ad
 ministrator who supports self-service users.

 Hyper-V Default Port and Virtual Server Default Port and Account
 --
 You can use the Set-VMMServer cmdlet to configure the default values for th
 e following:

 * The TCP port (VMConnectDefaultPort) that Hyper-V hosts use to connect
 to Virtual Machine Manager.

 * The TCP port (VMRCDefaultPort) that Virtual Server hosts use to
 connect to Virtual Machine Manager.

 * The default account (VMRCDefaultPort) granted VMRC access to
 virtual machines on Virtual Server hosts in a host group.

PARAMETERS
 -CEIPOptIn <Boolean>
 Enables Service Quality Metrics (SQM) for this server and thus particip
 ate in the Microsoft Customer Experience Improvement Program (CEIP), wh
 ich collects information about problems customers encounter in order to
 improve the software in a later release. The default value is TRUE.

 -CPUPriority <Int32>
 Specifies the relative importance of CPU utilization for a virtual mach
 ine on a host. To make CPU utilization a higher priority relative to ot
 her factors (such as disk I/O performance, memory utilization, and netw
 ork utilization), set this value to a higher number.
 Default value: 5. Range: 0 through 10.

 -DiskIOPriority <Int32>
 Specifies the relative importance of disk input/output (I/O) performanc
 e for a virtual machine on a host. To make disk I/O performance a highe
 r priority relative to other factors (such as CPU utilization, memory u
 tilization, and network utilization), set this value to a higher number
 .
 Default value: 2. Range: 0 through 10.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LibraryRefresherEnabled <Boolean>
 Specifies (when set to TRUE) that VMM library objects will be refreshed.

 -LibraryRefresherFrequency <Int32>
 Specifies, in hours, the frequency at which objects in the VMM library
 are refreshed. The default setting is 1 hour.

 -MemoryPriority <Int32>
 Specifies the relative importance of memory utilization by a virtual ma
 chine on a host. To make memory utilization a higher priority relative
 to other factors (such as CPU utilization, disk I/O performance, and ne
 twork utilization), set this value to a higher number.
 Default value: 8. Range: 0 through 10.

 -NetworkPriority <Int32>
 Specifies the relative importance of network utilization by a virtual m
 achine on a host. To make network utilization a higher priority relativ
 e to other factors (such as CPU utilization, disk I/O performance, and
 memory utilization), set this value to a higher number.
 Default value: 2. Range: 0 through 10.

 -OpsMgrReportingEnabled
 Enables System Center Operations Manager reporting.
 Note: In VMM 2007, this parameter was named MOMReportingEnabled.

 -OpsMgrReportingServerURL <String>
 Specifies the URL of a System Center Operations Manager reporting serve
 r.
 Default format: http://<ReportingServerName>/ReportServer
 Alternatively, you can use a secure http URL (https) to connect to a re
 porting site that is secured by Secure Sockets Layer (SSL).
 Note: In VMM 2007, this parameter was named MOMReportingServerURL.

 -OpsMgrServer
 Specifies the fully qualified domain name (FQDN) of the System Center O
 perations Manager server to which VMM connects.

 -PhysicalAddressRangeEnd <String>
 Specifies the last address in a range of static physical addresses (MAC
 addresses).

 -PhysicalAddressRangeStart
 Specifies the first address in a range of static physical addresses (MA
 C addresses).

 -PlacementGoal <EnginePlacementGoals>
 Specifies the placement algorithm to use when VMM selects the most suit
 able host on which to deploy a virtual machine. Load balancing among ho
 sts lets VMM minimize the processing load on any one host. Consolidatio
 n lets VMM maximize resources by combining multiple low-utilization wor
 kloads on a single host.
 Valid values: LoadBalance or Consolidate

 -PROAutomationLevel <Int32>
 Specifies the severity level of tips that PRO will implement.
 Valid values:
 0 (Off) Respond to a PRO tip manually
 1 (Critical) Implement critical PRO tips automatically
 2 (CriticalAndWarning) Implement critical or warning PRO tips automatic
 ally
 Note: Applies only to Hyper-V or VMware ESX hosts or to VMs deployed on
 those hosts.

 -PROMonitoringLevel <Int32>
 Specifies the severity level of tips that PRO will monitor.
 Valid values:
 0 (Off) Do not monitor PRO tips
 1 (Critical) Monitor critical PRO tips
 2 (CriticalAndWarning) Monitor critical and warning PRO tips
 Note: Applies only to Hyper-V or VMware ESX hosts or to VMs deployed on
 those hosts.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -SelfServiceContactEmail <String>
 Specifies the e-mail address of a VMM administrator that self-service u
 sers can contact if they encounter a problem.

 -VMConnectDefaultPort <Int32>
 Specifies the default value for the TCP port used for Virtual Machine C
 onnection (VMConnect) sessions on all Hyper-V hosts managed by this VMM
 server. Typically, the default port is 2179, but you can use this para
 meter to change the default. This parameter does not apply to Virtual S
 erver hosts or VMware ESX Server hosts.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -VMRCAccessAccount <String>
 Specifies the default account that is granted Virtual Machine Remote Co
 ntrol (VMRC) access to new virtual machines on one or more Virtual Serv
 er hosts in a specific host group. This parameter does not apply to Hyp
 er-V hosts or VMware ESX Server hosts.

 -VMRCDefaultPort <Int32>
 Specifies the default value for the TCP port used for Virtual Machine R
 emote Control (VMRC) sessions on all Virtual Server hosts managed by th
 is VMM server. Typically, the default port used for VMRC is 5900, but y
 ou can use this parameter to change the default. This parameter does no
 t apply to Hyper-V hosts or VMware ESX Server hosts.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Specify the importance of CPU utilization when determining on which host
 to place a virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Set-VMMServer -CPUPbriority 6

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command sets the value of the CPUPriority parameter for VMMServe
 r1 to 6. This setting specifies that, when VMM calculates the most suitable
 host on which to place a virtual machine, it will evaluate the importance
 of CPU utilization at 6 when compared to the importance specified for other
 factors (such as disk I/O performance, memory utilization, and network uti
 lization).

