Filename: SQL2005DTA.doc
3

[image: image1.png]Microsoft*

SQL Server 2005

Database Engine Tuning Advisor (DTA) in SQL Server 2005
SQL Server Technical Article

Writers: Sanjay Agrawal, Surajit Chaudhuri, Raja Duddupudi, Lubor Kollar, Arun Marathe, Vivek Narasayya, Manoj Syamala
Technical Reviewers: Eric Hanson, Shu J Scott
Published: September 2006
Applies To: SQL Server 2005

Summary: Database administrators in enterprises today face the challenging task of determining an appropriate physical design that consists of partitioned tables, indexes, and indexed views and that both optimizes server performance and is easy to manage. Database Engine Tuning Advisor (DTA) in Microsoft SQL Server 2005 can assist in this task. Given a workload of SQL queries and updates, DTA recommends an appropriate physical design, and generates a script to implement the recommended physical design. For more advanced database administrators, DTA exposes a powerful mechanism to perform efficient exploratory what-if analysis of different physical design alternatives. DTA can be used against both SQL Server 2005 and SQL Server 2000.
Copyright

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
© 2006 Microsoft Corporation. All rights reserved.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

Table of Contents

1Introduction

1Overview of Database Engine Tuning Advisor

2DTA Usage Scenarios

3Troubleshooting the performance of a problem query

4Tuning a workload of queries and updates

4Performing what-if exploratory analysis

4Tuning a production server

5Incorporating aligned partitioning requirements for manageability

5Managing storage space

6Tuning a SQL Server 2000 installation

6Recommendations for online indexes

6Using DTA as a helper by a third-party tuning tool

6DTA Architecture

8DTA compared to the “missing indexes” feature in SQL Server 2005

9Frequently Asked Questions (FAQ)

11Conclusion

Introduction

Microsoft® SQL Server™ supports a number of physical design options: heaps, indexes (single- or multi-columned, clustered or nonclustered), and indexed views. In Microsoft SQL Server 2005, the new partitioning feature allows each of these structures to be horizontally range partitioned in different ways. For database administrators (DBAs), this poses the challenging problem of selecting an appropriate physical design for the workload (SQL queries and updates) that executes on the server. Because indexes, indexed views, and partitioning are competing alternatives for speeding up the same query, they interact strongly with one another [1]. This makes selecting a physical design even more complicated. Choosing indexes, indexed views, and partitioning in isolation of one another can result in a poor physical design.
Another complicating factor is that it is the query optimizer component of SQL Server that decides whether or not to use a particular physical design structure when answering a given SQL statement. Therefore, it is important to be consistent with the query optimizer decisions when arriving at a physical design [2].
Finally, manageability is another key requirement that drives physical design decisions in enterprises. Horizontal range partitioning is often used to make database systems easier to manage. If all indexes on a table are partitioned in the same way as the table (that is, they are aligned), many database operations such as per-partition backup/restore and load/removal of data become much easier. Thus, alignment requirements impose new complexity in making the right physical design selection decision.
Overview of Database Engine Tuning Advisor
Database Engine Tuning Advisor (DTA) in Microsoft SQL Server 2005 is a powerful tool that can assist DBAs in selecting an appropriate physical design for a SQL Server installation. DTA replaces and significantly enhances the scope and usability of its predecessor tool, Index Tuning Wizard (ITW), in SQL Server 2000.
DTA can be used to tune an individual SQL statement that is performing poorly, or to tune a large workload of queries and updates. DTA offers assistance both to novice users as well as to experienced DBAs. The simplest use of this tool requires the user to point DTA to one or more databases and to a workload of SQL queries and updates. DTA returns a recommendation, which is a list of suggested physical design changes (for example, create/drop index) for optimizing the performance of the given workload. For more advanced users, DTA exposes several customization options such as:

· Which physical design features to recommend (indexes only, indexes and indexed views, and so on).
· Which tables to tune—only selected tables are tuned.
· Bound on the total storage space that can be consumed by the database(s) inclusive of indexes and indexed views.
· Partitioning options (no partitioning, aligned partitioning for manageability, partitioning purely for performance).
· Control over existing physical design structures, such as to keep all existing structures or to keep all existing clustered indexes.

· The ability to partially specify the physical design (for example, the DBA wants a particular clustered index on a table, but allows DTA to pick other indexes).

