Filename: UsingRSwithSAPNetWeaver.doc
3

[image: image1.png]Microsoft*

SQL Server 2005

Using SQL Server 2005 Reporting Services with SAP NetWeaver Business Intelligence

SQL Server Technical Article

Writers: Richard Mao, Simba Technologies
Technical Reviewer: Brian Welcker
Project Editor: Jeannine Takaki
Designer: Richard Mao
Published: April 2006
Applies To: SQL Server 2005 SP1

Summary: This paper discusses the integration of SAP NetWeaver Business Intelligence (BI) with SQL Server 2005 Reporting Services Service Pack 1. The paper provides an overview of using the data provider and query designer to build high quality reports on SAP NetWeaver BI sources. For Reporting Services users who are new to working with SAP NetWeaver BI, this paper will help you get up and running quickly. For users already familiar with SAP NetWeaver, the paper will show how some of that system’s notable features can be leveraged in Reporting Services reports. It also presents some tips and tricks that can help you make the most of the integration between the two products.
Copyright

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

 2006 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server 2005, Reporting Services, and Analysis Services are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Introduction

1Prerequisites

1Installation Overview

2SAP NetWeaver BI Terms and Concepts

2Metadata Objects

2QueryCubes and InfoProviders

3Variables

6Tips and Tricks

6Testing the SAP BW XML/A Provider with Internet Explorer

6Enabling a QueryCube for XML/A Access

7Specifying Additional SAP Login Parameters (Client and Language)

7Setting Up Your System for Secure Communications

8Network Debugging and Transport Compression

8MDX Debugging on the SAP BW System

8Working with Properties

10Assigning Variable Values Without Using Report Parameters

11Populating Report Parameter Values

13Populating Parameters using Values from a Multilevel Hierarchy Node

17Specifying Value Ranges through Report Parameters

18Technical Details

18XML for Analysis and SAP BW

18Flattened Rowsets and Cell Properties

18Transport Compression

18Authentication Security

19Troubleshooting

20Conclusion

20References

20Acknowledgements

Introduction

Through a rich extensibility model, the report authoring and report deployment features of SQL Server Reporting Services 2005 can integrate with any number of business intelligence data sources. To answer the strong need for a rich reporting tool for SAP NetWeaver BI and to bridge the gap between these two powerful business intelligence platforms, Microsoft has developed a new .NET Data Provider and Query Designer for SAP NetWeaver Business Intelligence. SAP BW users can now take advantage of the flexible, yet easy-to-use reporting capabilities of Reporting Services without migrating their data to another platform. Report authoring is performed in the familiar and easy-to-use Business Intelligence Development Studio, using a custom-built query designer, and deployment is a simple one-step process that targets the Web as the reporting platform. Report distribution is now as simple as distributing a hyperlink. It has never been easier to get your important SAP business intelligence to the people who need it.

Prerequisites

In order to use the provider, the following components must be installed:

· Microsoft SQL Server Reporting Services 2005 Service Pack 1

· Microsoft .NET Framework 2.0

The provider has been developed for and tested against SAP BW 3.5. However, the provider should also be compatible with BW 3.1 and BW 3.0B servers that have been patched to a sufficient service pack level, described below.
· Support Package 30 for SAP BW 3.0B

· Support Package 24 for SAP BW 3.1

· Support Package 16 for SAP BW 3.5

· Support Package 6 for SAP NetWeaver 2004s (BW 7.0)

The Troubleshooting section describes some of the known issues when you use the provider against a BW server that does not have a sufficient service pack level.

Installation Overview

The assemblies required to use this provider are installed together with Service Pack 1 (SP1) in two separate locations: one location for the design environment (Business Intelligence Development Studio), and another for the run-time environment (Report Server). Setup for SP1 copies the files to the correct locations for each installed environment. Setup will install to both locations if both the run-time and design environments are on the same computer. If only of these environments is installed when you set up SP1, but subsequently install the other environment, you must rerun SP1 Setup to install the required assemblies for the newly added environment.

After the provider has been installed, you must register the provider with each environment in which it will be used. For the design environment, you must modify the file RSReportDesigner.config, located in <drive>:\Program Files\Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies. For the run-time environment, you must modify the file RSReportServer.config, located in <drive>:\Program Files\Microsoft SQL Server\MSSQL.n\Reporting Services\ReportServer. Please refer to the SQL Server 2005 Service Pack 1 Books Online for configuration details.

SAP NetWeaver BI Terms and Concepts

SAP BW multidimensional database terminology and concepts are similar but not identical to SQL Server Analysis Services (SSAS) terminology. The subtle differences warrant some clarification before continuing.