 NOTE: To make CPU utilization a higher priority relative to other factors,
 set the value for CPUPriority to a higher number.

 2: Set the frequency at which the library is refreshed.

 PS C:\> Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> Set-VMMServer -LibraryRefresherEnabled $TRUE -LibraryRefresherFrequ
 ency 24

 The first command connects to VMMServer1.

 The second command enables library refreshing for VMMServer1 and sets the r
 efreshing frequency rate to every 24 hours.

 3: Set the range of available MAC addresses on the VMM server.

 PS C:\> Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> Set-VMMServer -VMMServer $VMMServer -PhysicalAddressRangeStart 22-2
 2-22-22-22-22 -PhysicalAddressRangeEnd 22-22-22-22-22-99

 The first command connects to VMMServer1.

 The second command sets the global physical address (MAC address) range on
 VMMServer1 to the static addresses 22-22-22-22-22-22 through 22-22-22-22-2
 2-99.

 After you specify the range of available MAC addresses, these addresses are
 available for use on any virtual network adapter configured on any virtual
 machine that is deployed on any host managed by VMMServer1, or for use on
 any hardware profile or template stored on any library server managed by VM
 MServer1.

 4: Opt out of the Customer Experience Improvement Program.

 PS C:\> Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> Set-VMMServer -VMMServer $VMMServer -CEIPOptIn $FALSE

 The first command connects to VMMServer1.

 The second command disables the use of Service Quality Metrics (SQM) on VMM
 Server1 in order to opt out of participation in the Microsoft Customer Expe
 rience Improvement Program (CEIP) by setting the CEIPOptIn parameter to $FA
 LSE.

 5: Specify a self-service contact e-mail address.

 PS C:\> $VMMServer = Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> Set-VMMServer -VMMServer $VMMServer -SelfServiceContactEmail "Admin
 Help@Contoso.com"

 The first command connects to VMMServer1 and stores the server object in
 $VMMServer.

 The second command sets the self service contact e-mail address to "AdminHe
 lp@Contoso.com".

 6: Enable System Center Operations Manager reporting for VMM.

 PS C:\> $VMMServer = Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> Set-VMMServer -VMMServer $VMMServer -OpsMgrReportingEnabled $TRUE -
 OpsMgrReportingServerUrl "http://OpsMgr.Contoso.com/ReportServer" -OpsMgrSe
 rver "OpsMgr.Contoso.com"

 The first command connects to VMMServer1 and stores the server object in $V
 MMServer.

 The second command enables Operations Manager reporting by:

 * Setting the value for -OpsMgrReportingEnabled to $TRUE

 * Setting the Operations Manager Reporting URL to:
 http://OpsMgr.Contoso.com/ReportServer

 * Setting the Operations Manager Server to Opsmgr.Contoso.com

 7: Set all placement settings back to the default settings.

 PS C:\> $VMMServer = Get-VMMServer -ComputerName “VMMServer1.Contoso.com"
 PS C:\> Set-VMMServer -VMMServer $VMMServer -CPUPriority 8 -DiskIOPriority
 2 -MemoryPriority 8 -NetworkPriority 2

 The first command connects to VMMServer1 and stores the server object in $V
 MMServer.

 The second command sets the values for CPUPriority to 8, DiskIOPriority to
 2, MemoryPriority to 8, and Network Priority to 2. These are the factory d
 efault settings for placement.

REMARKS
 For more information, type: "get-help Set-VMMServer -detailed".
 For technical information, type: "get-help Set-VMMServer -full".

[bookmark: _Toc225244606]VMMUserRole
[bookmark: _Toc225244607]Get-VMMUserRole

SYNOPSIS
 Gets an object that represents a Virtual Machine Manager user role.

SYNTAX
 Get-VMMUserRole [[-Name] <String>] [-VMMServer [<String ServerConnection>]]
 [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects that represent Virtual Machine Manager user roles.
 VMM 2008 uses role-based security to define the boundaries within which me
 mbers of a given user role can operate and the set of allowed operations me
 mbers of a user role can perform.

 VMM ADMINISTRATOR (Administrator)

 In VMM 2008, members of the Administrator user role can perform all operati
 ons on all VMM objects. Only one Administrator role exists, and you cannot
 create or remove this user role.

 You can use the Set-VMMUserRole cmdlet to add or remove members to the Admi
 nistrator user role.

 DELEGATED ADMINISTRATOR (DelegatedAdmin)
 --
 Members of a Delegated Administrator user role can perform all operations o
 n all VMM objects within the specified scope (one or more host groups or li
 brary servers).

 You can use the New-VMMUserRole cmdlet to create a new delegated administra
 tor user role and the Set-VMMUserRole cmdlet to add or remove members to th
 is user role.

 SELF-SERVICE USER (SelfServiceUser)

 Members of a Self Service User role can perform all permitted operations on
 a specific set of virtual machines deployed on one or more hosts within th
 e specified scope (one or more host groups) and, optionally, can store virt
 ual machines in the library. The permitted operations are those used to man
 age virtual machines.

 You can use the New-VMMUserRole cmdlet to create a new self-service user ro
 le and the Set-VMMUserRole cmdlet to add or remove members to this user rol
 e and to specify or modify the list of available permissions and other opti
 ons for members of this user role.

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all VMM user roles.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMMUserRole

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets all VMM user role objects on this VMM server and di
 splays information about each user role.

 2: Get a specific user role by filtering for a specific user role name.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMMUserRole | where { $_.Name -eq "Administrator" }

 The first command connects to VMMServer1.

 The second command gets the object for all VMM user roles, selects the user
 role named Administrator, and then displays information about that user ro
 le to the user.

 3: Get a specific user role by name.