DTA is designed to keep the query optimizer “in the loop” when suggesting physical design changes. There are two important benefits of this: (1) if DTA recommends an index for a query, the index, if implemented, will very likely be used by the query optimizer to answer that query, and (2) the DTA recommendation is cost-based. In particular, the design goal is to find the physical design with the lowest optimizer estimated cost for the given workload. Note that if the workload contains insert, update, or delete statements, DTA automatically takes into account the cost of updating the physical design structures.
The following features make DTA very useful for database administrators.
Powerful what-if analysis. DTA provides powerful and efficient what-if analysis capabilities. For example, a DBA may be considering creating an index and would like to know the impact that index would have on the queries and updates. This is easily answered by providing a user-specified physical design as input to DTA (in addition to a workload and one or more databases). DTA performs the analysis without actually materializing the physical design.

Extensive reports and feedback. DTA output is accompanied by a rich set of analysis reports that quantify the estimated impact on the workload if the DTA recommendation is accepted. For example, the reports provide details about: (1) statements where each recommended structure (index, indexed view, and partitioning*) will be used and the expected improvement or slowdown as a result, and (2) which tables/columns of the database are accessed in the workload. DTA also has a tuning log that provides feedback to users about the tuning process itself. Statements in the workload that are ignored by DTA and the underlying reasons are recorded in the tuning log for user review.
Session-based tuning. Tuning in DTA is session-based; each invocation of DTA is stored as a named session. The input/output of each DTA invocation, including reports and the tuning log, is persisted in the MSDB database. This allows the tuning history to be maintained easily. Users can use this information to compare different tuning results over time.
Enterprise-ready performance. DTA has been tested on several large customer databases and application workloads [3] that include stored procedures, views, triggers, temp tables, and more. It has already been used to tune large databases (hundreds of GBs) and large schemas (tens of thousands of tables), as well as large workloads (several million SQL statements). DTA can be invoked with a time bound, which makes it suitable for use in production environments where tuning must be completed within a batch window. DTA can also tune a SQL Server 2000 installation. Due to the robustness, scalability, and user interface (UI) enhancements that have gone into DTA, we recommend that SQL Server 2000 customers use DTA instead of Index Tuning Wizard if DTA is available.

For the interested reader, details of the architecture and algorithms underlying DTA can be found in technical papers available at [4].

DTA Usage Scenarios

This section covers common physical design tuning scenarios, and shows how DTA can be used effectively in these scenarios.

· Troubleshooting the performance of a problem query

· Tuning a workload of queries and updates

· Performing an exploratory what-if analysis
· Tuning a production server

· Incorporating manageability requirements
· Managing storage space
· Tuning a SQL Server 2000 installation
· Recommending online index creation
· Use as a helper by a third-party tuning tool
As discussed previously, a user of DTA must specify both a workload and the databases to tune. This task is common to all scenarios.

· The user can provide the workload in one the following ways:
· From SQL Server Management Studio, select a set of SQL statements and choose Database Engine Tuning Advisor from the Tools menu. This is particularly useful when tuning a single query or a small batch of queries interactively.

· Use a SQL Server Profiler trace stored in a file or table. We recommend using the Tuning template because it captures the right information DTA requires for tuning.

· A file containing SQL statements that are separated using GO.
· An XML input file conforming to the DTA input-output schema is available publicly at [5]. Using this method of input, weights can be assigned to individual statements. This can be useful in tuning a “CEO query,” when certain queries are known to be more important than others. DTA automatically favors physical design that speeds up statements with higher weight.
· The user specifies which databases (and optionally which tables within databases) to tune. DTA can tune multiple databases simultaneously. Note that tuning requires at least database owner privileges on each database being tuned.
Troubleshooting the performance of a problem query
In this scenario, the input workload to DTA is typically only the problem query. Since existing physical design structures (PDS) that are beneficial for other queries should not be dropped in this situation, users should choose the Keep existing PDS tuning option. This ensures that DTA only recommends adding new structures. Often, DBAs do not want to build clustered indexes that are based on only a single query. Thus, a typical usage would be to specify nonclustered indexes or indexed views as the only features to consider adding. It is important to keep in mind that since the workload given to DTA is only a single query, DTA cannot account for the update cost of the indexes it proposes. If the user is concerned about the update cost of indexes, then the workload needs to be augmented with appropriate DML statements.
Tuning a workload of queries and updates
In some cases, the DBA may want to tune the physical design for the mix of queries and updates. In such cases, a typical way to use DTA is to first gather a workload by using SQL Server Profiler (pick the Tuning template). Ideally, the window over which the Profiler trace is gathered should be representative of the queries and updates that are expected to run against the server. An advantage of using the Tuning template is that the trace includes a column called Duration, which captures the time taken to execute each query/update. If the Duration column is present in the Profiler trace, then DTA gives priority to statements with a higher duration.