Metadata Objects

Some SAP BW terms for MDX metadata objects align exactly with the SSAS terminology. Members are members, levels are levels and hierarchies are hierarchies. There are just enough differences, however,, to confuse the unwary. For example, in the SAP BW universe, dimensions are called characteristics. Characteristics may belong to a logical grouping, which on the SAP BW system is called a Dimension, but this grouping is not exposed through the OLAP view and is not manipulated through MDX. Therefore, to MDX users, SAP BW characteristics and MDX dimensions are equivalent. Another notable difference in nomenclature relates to a cube’s measures. In the SAP BW world, measures are often referred to as key figures. Although you can generally consider them equivalent, the SAP MDX syntax parser refers to them as measures. This paper uses the SAP BW terminology as much as possible.

QueryCubes and InfoProviders

SAP BW includes Business Explorer Analyzer (typically abbreviated as “BEx Analyzer”) as a reporting tool and Business Explorer Query Designer as a report-authoring tool. SAP BW data objects that can be reported against are called InfoProviders. You use Business Explorer Query Designer to build a query based on an InfoProvider before you can view the information in BEx Analyzer. The query represents some subset of the InfoProvider that it is built upon, and retains its multidimensional structure. A query is also frequently referred to as a QueryCube.

The Microsoft .NET Data Provider 1.0 for SAP NetWeaver BI communicates with SAP BW by using XML for Analysis (XML/A), which makes some InfoProviders available directly. XML/A provides direct access to QueryCubes and also to InfoCubes and MultiProviders. InfoCubes are the native multidimensional data structure in SAP BW. MultiProviders are InfoProviders that consolidate data from multiple InfoProviders. ODS Objects are not accessible directly from XML/A; to use an ODS Object, you must create a QueryCube on the ODS Object. The QueryCube must also be configured for access from XML/A.

InfoProviders that can be accessed directly always have a cube name that starts with the dollar sign ($) character: for example, $0D_DECU. QueryCube names always consist of the InfoProvider that it was built upon, followed by a forward slash and the query name. For example, a query QUERYCUBE1 built on the InfoCube $0D_DECU would be named [0D_DECU/QUERYCUBE1].

In the SAP BW system, the OLAP concept of a catalog corresponds to the parent InfoProvider for QueryCubes. That is, a QueryCube always belongs to a catalog named after the parent InfoProvider. In the previous example, the QueryCube [0D_DECU/QUERYCUBE1] would be found in a catalog named 0D_DECU. Raw InfoProviders that are accessed directly and that have no parent InfoProvider are grouped into a pseudo-catalog named $INFOCUBES. This hierarchy is reflected in the Cube Selection dialog box of the query designer, as shown in Figure 4. The dialog box displays the friendly names of the cubes and catalogs; the technical names are displayed in tooltips and can be viewed by pausing your mouse on the friendly name.

[image: image2.png](8 cute sclection B R 1)

Selecta cube from th follwng lt, Changigthe cube romthe
Cument selection conchanga the query-

1%, 5o Democibe &
512, Demo S Dasegno Campany Sales Dt
12, 54P Demo Scenaro DaSegro Company Lost Deds.

512, 54PDemno: Calsegrn Conpany Repotn Cube
512 Pomediactd onparson cderteral Ve
1, Pachszngosta

Puchasig Ovrven

Auhacaton VandleTest -Benchmak

Authorcaton anibe Testo01

Purchase Order, GR o I Voo (0065)

12, 540 Demo e o Dnbuton: Overvien
G 1f, Pachasmatsta
1% 50 Matetnshis =l

[]

Figure 1: Cube Selection dialog box
Variables

SAP variables are a way of parameterzing a QueryCube that is similar to the parameter feature of Analysis Services 2005. Both allow the parameterization of MDX query results outside the standard MDX syntax. Analysis Services parameters operate by parameterizing the MDX queries, whereas SAP variables parameterize the QueryCube itself. This results in some key differences:

· SAP variables are defined at the data source in the QueryCube itself. You can define variables by using BEx Query Designer. Analysis Services 2005 does not require any server side configuration to enable parameters.

· Because SAP variables can exist only in QueryCubes, only queries on QueryCubes can be parameterized. Queries on InfoProviders cannot be parameterized. In contrast, Analysis Services parameters are added to the MDX queries themselves, using the at sign (@) reserved for variable names; therefore, there are no limitations on the cubes for which parameterized queries can be created.