 PS C:\> Get-VMMUserRole -VMMServer VMMServer1.Contoso.com -Name "ContosoSel
 fServiceUsers"

 Gets the object that represents the user role named ContosoSelfServiceUsers
 from VMMServer1 and displays information about this user role to the user
 .

 4. Display properties and other information about user role objects.

 PS C:\> $UserRoles = Get-VMMUserRole -VMMServer VMMServer1.Contoso.com
 PS C:\> $UserRoles | select Name, UserRoleProfile, ParentUserRole, HostGrou
 p
 PS C:\> $UserRoles | Get-Member

 The first command gets the objects for all user roles on VMMServer1 and sto
 res the user role objects in $UserRoles.

 The second command passes each user role object in $UserRoles to "select" (
 the alias for the Select-Object cmdlet) and then, for each user role, displ
 ays the name, user role profile, parent user role, and host group.

 The last command passes each user role in $UserRoles to the Get-Member cmdl
 et, which displays the three .NET types for VMM user roles:

 TypeName: Microsoft.SystemCenter.VirtualMachineManager.UserRole
 TypeName: Microsoft.SystemCenter.VirtualMachineManager.SelfServiceUserRole
 TypeName: Microsoft.SystemCenter.VirtualMachineManager.DelegatedAdminUserRole

 The last command also displays the methods and properties associated with e
 ach user role type.

REMARKS
 For more information, type: "get-help Get-VMMUserRole -detailed".
 For technical information, type: "get-help Get-VMMUserRole -full".

[bookmark: _Toc225244608]New-VMMUserRole

SYNOPSIS
 Creates a Self Service User role or a Delegated Administrator user role for
 a group of Virtual Machine Manager users.

SYNTAX
 New-VMMUserRole [-Name] <String> -UserRoleProfile <String> [-Description <S
 tring>] [-JobGroup <Guid>] [-JobVariable <String>] [-ParentUserRole <UserRo
 le>] [-PROTipID <Guid>] [-RunAsynchronously] [-VMMServer [<String ServerCon
 nection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a Self Service User role or a Delegated Administrator user role for
 a group of Virtual Machine Manager users. Only one Administrator role exis
 ts; you cannot create another Administrator role or delete the existing one
 .

 If you are a member of a Delegated Administrator user role, you can create
 a new user role with a scope that is a subset of the scope of the parent us
 er role. In this case, you must use the New-VMMUserRole cmdlet with the Par
 entUserRole parameter to create the new user role, or the command will fail
 .

 After you create a new user role, you can use the Set-VMMUserRole cmdlet to
 rename the user role, to add or remove members, and to add or modify the s
 cope of objects that members of the role can manage. For a self-service use
 r role, you can also define a quota that limits the number of virtual machi
 nes self-service users can create, and you can specify which actions member
 s of a self-service user role can take on their virtual machines. Although
 you cannot create or remove the Administrator role or limit its scope, you
 can use Set-VMMUserRole to add or remove members to that role.

 VMM 2007 ADMINS AND SELF-SERVICE USERS UPGRADE TO VMM 2008 AUTOMATICALLY
 --
 The Active Directory security group called Virtual Machine Manager Administ
 rators used in VMM 2007 is replaced by the Administrators user role in VMM
 2008. The self-service policy feature used in VMM 2007 is replaced by the S
 elf Service User role.

 When you upgrade a VMM server from System Center Virtual Machine Manager 20
 07 to System Center Virtual Machine Manager 2008:

 * The upgrade process automatically adds all Active Directory users who
 were members of the Virtual Machine Manager Administrators security
 group in VMM 2007 to the VMM 2008 Administrator user role. You can
 then use Set-VMMUserRole to add or remove other members.

 * The upgrade process does not convert or create any Delegated
 Administrator user roles because there is no counterpart to the
 Delegated Administrator user role in VMM 2007

 * The upgrade process automatically converts existing VMM 2007 self-
 service policies to VMM 2008 Self Service User roles. The new Self
 Service User role has the same name, settings, and members as the
 earlier self-service policy from which it is derived.

 For example, if a self-service policy specifies a quota that limits
 the number of virtual machines a self-service user can create, the
 same restriction is carried over to the new Self Service User role.

 For more information about user roles, type:
 Get-Help about_VMM_2008_Role_Based_Security

PARAMETERS
 -Name <String>
 Specifies the name of a VMM object.

 -UserRoleProfile <String>
 Specifies the type of profile to use as the basis for the user role.
 Valid values: DelegatedAdmin or SelfServiceUser.

 -Description <String>
 Specifies a description for the specified object.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -ParentUserRole <UserRole>
 Specifies an existing VMM user role as the parent of a new user role. T
 his parameter is required when a Delegated Administrator creates a new
 user role that has a scope which is a subset of the parent user role sc
 ope.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Create a delegated administrator user role.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> New-VMMUserrole -Name "ContosoAdmin" -Description "Delegated Admini
 strators for the Contoso.com domain" -UserRoleProfile DelegatedAdmin

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command creates a delegated administrator user role named "Conto
 soAdmin", provides the description "Delegated Administrators for the Contos
 o.com domain", and uses the -UserRoleProfile parameter to designate the use
 r role type as delegated administrator.

 2: Create a Self Service User user role whose members can manage objects in
 the Lab host group.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Scope = New-VMHostGroup -Name "Lab"
 PS C:\> $SelfServiceRole = New-VMMUserRole -Name "ContosoSelfServiceUsers"
 -UserRoleProfile SelfServiceUser
 PS C:\> Set-VMMUserRole -UserRole $SelfServiceRole -AddScope $Scope -AddMem
 ber Contoso\User1,Contoso\User2

 The first command connects to VMMServer1.

 The second command creates a host group named "Lab" and stores the host gr
 oup object in variable $Scope.