If you only want to add physical design structures to the database, use the Keep Existing PDS option. On the other hand, if best performance is the main criterion, select the Do not keep existing PDS option. In the latter case, DTA may recommend that the existing PDS be dropped if there are better alternatives. Finally, other intermediate options such as Keep clustered indexes only are also available and may be appropriate in certain situations.
Performing what-if exploratory analysis
Because users can provide their custom physical design as input, DTA offers powerful exploratory analysis of physical design alternatives. Indexes and indexed views, partitioned or not, real or hypothetical can be expressed in XML input. DTA can be used to evaluate a physical design without the need to physically implement the design. For example, a DBA in an enterprise has a large fact table in a data warehouse that needs to be partitioned by time. However, there could be multiple ways to partition the table such as by month or by quarter. Each partitioning method may result in different performance characteristics. DTA can analyze the performance characteristics of the various partitioning alternatives efficiently as the actual repartitioning of data does not take place during the analysis. The DBA can use this to determine the best partitioning method.
Further, one can combine DTA search and what-if functionality to questions such as, “What would be the best set of nonclustered indexes if the clustering index of a particular table is changed to a specific column?” DTA does not change the real clustering of the table nor drop real indexes on the table but pretends the new clustering index exists and finds the best set of nonclustered indexes for the workload assuming the “new” clustered index.
Tuning a production server
DTA has several features that can be used to tune a production server effectively:

· Completing tuning within a user-specified time bound

· Using a test server to offload tuning overhead from a production server without copying the database(s)

Performing time-bound tuning. If business constraints dictate that tuning activities be completed within a batch window, then the DBA can use the DTA time-bound tuning feature to ensure this. DTA tunes the workload incrementally; that is, it reads a few more statements from the workload, tunes them, then reads a few more statements, and so on. Thus, DTA is capable of returning a recommendation even before the entire workload has been consumed. Therefore, DTA shows both the percentage of the workload consumed and the percentage of improvement for the workload consumed thus far. The user can stop DTA at any point, and it will return the best recommendation for the workload consumed until that point.

If the workload is large and cannot be fully consumed by DTA within the specified time bound, the user can take advantage of what-if analysis to evaluate the recommendation given by DTA for the entire workload. The evaluation can give the DBA the confidence that the recommendation given by DTA is indeed appropriate (or not) for the entire workload. Evaluation is typically much faster than tuning and can be done relatively quickly.
Using test servers to tune production servers. In many cases, in addition to the production server, there may be a second server available that has SQL Server 2005 installed (for example, a test server). When pointed to a test server, DTA can significantly reduce the tuning load on the production server by offloading most of the tuning work to test servers. DTA can do this without copying the databases onto the test server (it copies only the necessary metadata). DTA also takes into account the fact that the number of CPUs and amount of memory on the test server may be different from that on the production server. For example, if the test server is less powerful than the production server. DTA ensures that it returns the same recommendation as if the tuning happened directly on the production server.

Incorporating aligned partitioning requirements for manageability

For databases where the partitioning feature of SQL Server 2005 is used, a common scenario is that a particular table is already range partitioned (typically by a date column), and the DBA must ensure that new indexes on that table are partitioned identically (that is, aligned with the table). This is easily achieved in DTA by selecting the Aligned partitioning option under Partitioning Strategy to Employ; and selecting either Keep indexes only or Keep aligned partitioning under Physical Design Structures to Keep in the Database.

Managing storage space

DBAs often need to ensure that the total storage space taken up by the databases, inclusive of indexes and indexed views, on a server stays within a bound. This can be achieved in DTA by using the Define max space for recommendations in the Advanced Options dialog box in the DTA UI, or the –B parameter in the DTA command line, or through an input XML file. If the user specifies a bound, then DTA ensures that, if the DTA recommendation is accepted, the total database size does not exceed the specified bound. Note that DTA does not actually create any physical design structures while tuning, so the bound is enforced using estimated storage space. When the DTA recommendation is implemented, the actual storage taken up by the physical design structures can be different from the estimates. DBAs should therefore verify that the storage space is indeed acceptable.