· SAP variable values are specified in a proprietary MDX clause appended to the original query. Analysis Services parameter values are passed separately from the MDX query, and are evaluated at the server.

The Microsoft .NET Data Provider 1.0 for SAP NetWeaver BI uses variables by mapping them to query parameters. The provider takes the parameter value specified by the user and modifies the query to assign the value to the corresponding variable.

When you open a QueryCube for which a variable has been defined, the Variables dialog box is enabled. This dialog box lists all the variables that have been defined, and lets you assign a default value to each variable. When you assign a value to a variable, the provider automatically generates a corresponding report parameter. However, unlike the parameter feature for Analysis Services, a list of available values is not generated for the report parameter. To manually define a list of values, follow the instructions in the section of this paper on Populating Report Parameter Values.

Several variable types are supported. The Variables dialog box provides a different selection control for each variable type.

	Variable Type
	Description
	Icon
	Selection Control

	Hierarchy variables
	Hierarchy variables accept hierarchies as valid values. Hierarchy variable values can affect the calculation of Customer Exit Variables that use them.
	
[image: image3.png]

	Hierarchy list box:

[image: image4.png]Default

7 Materialeroun
7 MaterilGroup2
2 MaterialGroup

	Formula variables
	Formula variables are used to affect calculated key figures. Formula variables accept numeric values that are used in the calculations.
	
[image: image5.png]

	Text box:

[image: image6.png]

	Member variables (single value)
	Member variables can be assigned values from the set of members of a dimension. If the parent hierarchy of the member variable is the default hierarchy, the variable is called a Characteristic variable. If the parent hierarchy of the variable is one of the alternate hierarchies, it is called a Hierarchy Node variable. Member variables can accept as valid values the members from their parent hierarchy. For Hierarchy Node variables, this includes all the non-leaf nodes.

When you use a Member variable, it has the same effect as specifying a member for the slicer axis of your MDX query.
	
[image: image7.png]

	Single-select tree view:

[image: image8.png][ocurRencCY] [usD]

EXX]
@ ADP
@ #ED S
@ AFA
@ AL
@ AMD
@ NG
@ A0
@ AOR
@ #RS
@ aTS
@ A
@ AWG
@ azm A

ok Cancel

	Member variables (multiple value):
	Multiple-value member variables are the same as Member variables, but they can accept one or more values.
	
[image: image9.png]

	Multi-select tree view:

[image: image10.png]I

=X
Oo:
‘-”
12
0o 14
e+

ok Cancel

	Member variables (interval value):
	Interval-value member variables are the same as member variables, but they can accept a range of values. If the second value is less than the first value, the selected range is empty.
	
[image: image11.png]

	Range tree view:

[image: image12.png]

Table 1: Variables dialog box
Note The Variables dialog box tries to list all the possible values for a particular variable. If a variable is built upon a very large hierarchy, retrieving the list of values could take a very long time. When the number of values is too large, the dialog box will not populate the list, and instead opens a text box for you to manually enter a variable value.

Tips and Tricks

This section provides some techniques for working with features of the Microsoft .NET Data Provider 1.0 for SAP NetWeaver Business Intelligence.

Testing the SAP BW XML/A Provider with Internet Explorer

A quick way to verify that the SAP BW XML/A Provider has been configured correctly and that you have access to SAP data is to use Internet Explorer to open the XML/A provider’s URL. If you successfully connect to the provider, you should see the Web service’s XML description, similar to Figure 2.

[image: image13.png]

Figure 2: Testing the SAP BW XML/A provider by using Internet Explorer
Enabling a QueryCube for XML/A Access

For a QueryCube to be visible through the SAP BW XML/A interface, the QueryCube must be configured to enable external access (outsi outsideBW). Follow these steps to enable remote access to the QueryCube:

1. Open the BEx Query Designer.
2. In the Query Properties dialog box, click the Extended tab.

3. Select the Allow External Access to this Query check box, and then click OK.

[image: image14.png]ST
Geret | D | Etended|

leae for OLE D8
Vit g OLE DB 0 0LAP 0030 s e st You
S e

@ i

[— o] o

Figure 3: Configuring a QueryCube for external access

Specifying Additional SAP Login Parameters (Client and Language)

SAP BW can accept a client number and a language as login parameters. To specify these parameters for your data source, you can embed them directly in your connection URL, as shown in this example:

Data Source=http://sap8:8000/sap/bw/xml/soap/xmla?sap-client=
100&sap-language=EN
If you do not specify the client number or language, the server will use the defaults that were configured on the server. The sap-language parameter can accept a one-character SAP language specification or a two-character ISO 639 language specification.