 The third command creates a new user role named "ContosoSelfServiceUsers",
 uses the -UserRoleProfile parameter to designate the new user role type as
 Self Service User, and stores the new user role object in variable $SelfSe
 rviceRole.

 The last command sets the scope for ContosoSelfServiceUsers to the Lab host
 group and adds User1 and User2 (both members of the Contoso.com domain) as
 members to the ContosoSelfServiceUsers user role.

REMARKS
 For more information, type: "get-help New-VMMUserRole -detailed".
 For technical information, type: "get-help New-VMMUserRole -full".

[bookmark: _Toc225244609]Remove-VMMUserRole

SYNOPSIS
 Removes an existing Self Service User or Delegated Administrator user role
 from Virtual Machine Manager.

SYNTAX
 Remove-VMMUserRole [-UserRole] <UserRole> [-Confirm] [-JobGroup <Guid>] [-J
 obVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonParame
 ters>]

DETAILED DESCRIPTION
 Removes an existing Self Service User or Delegated Administrator user role
 from Virtual Machine Manager. You cannot remove the Administrator role.

PARAMETERS
 -UserRole <UserRole>
 Specifies a user role object.

 -Confirm
 Prompts for confirmation before running the command.

 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove the specified user role.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $RemoveRole = Get-VMMUserRole | where {$_.Name -eq "ContosoAdmin"}
 PS C:\> Remove-VMMUserrole -Userrole $RemoveRole

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets all objects that represent VMM user roles; uses the
 "where filter (the Where-Object cmdlet) to select the user role named "Con
 toso Admin"; and then stores the object for that user role in variable $Rem
 oveRole

 The last command removes the "Contoso Admin" user role from the VMM database.

REMARKS
 For more information, type: "get-help Remove-VMMUserRole -detailed".
 For technical information, type: "get-help Remove-VMMUserRole -full".

[bookmark: _Toc225244610]Set-VMMUserRole

SYNOPSIS
 Modifies the settings for an existing Virtual Machine Manager user role.

SYNTAX
 Set-VMMUserRole -JobGroup <Guid> [-AddMember [<NTAccount[] String>]] [-AddS
 cope [<LibraryServer Template HostGroup>]] [-Description <String>] [-JobVar
 iable <String>] [-LibraryStoreSharePath <String>] [-Name <String>] [-PROTip
 ID <Guid>] [-QuotaPerUser <Boolean>] [-QuotaPoint <Int32>] [-RemoveMember [
 <NTAccount[] String>]] [-RemoveQuotaPoint] [-RemoveScope [<Template HostGro
 up LibraryServer>]] [-RunAsynchronously] [-VMMServer [<String ServerConnect
 ion>]] [-VMPermission [<SelfServicePermission[] String>]] [<CommonParameter
 s>]

 Set-VMMUserRole -UserRole <UserRole> [-AddMember [<NTAccount[] String>]] [-
 AddScope [<LibraryServer Template HostGroup>]] [-Description <String>] [-Jo
 bVariable <String>] [-LibraryStoreSharePath <String>] [-Name <String>] [-PR
 OTipID <Guid>] [-QuotaPerUser <Boolean>] [-QuotaPoint <Int32>] [-RemoveMemb
 er [<NTAccount[] String>]] [-RemoveQuotaPoint] [-RemoveScope [<Template Hos
 tGroup LibraryServer>]] [-RunAsynchronously] [-VMPermission [<SelfServicePe
 rmission[] String>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Modifies the settings for an existing Virtual Machine Manager user role. Th
 e settings that you can modify depend on the type of VMM user role.

 VMM ADMINISTRATOR (Administrator)

 You can add or remove members to the Administrator user role, but you canno
 t limit the scope of objects that members of this role can manage.

 DELEGATED ADMINISTRATOR (DelegatedAdmin)
 --
 You can expand or restrict the scope for, and add to or remove members from
 , a Delegated Administrator user role. You can grant members of this user r
 ole permission to manage all of the objects in one or more host groups and/
 or allow users to manage all of the objects stored on one or more library s
 ervers. Within that framework, you cannot limit the actions that members of
 the Delegated Administrator user role can perform.

 SELF-SERVICE USER (SelfServiceUser)

 You can add or remove members as well as expand or limit the scope and acti
 ons granted to members of a Self Service User role. You can grant members o
 f a self-service user role permission to manage all of the objects in one o
 r more host groups; permission to create virtual machines; permission to st
 ore virtual machines on a specific library share in the library; and permis
 sion to use one or more template objects to create virtual machines. Within
 that framework, you can grant members of a Self Service User role one or m
 ore of the virtual machine permissions that define the actions that self-se
 rvice users can take. You can also limit the number of virtual machines tha
 t self-service users can create by setting a quota that applies to each use
 r or to all users collectively.

 The actions that you can grant include the virtual machine permissions call
 ed Create, Start, Stop, PauseAndResume, Remove, Shutdown, Checkpoint, Store
 (which allows self-service users to store their virtual machines in the li
 brary and, later, to deploy a stored virtual machine on a host server, unle
 ss the quota points setting blocks deploying additional virtual machines),
 AllowLocalAdmin (which lets self-service users act as local Administrator o
 n their virtual machines), and RemoteControl (which allows self-service use
 rs to have remote access to a running virtual machine).

PARAMETERS
 -JobGroup <Guid>
 Specifies an identifier for a series of commands that will run as a set
 just before the final command that includes the same job group identif
 ier runs. For information about how VMM uses job groups, including a li
 st of job groups available for specific cmdlets, type: Get-Help about_V
 MM

 -UserRole <UserRole>
 Specifies a user role object.

 -AddMember [<NTAccount[] String>]
 Adds one or more Active Directory domain users or groups to the user ro
 le.
 Example formats:
 -AddMember Domain1\User1
 -AddMember User1
 -AddMember User1@Domain1
 -AddMember Domain1\LabGroupAlias
 -AddMember LabGroupAlias (Active Directory security group, not e-mail
 alias)

 -AddScope [<LibraryServer Template HostGroup>]
 Adds one or more VMM objects to the scope of objects that members of th
 is user role can manage.