Another common scenario is that ineffective indexes may accumulate in the system over time. This is particularly likely in ad-hoc decision support environments where multiple indexes and indexed views may be added over a period of time. For example, suppose that the current storage space taken up by the database is 10 GB and the DBA wants to reduce the size to 8 GB. The DTA UI supports an option called Evaluate utilization of existing PDS only, where it does not consider adding any new PDS, but only considers eliminating the PDS that are least effective (for example, PDS that are never used for the queries in the workload). This option can be used along with the storage bound option to achieve the desired goal. (This UI option is equivalent to invoking the DTA command-prompt executable with the -fx option.)

Tuning a SQL Server 2000 installation
Many of the improvements of DTA over the Index Tuning Wizard (ITW) are also available when tuning SQL Server 2000 installations. These include time-bound tuning, a richer set of tuning options, a tuning log for feedback, new analysis reports, scalability and robustness improvements, collation awareness, and others. These improvements address some of the most important issues reported by customers who use ITW. We therefore strongly recommend using DTA instead of ITW to tune SQL Server 2000 installations. Note that some DTA features such as the production/test server scenario, and tuning only with database owner privileges are not available for SQL Server 2000 (the user must be a system administrator to tune SQL Server 2000 databases).

Recommendations for online indexes
Online index creation in SQL Server 2005 can be crucial for 24-hour-a-day, 7-day-a-week operations. DTA can be invoked with the following options to tailor it for these scenarios:

· Recommend only indexes that can be created online. This is useful for strict 24-hour-a-day, 7-day-a-week operations.

· Recommend online indexes if possible. This option is useful when overall performance of the workload against the chosen PDS is more important than high availability but the DBA would like to exploit online operations for improved availability when possible without sacrificing performance.

· Recommend offline index operations only. This is the default, and it ensures the best performance of the index operations themselves. However, data may be unavailable for longer periods than if online operations are used.

Using DTA as a helper by a third-party tuning tool

The input to and output from DTA can be in the form of schema-valid XML input files [5]. This enables third-party tools to be built by using DTA. The tools can use the powerful what-if functionality exposed by DTA to build their custom tuning schemes to arrive at a recommendation. Some tools rewrite Transact-SQL to alternative forms to improve its performance. Using DTA, one can not only easily find the cost of a rewritten workload, but also exploit the DTA tuning capability to get the best physical design for the new workload.
DTA Architecture
The figure in this section describes the architecture of DTA. DTA internally uses the following steps to arrive at physical design recommendations in an efficient manner.
1. The search is limited to groups of interesting tables and columns. These are generated by analyzing the workload.

2. DTA generates candidates that are very good for at least one statement in the input workload. These can be generated by combining (merging) candidate structures. (Merging may be necessary when there are multiple queries in the workload.)
3. DTA picks a subset of the candidates in a cost-based manner in consultation with the SQL Server query optimizer. Column/Table group restriction, candidate selection, merging, and enumeration are algorithmic components that define these steps. More details of these algorithmic components are described in [1] and [6].
DTA internally uses several techniques that greatly enhance scalability of the tuning process:

· Workload compression for large workloads

· Reduced statistics creation that improves scalability for large databases

· Lazy database schema gathering that allows DTA to scale well for large schemas (for example, with thousands of tables)

More details of each of these techniques are described in [3].

The figure also highlights how DTA makes tasks such as iterative tuning easier by taking advantage of the fact that both input and output can be in XML. The user can change the output XML generated by DTA, feed that back as input, and continue the process until the desired recommendation is reached.