Note: SAP BW also allows credentials to be submitted by using the parameters sap-user and sap-password in the URL. However, you should not configure your datasets to pass credentials to the server by this method, because the string will be stored unencrypted in the report (.RDL) file.

Setting Up Your System for Secure Communications

We strongly recommend that SSL connections be used for all communications between Reporting Services and a SAP BW server. To use SSL, your SAP BW server must be configured to accept HTTPS connections, and you must use “https” in the connection string for your data source.

Note By default, the SAP Web server configures the SSL connections to use a different port than the non-SSL connections. Make sure that you have specified the correct port number for SSL in your connection string.

All computers that use the SSL data source must have a client certificate installed. This includes the Report Server and computers used by the report authors to design reports using Reporting Services in Business Intelligence Development Studio. Report users who access reports through the Web do not need to have a SAP BW certificate installed. To install a certificate on a client computer, follow these steps:

1. Open Internet Explorer and type the URL that points to the XML/A SSL service for your SAP BW server. For example, https://sap8:8000/sap/bw/xml/soap/xmla.

2. Click Go to access the site that hosts the Web service. If a certificate has not been installed, the Security Alert dialog box appears.

3. In the Security Alert dialog box, click View Certificate.

4. In the Certificate dialog box, click the General tab, and then click Install Certificate.

5. Follow the steps of the Certificate Import Wizard. The default options are usually acceptable.

After the certificate has been installed, the computer should be able to access the SSL data source.

Network Debugging and Transport Compression

Sometimes it can be useful to examine the raw XML communications by using a network tracer or protocol analyzer. To disable transport compression so that the XML is readable, add this key-value pair to your connection string: Transport Compression=None. When doing this kind of testing, you will typically need to use a non-SSL connection; therefore, make sure that you are on a secure network or that you log on using an account that has the minimum required privileges.

MDX Debugging on the SAP BW System

Advanced users may be interested in testing raw MDX queries directly on the SAP BW system. This is especially useful if your query is not executing correctly. Running the query directly on the server can help to isolate the source of the problem. When you use the SAP GUI, use the transaction MDXTEST to display an MDX editor that will let you execute raw MDX queries and view the results. This bypasses the XML/A interface and submits the MDX queries directly to the server.

Working with Properties

When you add a node to a query, the query builder generates an MDX statement that requests not only the default property (the one displayed in the data preview), but also some additional properties. For key figures, the default property is the raw numeric value; however, the formatted value of the property is also available, and also the formatted string representation of the property. For dimension members, the default property is the user-friendly caption, but you can also use the member’s unique name property.

The following cell properties are available for key figures:

· VALUE (Default)

· FORMATTED_VALUE

· FORMAT_STRING

· BACK_COLOR

· FORE_COLOR

The following metadata properties are available for dimensions:

· MEMBER_CAPTION (Default)

· MEMBER_UNIQUE_NAME

When you arrange the fields on a report in the layout tab of the Report Designer, you can include a field in the report by dragging it to the layout surface. By default, the field’s Value property is added to the report. To use one of the other properties, you can edit the expression of the text box to reference one of the other properties by using the Fields!FieldName.PropertyName syntax as shown in Figure 4.

[image: image15.png]

Figure 4: Specifying alternate properties during report layout
In addition to the properties that were mentioned earlier, some dimensions have additional dimension-specific properties that are defined in SAP BW. These additional properties appear as nodes under the Member Properties folder in the metadata tree view. To make these properties available in a report, drag the node onto the design surface. Figure 5 illustrates the query designer after the Name property of the Material group has been added to the query.

[image: image16.png]it
HE
T

o

Figure 5: Including a member property in a query

To use the property that you have just added in your report, modify the expression in the text box on the layout surface to use the Fields!FieldName(“PropertyName”) syntax as shown in Figure 6.

[image: image17.png]

Figure 6: Specifying a Member property during layout

You can also manually create a field to represent one of these properties. To do this, in the Datasets pane, right-click your dataset, and then click Add. In the Add New Field dialog box, type a name for the new field and select the Calculated field option. Type an expression that defines the field in the text box, or click the Expression Builder button to build an expression. Figure 7 shows a field that references the same property as the one in Figure 6, but in Figure 7, the technical name has been used in the field definition. A property can be accessed by using its friendly name or its technical name.

[image: image18.png]e

[aters_Level_o1_piateraGoptiane

" patabase il

—

& coeated il

T |
N)

Figure 7: Adding a new property field
After you have created the field, you can include it in a report by dragging it onto the report layout.