 -Description <String>
 Specifies a description for the specified object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LibraryStoreSharePath <String>
 Specifies the path to a library share that members of a Self Service Us
 er user role can use to store their virtual machines.
 Example format: "\\LibraryServerName\LibraryShareName"

 -Name <String>
 Specifies the name of a VMM object.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -QuotaPerUser <Boolean>
 Calculates quota points for each member of a Self-Service User role (wh
 en set to TRUE) or for all members of a Self-Service User role (when se
 t to FALSE). The default value is TRUE

 -QuotaPoint <Int32>
 Specifies a quota that limits the number of virtual machines self-servi
 ce users can create.

 -RemoveMember [<NTAccount[] String>]
 Removes one or more Active Directory domain users or groups from the us
 er role.
 Example formats:
 -RemoveMember Domain1\User1
 -RemoveMember User1
 -RemoveMember User1@Domain1
 -RemoveMember Domain1\LabGroupAlias
 -RemoveMember LabGroupAlias (Active Directory security group, not e-mai
 l alias)

 -RemoveQuotaPoint
 Switches off the quota setting.

 -RemoveScope [<Template HostGroup LibraryServer>]
 Removes one or more VMM objects from the scope of objects that members
 of this user role can manage.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -VMPermission [<SelfServicePermission[] String>]
 Specifies the actions that members of a Self Service User role can take
 on their virtual machines.
 Valid values: Create, PauseAndResume, Start, Stop, AllowLocalAdmin, Rem
 oteConnect, Remove, Shutdown, Checkpoint, Store, Save.
 Example format: -VMPermission "Create" | "PauseAndResume" | "Stop"

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Add the specified users to the VMM Administrator user role.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $AdminRole = Get-VMMUserRole | where { $_.Name -eq "Administrator"
 }
 PS C:\> Set-VMMUserRole -UserRole $AdminRole -AddMember Contoso\User1,Conto
 so\User2

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets all objects that represent VMM user roles, selects
 the user role object named Administrator, and stores the Administrator obje
 ct in variable $AdminRole.

 The last command adds User1 and User2 (both members of the Contoso.com doma
 in) to the Administrator user role.

 2: Add the specified users to the Administrator role in a single command.

 PS C:\> Get-VMMUserRole -VMMServer VMMServer1.Contoso.com | where { $_.Prof
 ile -eq "Administrator" } | Set-VMMUserRole -AddMember Contoso\User3

 Gets all user role objects from VMMServer1; selects the user role objects w
 hose profile is Administrator; and then adds User3 to the Administrator use
 r role.

 3: Modify an existing user role by adding a host group to its scope.

 PS C:\> $HostGroupScope = Get-VMHostGroup -VMMServer VMMServer1.Contoso.com
 | where { $_.Path -eq "All Hosts\Lab" }
 PS C:\> $UserRole = Get-VMMUserRole | where { $_.Name -eq "ContosoAdmin" }
 PS C:\> Set-VMMUserRole -UserRole $UserRole -AddScope $HostGroupScope

 The first command gets the object that represents the host group named Lab
 (a child host group located under "All Hosts") and stores the host group ob
 ject in $HostGroupScope.

 The second command gets all objects that represent VMM user roles, selects
 the user role named ContosoLabAdmin, and stores the object for that user ro
 le in $UserRole.

 The last command modifies the scope of the "ContosoLabAdmin" user role by a
 dding the Lab host group to its scope.

 4: Remove the specified user from the Administrator user role.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $AdminRole = Get-VMMUserRole | where {$_.Name -eq "Administrator" }
 PS C:\> Set-VMMUserRole -UserRole $AdminRole -RemoveMember Contoso\User1

 The first command connects to VMMServer1.

 The second command gets all VMM user role objects, selects the Administrato
 r user role object, and stores that object in $AdminRole.

 The last command removes User1 (a member of the Contoso.com domain) from th
 e Administrator user role.

 5: Add multiple templates to a self-service user role.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $Template = Get-Template | where { $_.Name -like "DevTemplate*" }
 PS C:\> Get-VMMUserRole | where { $_.Name -like "ContosoSelfServiceUsers" }
 | Set-VMMUserRole -AddScope $Template

 The first command connects to VMMServer1.

 The second command gets all objects that represent templates, selects only
 objects for those templates that include "DevTemplate" in the template name
 , and stores the selected template objects in $Template.

 The last command gets all objects that represent user roles, selects only t
 hose that include ContosoSelfServiceUsers" in the name of the user role, an
 d then passes each user role object to the Set-VMMUserRole cmdlet. The Set-
 VMMUserRole cmdlet adds the templates stored in $Templates to all user role
 s that include ContosoSelfServiceUsers in the user role name.

 6. Modify what actions members of a self-service user role can take on thei
 r virtual machines.

 PS C:\> $UserRole = Get-VMMUserRole -VMMServer "VMMServer1.Contoso.com" | w
 here { $_.Name -eq "ContosoSelfServiceUsers" }
 PS C:\> Set-VMMUserRole -UserRole $UserRole -VMPermission "Create,PauseAndR
 esume,Stop,AllowLocalAdmin,Store" -LibraryStoreSharePath "\\FileServer01.Co
 ntoso.com\MSSCVMMLibrary\VHDs"

 The first command gets all objects that represents VMM user roles from VMMS
 erver1, selects the user role named ContosoSelfServiceUsers, and stores the
 user role object in $UserRole.

 The second command modifies the permissions for members of the "ContosoSelf
 ServiceUsers" user role to allow Creation, PauseAndResume, Stop, AllowLocal
 Admin and Store permissions. In addition, the command specifies that member
 s of this user role can store a virtual machine (currently deployed on a ho
 st) on the library server at the location specified by the -LibraryStoreSha
 rePath parameter.