[image: image2.png]Exploratory
Analysis

Iterative
Tuning

Tnput in
XL

output in
XL

Microsoft SQL
Server

DTA compared to the “missing indexes” feature in SQL Server 2005
SQL Server 2005 contains a missing indexes feature that is exposed by using three dynamic management views (DMVs), one dynamic management function (DMF), and extensions in XML showplan. For details on missing indexes, see SQL Server 2005 Books Online (http://msdn2.microsoft.com/en-us/library/ms130214.aspx). The following table highlights key differences between DTA and the missing indexes feature.
	Comparison Point
	DTA
	“Missing Indexes”

	Usage
	Client side; invoked by DBA; thorough workload analysis
	Server side; always-on; quick analysis (to keep overhead low)

	UPDATE, INSERT, DELETE factored into analysis
	Yes
	No

	Storage limit factored into analysis
	Yes
	No

	Ordering of columns in index
	Automatically determined in a cost-based manner
	User’s responsibility

	Recommends clustered indexes
	Yes
	No

	Recommends indexed views
	Yes
	No

	Recommends partitioning
	Yes
	No

	Recommendations based on
	Optimizer-estimated query execution costs
	An approximation to optimizer-estimated query execution costs

	Analysis reports (what is the impact of making changes?)
	Yes (15 of them)
	Approximate impact of adding a missing index is reported.

It is noteworthy that even for a single-query workload, recommendations from DTA and missing indexes features can be different because the missing indexes feature recommendation of the key columns of indexes is not order-sensitive whereas DTA recommends a good ordering among them.
In conclusion, missing indexes is a lightweight, always-on feature that can be used to catch and correct indexing blunders, whereas DTA is a tool that performs thorough analysis to correct both indexing blunders and to tune the workload running on a server “as a whole.” As an analogy, think of the missing indexes feature as a back-of-the-envelope calculation, and DTA as a thorough spreadsheet calculation. A useful approach to quick, narrowly targeted tuning is to use the missing index feature to generate candidate indexes and then validate them by using a DTA tuning session. This can help obtain the benefits of both features.
Frequently Asked Questions (FAQ)
Question: DTA tunes my workload and comes back with an estimated improvement of X%. However, after implementing the DTA recommendations and actually executing the workload, I see an improvement in execution time to be less than the X% reported by DTA. Why is this so?

Answer: The numbers reported by DTA are based on query optimizer estimated costs. DTA takes into account all aspects of performance that the query optimizer can model. However the SQL Server query optimizer does not model all aspects of query execution—for example, the impact of indexes on locking behavior. Hence it is possible that the actual improvement in execution time may be different from the DTA estimated improvement.

Question: Tuning produces no recommendations. No statements were tuned. Why does this happen?
Answer: Make sure that the database context to tune the workload has been set correctly (use the Database for workload analysis option in the GUI and –d option in the command-prompt executable dta.exe). The tuning log can be used to identify statements that are ignored by DTA during the analysis. For a detailed discussion on how DTA analyzes the workload and how to set database context , see SQL Server 2005 Books Online (http://msdn2.microsoft.com/en-us/library/ms130214.aspx).

Question: A user is currently tuning a single query. DTA recommends a set of indexes but if accepted, updates would become more expensive. Why does DTA not take that into account?

Answer: When tuning, DTA assumes that the input workload is representative. If you want DTA to take into account the cost of updating indexes, the input workload given to DTA must include the appropriate update statements in addition to the query to tune.

Question: The tuning log contains the message, “statement references only small tables.” What does this mean?

Answer: DTA does not attempt to tune statements where all referenced tables are too small (< 10 pages) because data caching tends to overshadow any benefits of physical design structures. When your tables grow large enough, DTA will tune the statements that reference them.

Question: Does DTA tune stored procedure calls, statements with index hints, statements issued when a trigger fires, and statements submitted using sp_executesql?

Answer: Yes to all of these. Indexes that are mentioned using index hints are treated as “must keep” constraints by DTA.

Question: The user gets an error: “Not enough storage” even though a storage bound was not selected explicitly. Why?
Answer: DTA requires a minimum amount of storage for any recommendation. The minimum amount of storage required is the storage for data and indexes that are used to enforce constraints. The number can vary based on tuning options (which physical design structures to keep). The default storage assumed by DTA is the smaller of 3*raw data size and available disk storage. The user should set the storage value explicitly when this message is returned.

Question: When using a test-production database, the user gets the message, “Error: Could not refresh statistics and table sizes on test server.”

Answer: This happens when statistics could not be created on the database(s) that were created on the test server. Because statistics are crucial for getting the right plans, these errors cause the tuning session to terminate. Users should drop the database(s) on the test server and retry tuning. Note that dropping the database does not result in the loss of any user data, since the database only contains a copy of the metadata from the production database(s).
Question: A user has a large trace file to tune but does not have a continuous window of eight hours to do the tuning on the target server. Can the tuning be paused after two hours and restarted the next night when the server is not busy?