Assigning Variable Values Without Using Report Parameters

When you assign a value to a variable, the query designer automatically parameterizes your report based on this variable. You may find that for a particular report you want to assign a static value to the variable, instead of giving the report user the ability to change the value. To do this, assign a value to the variable, and then open the Report Parameters dialog box and select the corresponding report parameter. Select the Internal option for the report parameter, and then select the Allow null value option, as shown in Figure 8. In the Default values group, select Null as the default value. Click OK to close the Report Parameters dialog box.

By doing this, you disable the report parameter, forcing it to use the variable value that you originally specified when you created the variable in the Variables dialog box. The user will not be given the option to specify a value for this parameter.

[image: image19.png]

Figure 8: Disabling a report parameter
Populating Report Parameter Values

By using report parameters in Reporting Services, you can specify a set of values for the users to choose from when the report runs. It is a good idea to set up a list of possible values for parameters, because it will greatly improve the usability of your report for users. You can enter the set of possible parameter values manually, by using the Non-queried option, or you can set up the report to query the server for a list of possible values. The following procedure shows how to populate a list of values by using a query. It assumes that you are working with a QueryCube that already has a variable defined.

6. Click Variables to open the Variables dialog box.

7. Assign a default value to the variable, and then click Ok. This causes a corresponding report parameter to be generated.

8. In the Dataset drop-down list, select <New Dataset…> to open the Dataset dialog box.

9. Select the same data source as your original dataset. Give the dataset a descriptive name, such as “VAR1_ParameterValues”.
10. In the Metadata pane, click the cube that contains the parent hierarchy of the variable you are configuring. This is usually the same cube as the one in your original dataset.

11. Drag the parent hierarchy onto the Design surface.

12. Click Refresh Fields to populate the dataset field list. You should see a field or fields corresponding to the hierarchy that you just added. The fields appear in the datasets pane under the new dataset, as shown in Figure 9.

[image: image20.png]

Figure 9: Building a query for a report parameter
13. Right-click the new dataset and then click Add. You will be creating a new field for each hierarchy member that contains the unique name of the member. The variables will be assigned values based on the technical names of the members.

14. In the Add New Field dialog box, specify the UniqueName property as the calculated field value for your new field. An example is shown in Figure 10.

[image: image21.png]tme:

[rordor tovel o1 uristiome

) atsbase ikt

© alaated fied:

o —
o | o | wo |
L

Figure 10: Creating a unique name field

15. On the Report menu, select Report Parameters to open the Report Parameters dialog box.

16. In the Available values section, select the new dataset from the Dataset drop-down list. In the Value field text box, select the unique name field that you just created. In the Label field, select the original field name, as shown in Figure 11.

17. Click OK to close the dialog box.

[image: image22.png]

Figure 11: Populating the available values from a dataset

The report user will now have a drop-down list populated with the possible values for the report parameter. Figure 12 shows the drop-down list in the preview screen of Business Intelligence Development Studio. This same drop-down list will be available to users when they view the report.

[image: image23.png]

Figure 12: Report parameter populated with values from a query

Populating Parameters using Values from a Multilevel Hierarchy Node
In the previous procedure, the set of report parameter values can be populated only from one field in the dataset. However, within a dataset, the members of different levels of a hierarchy always appear in separate columns and therefore in separate fields. This is a by-product of the flattening algorithm defined in the OLE DB for OLAP specification. So how can we populate the values for a variable with members from different levels of a hierarchy if the values from different levels always appear in separate fields? In SAP BW, Hierarchy Node variables can accept values from any level of the hierarchy.
The solution is to modify the MDX statement so that the aggregated “All” values from the parent level are included in the result column, and then use Reporting Services functions to select the correct value. In this section, you will step through the process for creating a parameter set for a multilevel hierarchy.
To understand this technique, you must understand the basic function of the flattening algorithm. Assuming only a single dimension property and a single hierarchy on the axes other than axis-0, the flattening algorithm specifies that there will be a column for each level of the hierarchy, starting from the top of the hierarchy down to the level closest to the leaf. However, the default query that is produced by the query designer when you drag a hierarchy to the design pane selects all members from the lowest leaf level only. The following MDX statement represents the default query that was created by dragging the hierarchy to the deign surface:
SELECT

NON EMPTY {[Measures].[1MEHY2C418T0QYBP2KX9KQBG6]} ON COLUMNS,

NON EMPTY {[0D_COUNTRY PM_COUNTRY].[LEVEL02].ALLMEMBERS

}

DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON ROWS

FROM [0D_PU_C01/ZD_PU_C01_VAR1] CELL PROPERTIES VALUE

Note Due to an issue in the SAP implementation of the ReturnCellProperty XML/A property, you must reference at least one measure, even if you intend to ignore these values.
In the sample query, the result set returned contains one column for each non-ALL level of the hierarchy, down to the lowest specified level, as shown in Figure 13.