 Note: To list all available permissions that you can specify for self-servi
 ce users, type:

 PS C:\> [enum]::GetValues([Microsoft.VirtualManager.Remoting.SelfServicePer
 mission])

 The enumeration command lists all possible permissions that you can specify
 with the Set-VMMuserRole cmdlet and the -VMPermission parameter:

 PERMISSION ALLOWED ACTIONS
 ---------- ---------------
 Create Users can create a new VM
 PauseAndResume Users can pause and resume operation of their VMs
 Start Users can start their VMs
 Stop Users can stop their VMs
 AllowLocalAdmin Users can act as local Administrator on their VMs
 RemoteConnect Users can access their VMs remotely
 Remove Users can remove their VMs and their configuration files
 Shutdown Users can shut down their VMs
 Checkpoint Users can create checkpoints for their VMs
 Store Users can store their VMs in the library
 Save Users can put their VMs into a saved state

REMARKS
 For more information, type: "get-help Set-VMMUserRole -detailed".
 For technical information, type: "get-help Set-VMMUserRole -full".

[bookmark: _Toc225244611]VMPerformance
[bookmark: _Toc225244612]Get-VMPerformance

SYNOPSIS
 Gets performance data for a specific virtual machine deployed on a host man
 aged by Virtual Machine Manager.

SYNTAX
 Get-VMPerformance [-VM] [<String VM>] [-JobVariable <String>] [-PROTipID <G
 uid>] [-RunAsynchronously] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets performance data for a specific virtual machine deployed on a host man
 aged by Virtual Machine Manager. The VMPerformance object returned by this
 cmdlet includes information about CPU utilization history, system uptime, a
 nd other data.

PARAMETERS
 -VM [<String VM>]
 Specifies a virtual machine object.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get performance information about a specific virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VM = Get-VM -Name "VM01"
 PS C:\> Get-VMPerformance -VM $VM

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object for VM01 and stores the virtual machine
 object in variable $VM.

 The last command gets performance data about VM01 and displays it to the us
 er. This information includes:

 * The length of time the virtual machine has been running.
 * The CPU utilization history for this virtual machine.
 * The last time this virtual machine was updated.

 After this command completes successfully, current information about this v
 irtual machine will appear in the Administrator Console.

 NOTE: You can use this cmdlet to get performance information about a virtua
 l machine if it is currently deployed on a host but not if it is stored in
 the VMM library.

REMARKS
 For more information, type: "get-help Get-VMPerformance -detailed".
 For technical information, type: "get-help Get-VMPerformance -full".

[bookmark: _Toc225244613]VMRCCertificateRequest
[bookmark: _Toc225244614]New-VMRCCertificateRequest

SYNOPSIS
 Generates a request for a signed certificate that Virtual Machine Manager c
 an use to secure Virtual Machine Remote Control (VMRC) communications by en
 crypting information exchanged between a user and a virtual machine on a Vi
 rtual Server host.

SYNTAX
 New-VMRCCertificateRequest -KeyLength <Int32> -Path <String> -VMHost [<Stri
 ng Host>] [-City <String>] [-CountryRegion <String>] [-JobVariable <String>
] [-Organization <String>] [-OrganizationalUnit <String>] [-PROTipID <Guid>
] [-RunAsynchronously] [-State <String>] [<CommonParameters>]

DETAILED DESCRIPTION
 Generates a request for a signed certificate that Virtual Machine Manager c
 an use to secure Virtual Machine Remote Control (VMRC) communications by en
 crypting information exchanged between a user and a virtual machine on a Vi
 rtual Server host. VMRC is a feature of Microsoft Virtual Server that lets
 a VMRC client connect to a host running Virtual Server so that a remote use
 r can access a virtual machine deployed on that host. This cmdlet applies o
 nly to Virtual Server hosts (not Hyper-V or VMware hosts).

 Use the file generated by this cmdlet to submit a request to your Certifica
 tion Authority (CA). After you receive a certificate, you can use the Set-V
 MHost cmdlet with the RemoteConnectCertificatePath parameter to store the c
 ertificate on the Virtual Server host. Next, use Set-VMHost with the Secure
 RemoteConnectEnabled parameter to enable secure communications for any remo
 te user who connects to a virtual machine on that host using VMRC.

 The path that you specify with the New-VMRCCertificateRequest cmdlet must i
 nclude the name of the file that the cmdlet will create on the client compu
 ter (the computer running the Administrator Console or Windows PowerShell).
 You must have access permissions that let you create a file on that path o
 n the computer. You can specify a local path or a UNC path.

 Example paths:

 -Path "D:\Requests\MyHostCertificateRequest.txt"
 -Path "\\MyServer\MyShare\MyHostCertificateRequest.txt"

PARAMETERS
 -KeyLength <Int32>
 Specifies the length of the encryption key for an X.509 certificate.
 Valid values: 512, 1024, 2048, 4096, 8192
 Note: Using 8192 might take longer and therefore might cause the cmdlet
 to fail. If so, specify a different length.

 -Path <String>
 Specifies the destination path for the operation.
 Example formats (the specific format or formats you can you use might d
 iffer by cmdlet):
 Local path -Path "F:\"
 UNC path -Path "\\Library\Templates"
 Volume GUID path -Path "\\?\Volume{4703c1ea-8ae7-11db-b473-00123f7603e
 3}\"
 VMware ESX path –Path "[storage1]\MyVMwareFolderForVMs\MyVM.vmx"
 Note: See the examples for a specific cmdlet to determine how that cmdl
 et specifies the path.

 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -City <String>
 Specifies the name of the city in which the organization that manages a
 specific host is located.
 Maximum length: 64 characters.

 -CountryRegion <String>
 Specifies the name of the country or region in which the organization t
 hat manages a specific host is located.
 Maximum length: 2 characters.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -Organization <String>
 Specifies the name of the organization where a specific host is located
 .
 Maximum length: 64 characters.