Answer: You cannot currently pause and restart a tuning operation. But there are a couple of workarounds. The test-production server feature in DTA allows a database on a production server to be tuned by offloading most of the tuning load onto a test server. So one alternative is to use this feature and allow DTA to run as long as necessary, while ensuring that the production server does not get heavily loaded due to DTA.
Another alternative is to open the DTA GUI and click the Stop Analysis button in the DTA toolbar (after the batch window of two hours expires). This produces the best recommendation for the workload consumed by DTA so far. Subsequently, evaluate the recommendation returned by DTA for the entire workload by using the DTA what-if analysis capability. The analysis reports shows the impact of the DTA recommendation on the entire workload.

Question: What happened to the Fast, Medium, and Thorough modes of the SQL Server 2000 Index Tuning Wizard?

Answer: There are no options in DTA that directly map to the Fast, Medium, or Thorough modes of the SQL Server 2000 Index Tuning Wizard (ITW). In general, if tuning a server that was running SQL Server 2000 in a particular mode (Fast, Medium, or Thorough) took a certain amount of time, providing the same amount of time to DTA should typically provide comparable or better recommendations. It is recommended that users of the Thorough mode in ITW (that is, looking for the best recommendation) use Database Engine Tuning Advisor without any time bound (that is, unlimited tuning time).
Question: DTA tunes a workload and displays an error message, “X% of consumed workload has syntax errors. Check tuning log for more information.” Why is DTA throwing an error?

Answer: This is not a DTA error. The tool is giving feedback to the user indicating that X% of the workload it consumed had syntax errors. Syntax errors are logged in the tuning log. Note that DTA provides a recommendation for the valid statements.
Question: The tuning log contains messages of the form “SHOWPLAN permission denied on database X.”

Answer: This happens when a DTA tuning session that was initiated by a database owner attempts to access objects in databases on which the user does not have SHOWPLAN permissions. This can be fixed by either giving the user SHOWPLAN permission on those databases, or by adding them as database owners to those databases (this grants the SHOWPLAN permission implicitly). Use the latter if the database needs to be tuned as well.

Question: A user is running SQL Server using several trace flags. What is their impact on DTA tuning sessions that are initiated against that server?

Answer: No special consideration is necessary. However, if the trace flags affect query plans, the recommendations from DTA will be impacted as the plans returned by server can potentially change.

Conclusion
More details on Database Engine Tuning Advisor for Microsoft SQL Server 2005 are available at the following sites.

For more information:

Microsoft SQL Server TechCenter (http://www.microsoft.com/technet/prodtechnol/sql/default.mspx)
SQL Server 2005 Books Online (http://msdn2.microsoft.com/en-us/library/ms130214.aspx)
Index Tuning Wizard for Microsoft SQL Server 2000. Agrawal, S., Chaudhuri S., Kollar L., and V. Narasayya. White-paper available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/itwforsql.asp
References:
4. Agrawal S., Narasayya V., and Yang, Berverly, Integrating Vertical and Horizontal Partitioning into Automated Physical Database Design. Proceedings of ACM SIGMOD, Paris, France, 2004.
5. Chaudhuri, S. and Narasayya V., AutoAdmin "What-If" Index Analysis Utility. Proceedings of ACM SIGMOD, Seattle, 1998.
6. Agrawal S., Chaudhuri S., Kollar L., Marathe A., Narasayya V., and Syamala M., Database Tuning Advisor for Microsoft SQL Server 2005. Proceedings of the 30th International Conference on Very Large Databases (VLDB04), Toronto, Canada, 2004.
7. AutoAdmin project home page, Microsoft Research, 2005. http://www.research.microsoft.com/research/dmx/autoadmin/
8. The DTA input-output schema is available at http://schemas.microsoft.com/sqlserver/2004/07/dta/dtaschema.xsd.
9. Agrawal S., Chaudhuri S., Narasayya V. Automated Selection of Materialized Views and Indexes for SQL Databases. Proceedings of the 26th International Conference on Very Large Databases (VLDB00), Cairo, Egypt, 2000.

* Microsoft SQL Server 2005 supports single node horizontal range partitioning.