[image: image24.png]P Country LevelDi_|_PM_ Country Level 02

EUROPE. Germany.
EUROPE. France
EUROPE. England
ERICA usa

aeRICA Canada

Figure 13: Result set from a default hierarchy query

Now, switch to MDX mode and modify the query so that “All” members are included. Instead of selecting just the members from the leaf level, modify the MDX statement to select all members from the entire hierarchy.

SELECT

NON EMPTY {[Measures].[1MEHY2C418T0QYBP2KX9KQBG6]} ON COLUMNS,

NON EMPTY {[0D_COUNTRY PM_COUNTRY].ALLMEMBERS}

DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON ROWS

FROM [0D_PU_C01/ZD_PU_C01_VAR1] CELL PROPERTIES VALUE

The result set for this query is shown in ​Figure 14. The blank entries in the leaf column (PM_CountryLevel02) represent the “All” members, which are aggregate values for the parent level. Of these blank entries, the first row, which contains two blanks, is the ALL member for the entire hierarchy. The second row has EUROPE in the first column and a blank in the leaf column, and is the member representing “All” for Europe. The sixth row has AMERICA in the first column and a blank in the leaf column, and represents “All” for America. This dataset gives us a separate row for all the members of the hierarchy that we want to make available as possible values for our Hierarchy Node variable.

[image: image25.png]EUROPE.
EUROPE.
EvROPE.
EUROPE.
vERICA
AveRICA
AvERICA

Germeny.
France
Engand

s
Canada

​Figure 14: Result set including All members

Next, we will create some fields that consolidate all the required information. First, create a label field.
1. Right-click the parameter dataset in the dataset window and then click Add.
2. In the Add Field dialog box, type a descriptive name for the field: for example, PM_COUNTRY_Parameter_Labels.

3. Select the Calculated field option.
4. Click the Expression Builder button in the Value text box to create an expression that selects the value from the level-2 column if it is non-blank, and otherwise selects the value from the level-1 column. To do this, use the Reporting Services IIf function:

=IIf(Fields!PM_Country_Level_02.Value = "",
Fields!PM_Country_Level_01.Value, Fields!PM_Country_Level_02.Value)

5. Click OK.

6. Follow steps 1-3 to create a field that consolidates all the unique names for our Value field.
7. In the Value text box, type the following formula:

=IIf(Fields!PM_Country_Level_02.Value = "",
Fields!PM_Country_Level_01.UniqueName,
Fields!PM_Country_Level_02.UniqueName)

8. Open the Report Parameter dialog box.

9. In the Available Values group, assign the Value field and Label field to these composite fields, as shown in Figure 15.

[image: image26.png](7SS &

ey e
| D—
T eee—
Flamm T s
o PO
e
Chugers oon.
e —
o i
G
i
i
C tecasd i
| e ared
= S

Figure 15: Assigning report parameter values using consolidated fields

The report user can now select values from different levels of the hierarchy. For example, in Figure 16, the drop-down list contains nodes from the continent level (EUROPE, AMERICA) and also nodes from the country level (Germany, France, USA).

[image: image27.png]

Figure 16: Parameter selection list populated from separate levels of a hierarchy

You can extend this method to a hierarchy with more levels. To do this, in the calculated field expression, nest multiple IIf statements to cover each level that you’re interested in.

This method is applicable when you want the selection list to include all levels down to the leaf level. However, if you want selections only from some higher levels, you must modify the MDX statement; otherwise, your selection list will contain duplicate values. Instead of selecting all the members from the entire dimension, use the MDX function DRILLDOWNLEVEL to drill to the level you want. Start from the highest level you are interested in, and drill down to the lowest level that you want. The following example of an MDX statement shows how to drill down twice from level 1, to obtain all the members from level 1 down to level 3.

SELECT

NON EMPTY {[Measures].[57FQA4HFVVTQPYLPVV4RP673N] } ON COLUMNS,

NON EMPTY {DRILLDOWNLEVEL(DRILLDOWNLEVEL([0D_DBSIC1
BRANCHE SIC_HIERARCHIE].[LEVEL01].ALLMEMBERS))}

DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON ROWS

FROM [0D_DX_C02/Z_DX_TEST] CELL PROPERTIES VALUE

The resulting rowset looks like the one in Figure 17.