 -OrganizationalUnit <String>
 Specifies the name of an organizational unit that contains a specific h
 ost computer.
 Maximum length: 64 characters.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -State <String>
 Specifies the name of the state in which the organization that manages
 a specific host is located.
 Maximum length: 64 characters.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Request a VMRC certificate for a Virtual Server host and save the certif
 icate to a text file.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $VMHost = Get-VMHost -ComputerName "VMHost01"
 PS C:\> New-VMRCCertificateRequest -VMHost $VMHost -Path "C:\VMRCCertReqFol
 der\CertificateRequest.txt" -KeyLength 4096 -Organization "Contoso" -Organi
 zationalUnit "MyDepartment" -City "MyCity" -State "MyState" -CountryRegion
 "US"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents VMHost01 from the VMM da
 tabase and stores the host object in variable $VMHost. This example assumes
 that VMHost01 is a Virtual Server host.

 The last command creates a certificate request for VMHost01; specifies a ke
 y length; specifies values for Organization and other identifying fields; a
 nd then saves the resulting request as the CertificateRequest.txt file stor
 ed in C:\VMRCCertReqFolder on VMHost01.

REMARKS
 For more information, type: "get-help New-VMRCCertificateRequest -detailed".
 For technical information, type: "get-help New-VMRCCertificateRequest -full".

[bookmark: _Toc225244615]VMwareResourcePool
[bookmark: _Toc225244616]Get-VMwareResourcePool

SYNOPSIS
 Gets VMware resource pool objects from the Virtual Machine Manager database.

SYNTAX
 Get-VMwareResourcePool -VMHostCluster <VMHostCluster> [<CommonParameters>]

 Get-VMwareResourcePool -VMHost [<String Host>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets VMware resource pool objects from the Virtual Machine Manager database.

 VMware resource pools configured on a VMwareVirtual Center server that is m
 anaged by Virtual Machine Manager are imported as objects into the Virtual
 Machine Manager database when the VirtualCenter Server is added to Virtual
 Machine Manager.

 VMware uses resource pools to group virtual machines deployed on ESX hosts,
 or ESX host clusters, into an organizational hierarchy that consists of pa
 rent, sibling, and child resource pools. Resources, such as CPU and memory,
 are specified for virtual machines assigned to each resource pool. Adminis
 tration of sets of resource pools can be delegated, in VirtualCenter Server
 , to administrators by department, by geographical region, or by some other
 organizational requirement.

PARAMETERS
 -VMHost [<String Host>]
 Specifies a virtual machine host object. VMM 2008 supports Hyper-V host
 s, Virtual Server hosts, and VMware ESX Server hosts. For more informat
 ion about each type of host, type: Get-Help Add-VMHost -detailed. See t
 he examples for a specific cmdlet to determine how that cmdlet uses thi
 s parameter.

 -VMHostCluster <VMHostCluster>
 Specifies a VMM host cluster object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get the VMware resource pool for an ESX host from the VMM database.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MyESXHost = Get-VMHost -ComputerName "nnn.nnn.nnn.nnn"
 PS C:\> Get-VMwareResourcePool -VMHost $MyESXHost

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following commands use this s
 erver by default.

 The second command gets the object that represents the VMware ESX host name
 d VMHost01 from the VMM database by specifying the IP address (represented
 in the example by "nnn.nnn.nnn.nnn") of the ESX host. This ESX Server is ma
 naged by VMM through VMware VirtualCenter Server. The command stores the ho
 st object in variable $MyESXHost.

 NOTE: When you use an IP address with the -ComputerName parameter to specif
 y an ESX host, you must use the same IP address that was used initially to
 add this host to VMM.

 The last command gets the VMware resource pool information from the VMM dat
 abase for the ESX host object stored in variable $VMHost and displays infor
 mation about the resource pool to the user.

 2: Get the VMware resource pool for an ESX host cluster from the VMM databa
 se.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $MyESXCluster = Get-VMHostCluster -Name "VMHostCluster02"
 PS C:\> Get-VMwareResourcePool -VMHostCluster $MyESXCluster

 The first command connects to VMMServer1.

 The second command gets the object that represents the host cluster named V
 MHostCluster01 from the VMM database. This is a cluster of ESX hosts that i
 s managed by VMM through VMware VirtualCenter Server. The command stores th
 e host cluster object in $MyESXCluster.

 The third command gets the VMware resource pool information from the VMM da
 tabase for the ESX host cluster object stored in $MyESXCluster and displays
 information about the resource pool to the user.

REMARKS
 For more information, type: "get-help Get-VMwareResourcePool -detailed".
 For technical information, type: "get-help Get-VMwareResourcePool -full".

[bookmark: _Toc225244617]VMXMachineConfig
[bookmark: _Toc225244618]Get-VMXMachineConfig

SYNOPSIS
 Gets VMX machine configuration objects (from the Virtual Machine Manager da
 tabase) that are associated with one or more VMware-based virtual machines.

SYNTAX
 Get-VMXMachineConfig [-VMMServer [<String ServerConnection>]] [-VMXPath <St
 ring>] [<CommonParameters>]

DETAILED DESCRIPTION
 Gets one or more objects from the Virtual Machine Manager database that rep
 resent the VMX machine configuration associated with one or more VMware vir
 tual machines. Information about a virtual machine computer's hardware, dis
 ks, and operating system is stored in the VMX machine configuration object.

 A VMX machine configuration object is used by the New-V2V cmdlet when it co
 nverts a VMware-based virtual machine deployed on an ESX host to a virtual
 machine deployed on a Windows-based host (a Virtual Server or Hyper-V host).

PARAMETERS
 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 -VMXPath <String>
 Specifies the full UNC path to the .vmx file of a VMware virtual machin
 e.
 Example format: \\ServerName\VolumeName\DirectoryName\VMwareVM.vmx

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Get all machine configurations objects in your VMM environment.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> Get-VMXMachineConfig

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets all objects from the VMM database that represent VM
 X machine configurations (which were created earlier by using New-VMXMachin
 eConfig) and displays information about these machine configuration objects
 to the user.

REMARKS
 For more information, type: "get-help Get-VMXMachineConfig -detailed".
 For technical information, type: "get-help Get-VMXMachineConfig -full".

[bookmark: _Toc225244619]New-VMXMachineConfig

SYNOPSIS
 Creates a VMX machine configuration object by gathering virtual machine con
 figuration information from a virtual machine created in VMware that you pl
 an to convert to a virtual machine deployed on a Windows-based host managed
 by Virtual Machine Manager.

SYNTAX
 New-VMXMachineConfig [-VMXPath] <String> [-JobVariable <String>] [-LibraryS
 erver [<String LibraryServer>]] [-PROTipID <Guid>] [-RunAsynchronously] [-V
 MMServer [<String ServerConnection>]] [<CommonParameters>]

DETAILED DESCRIPTION
 Creates a VMX machine configuration object by gathering information about t
 he physical characteristics of a VMware-based virtual machine (and its disk
 s) that you plan to convert to a virtual machine deployed on a Windows-base
 d host (a Hyper-V or Virtual Server host) managed by Virtual Machine Manage
 r. This cmdlet does not collect information about the operating system or d
 ata on the VMware-based virtual machine.

 VMWare virtual hard disk formats supported by the New-VMXMachineConfig cmdl
 et include:

 - monolithicSparse
 - monolithicFlat
 - vmfs
 - twoGbMaxExtentSparse
 - twoGbMaxExtentFlat

PARAMETERS
 -VMXPath <String>
 Specifies the full UNC path to the .vmx file of a VMware virtual machin
 e.
 Example format: \\ServerName\VolumeName\DirectoryName\VMwareVM.vmx

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -LibraryServer [<String LibraryServer>]
 Specifies a VMM library server object.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 -VMMServer [<String ServerConnection>]
 Specifies a VMM server object.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Gather information from a VMware-based virtual machine.

 PS C:\> Get-VMMServer -ComputerName "VMMServer1.Contoso.com"
 PS C:\> $LibServ = Get-LibraryServer –ComputerName “FileServer01.Contoso.co
 m”
 PS C:\> New-VMXMachineConfig –LibraryServer $LibServ –VMXPath
 "\\FileServer01\MSSCVMMLibrary\VMware\VMSource.vmx"

 The first command connects to VMMServer1 in the Contoso.com domain and gets
 the server object from the VMM database. The following command uses this s
 erver by default.

 The second command gets the object that represents the library server FileS
 erver01 (in the Contoso.com domain) and stores the library object in variab
 le $LibServ.

 The last command gathers the machine configuration information for the .vmx
 file located at "\\FileServer01\MSSCVMMLibrary\VMware\VMSource.vmx" on the
 library server. The New-VMXMachineConfig cmdlet stores the resulting machi
 ne configuration object associated with VMSource.vmx in the VMM database.

 NOTE: If you look in Library view in the Administrator Console, you cannot
 see the file VMSource.vmx because the .vmx file is part of a single virtual
 machine object. What you see in Library view is the virtual machine. To fi
 nd the path to a .vmdk file, view the properties for that virtual machine.

REMARKS
 For more information, type: "get-help New-VMXMachineConfig -detailed".
 For technical information, type: "get-help New-VMXMachineConfig -full".

[bookmark: _Toc225244620]Remove-VMXMachineConfig

SYNOPSIS
 Removes a VMX machine configuration object from Virtual Machine Manager.

SYNTAX
 Remove-VMXMachineConfig [-VMXMachineConfig] <VMXMachineConfig> [-Confirm] [
 -JobVariable <String>] [-PROTipID <Guid>] [-RunAsynchronously] [<CommonPara
 meters>]

DETAILED DESCRIPTION
 Removes one or more objects that represent a VMX machine configuration from
 the Virtual Machine Manager database.

 This cmdlet returns the object upon success (with the property MarkedForDel
 etion set to TRUE) or returns an error message upon failure.

PARAMETERS
 -VMXMachineConfig <VMXMachineConfig>
 Specifies a VMX machine configuration for a VMware-based virtual machin
 e. VMX machine configuration includes information about the virtual mac
 hine's hardware, disks, and operating system.
 Note: In VMM 2007, this parameter, when used with the New-V2V and Remov
 e-VMXMachineConfig cmdlets, was named MachineConfig.

 -Confirm
 Prompts for confirmation before running the command.

 -JobVariable <String>
 Specifies that job progress is tracked and stored in the variable named
 by this parameter.

 -PROTipID <Guid>
 Specifies the ID of the PRO tip that triggered this action. Allows for
 future auditing of PRO tips.

 -RunAsynchronously
 Specifies that the job runs asynchronously so that control returns to t
 he command shell immediately.

 <CommonParameters>
 This cmdlet supports the common parameters: -Verbose, -Debug,
 -ErrorAction, -ErrorVariable, and -OutVariable. For more information,
 type, "get-help about_commonparameters".

 1: Remove all VMX machine configurations without being prompted to confirm
 each deletion.

 PS C:\> $VMXMachineConfigs = Get-VMXMachineConfig -VMMServer VMMServer1.Con
 toso.com
 PS C:\> $MachineConfigs | Remove-VMXMachineConfig

 The first command retrieves all VMX machine configuration objects from the
 VMM database on VMMServer1 and stores these objects in variable $VMXMachine
 Configs (an object array).

 The second command passes each object in $VMXMachineConfigs to Remove-VMXMa
 chineConfig, which removes each VMX machine configuration object.

REMARKS
 For more information, type: "get-help Remove-VMXMachineConfig -detailed".
 For technical information, type: "get-help Remove-VMXMachineConfig -full".

10
image1.gif
¥ Windows Server System