[image: image28.png]ind SectorSicL. | id SectorSiCeveloz | ind. SecturSiCiovelus
Aot frs

Dot fors.. b, vty s
Bt fors.._ arehodredutin.- acps

P fors,. Aorehaaloedion cups | o rodton - cops
At fore.. sgpehsairoduton-arps | Whtfam.
Boreiurs fors.. | Areddxion s Reotam

Doretie fores.._ sipehsalpoduton-arps | Camtarn

By fors.. Agpebsaloaxton-artps | Soybonrarn
Aoreiire o, pehsdlpodsion-arps | Cashgransorn
By .. Agrehwsroduton s Catntam,
Aoreire fors.. oresalpedion-crps | Tobcefrm
Bt fores.._ Aareharodution-cups Sy g bt
oo fos.. Aorehsaloodxon aups | shomaoram
Barcbue fors.. Archadiroduton-aeps | Felicopfar
Ao fos.. opeksaloedxion-aups | Vet
Siretie fores.. sgpehasiprodton-arps | bamycoprm
ot fors.. Aaperarodution-atps Gaps vomyard

‘Ao, fores.. | Aqrcukuraiprodution-arops | Tree it rove

Figure 17: Result Set from drill-down query

You can now define calculated fields in the report to consolidate the values from the different columns, by using the technique described earlier.

Specifying Value Ranges through Report Parameters

As described in the Variables section, you can create variables that take multiple values, or variables that take a range of values. Variables that have been defined as interval variables can accept a range-specifier as a value. In a range-specifier, you define a high and low value, and all the values in between are automatically used as values in the query. If you want the user to be able to specify a range of values, you must also specify that your report parameter is a multi-value parameter. To create a multi-value parameter, in the Report Parameters dialog box, select the Multi-value option.

If the provider receives multiple values for a variable that has been defined as an interval variable, it will take the first two values as the low and high range-specifiers respectively. If the provider receives a single value, only that value will be passed to the variable.

To define a variable as an interval variable, open the SAP BW Variables Wizard or the BEx Query Designer. In the SAP BW Variables Editor dialog box, select Interval as the value in the Variable Represents list.

Note Another type of variable, a Selection Option variable, can accept any combination of multiple ranges and single values. There is currently no way to let users specify a complex variable value by using the Microsoft .NET Data Provider 1.0 for SAP NetWeaver Business Intelligence. If multiple values are specified for this kind of variable, they will always be treated as multiple single values, not as range-specifiers.

Technical Details

This section discusses some of the technical details behind the Microsoft .NET Data Provider 1.0 for SAP NetWeaver Business Intelligence.

XML for Analysis and SAP BW

The Microsoft .NET Data Provider 1.0 for SAP NetWeaver BI communicates with SAP BW servers by using the XML for Analysis 1.1 (XML/A) protocol. XML/A is an XML standard for Online Analytical Processing (OLAP) using standard Internet protocols. XML/A was built on the OLE DB for OLAP (ODBO) specification and therefore contains many similar interfaces, structures and concepts. Support for XML/A is built into SAP BW but a given server must be configured to use this feature.

Flattened Rowsets and Cell Properties

Reporting Services processes all data from the flattened rowset of the results. This provides many performance benefits because of the way these rowsets are processed. The original algorithm for generating a flattened rowset was defined in the ODBO specification. However, this algorithm did not provide any support for cell properties. The specification was never clear about which cell property to return for the key figures, and it was essentially up to each implementer to decide on the appropriate value to return. In the SAP ODBO provider and in SAP BW’s original XML/A provider, the flattened rowset returns the formatted string value for each key figure. As of SAP BW Service Pack 16, the XML/A provider supports a new XML/A property called ReturnCellProperties. The Microsoft .NET Data Provider 1.0 for SAP NetWeaver BI sets this property to true, which causes the SAP BW XML/A provider to process the MDX CELL PROPERTIES clause and return all the properties listed. The key figure column names consist of the key figure concatenated with the property name. If you are connecting to an SAP BW server that is at a patch level before SP16, these additional CELL properties will not be processed; therefore, you will be able to access only the formatted value of each key figure. (See the Troubleshooting section for discussion of a related issue.)

Transport Compression

XML’s character-based format makes it easy to read but can result in high network bandwidth usage compared to binary protocols. Fortunately, the textual nature of XML also makes it an ideal candidate for compression. By default, the Microsoft .NET Data Provider 1.0 for SAP NetWeaver BI uses GZIP compression when communicating with the SAP BW server. This significantly reduces the required bandwidth and noticeably improves performance. You can disable transport compression as described in the earlier section of this paper, in Network Debugging and Transport Compression.

Authentication Security

The Microsoft .NET Data Provider 1.0 for SAP NetWeaver BI transmits credential information using HTTP basic authentication. Therefore, we strongly recommend that you use only secure SSL connections for communications with the SAP BW server. For information about how to configure your report server and client computers to use SSL, see the Tips and Tricks section here.

Troubleshooting

This section describes some common problems that you may experience when using the Microsoft .NET Data Provider 1.0 for SAP NetWeaver Business Intelligence.

When I try to view a report, the report server gives the message:

“An attempt has been made to use a data extension 'SAPBW' that is not registered for this report server.”

This error indicates that your report server has not been configured correctly. Please see the Installation Overview section for information on registering the provider with the report server.

The metadata tree view displays an error node with the message:

“Error occurred retrieving child nodes: Guid should contain 32 digits with 4 dashes (xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx).”

This is a known issue with SAP BW 3.5 servers at service pack level 15 (SAP Note reference: 893807). To resolve, upgrade your SAP BW server to service pack level 16 or later.

I cannot perform arithmetic operations on my key figure data because the values are being returned as formatted strings.

The XML/A property ReturnCellProperties allows the format of the cell data to be specified by using the CELL PROPERTIES MDX clause. Support for this property was added as of service pack level 16 (SAP Note reference: 895234). After this service pack is applied, the default values returned to the extension are raw numeric values. However, you can still access the formatted value property by using the FormattedValue method in Reporting Services.

Queries that reference multiple dimensions are failing on the server.

There is a known issue with BW3.5 SP11 and SP12 that causes the server to process cross-joins in a memory inefficient manner. Therefore, queries with large cross-joins may fail when the server runs out of memory. This issue has been corrected as of SP13 (SAP Note reference: 836849).

In MDX Mode, my query has at least one axis, and my first axis contains an empty set. However, I am getting the error message “The query cannot be prepared: The query must have at least one axis. The first axis of the query should not have multiple hierarchies, nor should it reference any dimension other than the Measures dimension”.

This is caused by an issue with the way SAP BW handles queries that do not reference the Measures dimension. This issue may be resolved in a future service pack. In the meantime, you should always reference at least one measure in your first axis.

Conclusion

This paper has provided a broad look at the features in the new Microsoft .NET Data Provider 1.0 for SAP NetWeaver Business Intelligence. The paper presented step-by-step directions on how to use the provider, together with Reporting Services in Business Intelligence Development Studio, for basic reporting functionality. This paper also provided detailed instructions on how to use some of the more advanced features in SAP BW, such as SAP variables. SQL Server Reporting Services aims to provide a solution for all your reporting needs. Now this solution extends to SAP NetWeaver BI data sources.

References

This section lists sites on the Web where you can find more information about the topics discussed in this paper.

· SQL Server Reporting Services home page: http://www.microsoft.com/sql/reporting/default.asp

· SQL Server Reporting Services Report Packs: http://www.microsoft.com/downloads/details.aspx?FamilyId=D81722CE-408C-4FB6-A429-2A7ECD62F674&displaylang=en

· SQL Server Reporting Services Books Online: http://msdn2.microsoft.com/en-us/library/ms159106(SQL.90).aspx

· XML/A Specification: http://www.xmla.org

· XML for Analysis information: http://www.xmlforanalysis.com/

· SAP Business Information Warehouse: http://help.sap.com/saphelp_nw04/helpdata/en/e3/e60138fede083de10000009b38f8cf/frameset.htm

· ODBO flattening algorithm: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm/olapflattening_algorithm.asp?frame=true

Acknowledgements

Thanks to Brian Welcker, Jerry Povse, Albert Yen, Bill Faison, Lev Semenets, Cristoph Schuler, Jock Williams, Hermann Daeubler, Stefan Beidenstein, George Chow, Darryl Eckstein and everyone else at Microsoft, SAP and Simba Technologies who helped along the way.

For more information:

http://www.microsoft.com/technet/prodtechnol/sql/2005/technologies/rptsvcs.mspx
Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5 (excellent), how would you rate this paper?

_1203255611

_1203256203

_1203257306

_1203257473

_1203257667

_1203257071

_1203256510

_1203256071

_1203255794

_1203254336

_1203255272

_1203254837

_1202049046

_1202049258

_1202048875

_1188390752

_1202048825

_1188391086

_1188390493

