The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering this document or the subject matter included in this document. The furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

[image: image1.png]Microsoft SharePoint

Products and Technologies

Microsoft SharePointPSSearch SQL Syntax (Preview)

White Paper

Published: December 2004

Table of Contents
4General Query Language Information

SQL Extensions in SharePointPSSearch
5
SQL Features Unavailable in SharePointPSSearch
6
Identifiers
7
Literals
8
Case Sensitivity in Searches
9
Accent Insensitivity in Searches
10
Casting the Data Type of a Column
11
Data Type Mappings
12
Using Localized Searches
15
Understanding Relevance Values
18
Overview of the Search Query
19
SELECT Statement
21
Specifying Query Columns
22
FROM Clause
23
UNION ALL Scope Specifications
24
COALESCE_TABLE Function
25
WHERE Clause
27
WITH…AS Group Alias Predicate
30
Full-Text Predicates
32
Non-Full-Text Predicates
47
RANK BY Clause
62
ORDER BY Clause
65
SET Statement
66

Microsoft SharePointPSSearch SQL Syntax (Preview
)
White Paper

Published: December 2004
For the latest information, please see http://www.microsoft.com/sharepoint/
Microsoft SharePoint Portal Server Search (SharePointPSSearch) provides content crawling and search features that support full-text searching. The query language used by SharePointPSSearch extends the standard SQL-92 and SQL-99 database query syntax to enhance its usefulness with text-based searches.

This section includes the following topics:

· General Query Language Information
·

HYPERLINK \l "OverviewSearchQuery"

Overview of the Search Query

· SELECT Statement
·

 HYPERLINK \l "FROMClause"

FROM Clause
·

HYPERLINK \l "WHEREClause"

WHERE Clause

· RANK BY Clause
·

 HYPERLINK \l "ORDERBYClause"

ORDER BY Clause
·

 HYPERLINK \l "SETStatement"

SET Statement

General Query Language Information

This section includes the following topics:

· SQL Extensions in Microsoft SharePoint Portal Server Search
·

HYPERLINK \l "SQLFeatures"

SQL Features Unavailable in Microsoft SharePoint Portal Server Search

· Identifiers
·
Literals

· Case Sensitivity in Searches
·

 HYPERLINK \l "AccentInsensitivity"

Accent Insensitivity in Searches
·

HYPERLINK \l "Casting"

Casting the Data Type of a Column

· Data Type Mappings
·

HYPERLINK \l "Localized"

Using Localized Searches

· Understanding Relevance Values

Go back to the top (

SQL Extensions in SharePointPSSearch

Microsoft SharePoint Portal Server Search (SharePointPSSearch), based on the SQL-92 and SQL-99 standards, improves full-text, document-based searches in document-management or knowledge-management applications. SharePointPSSearch improvements include the following.

128-Character Identifier Names

While SQL-92 and SQL-99 restrict column and other identifiers to 18 characters, SharePointPSSearch supports 128-character column names.

Accent-insensitive Searching

In addition to searching that is not case-sensitive, SharePointPSSearch supports searching that is not sensitive to accent.

COALESCE_TABLE Function

This function extends the FROM clause by supporting multiple WHERE clauses. The COALESCE_TABLE function returns the results of the first WHERE clause that has matches.

Column Weighting

Queries that search more than one column can specify the importance of each column. The CONTAINS and FREETEXT predicates both support column weighting.

NULL Predicate

Although full-text content indexing has no defined set of columns, queries can require that members of the result set do or do not have specified columns. It is not possible to differentiate between a document has the property and its value is NULL, and a document that does not have the property.

Rank Modification

You can manipulate the search results ranking by using weights on properties and on aliased groups of properties. Rank coercion supports direct manipulation of the relevance ranking based on the criteria you specify.

Thesaurus

The thesaurus is a query-expansion search feature that allows you to type a phrase in a search query and receive results for related words. The thesaurus also enables you to affect search ranking by assigning weights to words.
URN Column Names

SharePointPSSearch allows columns identified with Uniform Resource Names (URNs) to support the following namespaces:

· World Wide Web Distributed Authoring and Versioning (WebDAV)

· Office

· MSSearch (fulltextqueryinfo)

· OWS

URNs are location-independent identifiers grouped by XML namespaces.
Go back to the top (

SQL Features Unavailable in SharePointPSSearch
Microsoft SharePoint Portal Server Search (SharePointPSSearch) query language is based on SQL; however, it does not search in a relational database with user-defined tables or indexes. Because of this, many standard SQL statements and syntax features do not apply. The following is a list of the more significant SQL features that are not supported in SharePointPSSearch.

· CONVERT() (use the CAST functions instead)

· CREATE VIEW statement

· Data definition language

· DATASOURCE statement

· Date and Time formats other than ISO date and time stamp

· Derived columns using AVG(), COUNT(), MAX(), MIN(), SUM(), or other calculations

· GRANT statement

· Hierarchical rowsets

· Information schema

· INSERT statement

· OLE DB data types

· SQL-standard regular expressions (use CONTAINS, LIKE, and MATCHES instead)

· Parameters to SQL queries

· Relational column comparison

· Revision ID header

· REVOKE statement

· SCOPE aliases or revision numbers

· SELECT ALL (removes duplicates automatically)

· Stored procedures

· Structured document expansion

· UNKNOWN keyword

· UPDATE statement

· BATCH statements

Go back to the top (

Identifiers
Identifiers specify the names of columns (sometimes referred to as properties), catalogs, and aliases. Literals, by contrast, specify string and numeric values.

You can create identifiers that are up to 128 characters in length, and in one of two types, distinguished by the characters used in the identifier name:

· Regular identifiers contain only the characters A-Z, a-z, 0-9, and underscore, and begin with a letter. You do not need to enclose regular identifiers in double quotation marks.

· Delimited identifiers can contain any valid Unicode character, and must be enclosed in double quotation marks.

Identifiers that you create as Uniform Resource Names (URNs) must contain special characters, are always delimited identifiers, and must be enclosed in double quotation marks.

Note You can use the asterisk "*" as a special column identifier when you want to specify that Microsoft SharePoint Portal Server Search includes all of the indexed properties in the query. Although it is not a regular identifier, it does not require double quotation marks.

Go back to the top (

Literals

A literal is a string of characters that represents a value in a query statement. You use literals to compare column values or to specify search terms. Microsoft SharePoint Portal Server Search (SharePointPSSearch) supports the following types of literals.

· String literals are not limited in length, and can contain either American National Standard Institute (ANSI) or Unicode characters. You must enclose string literals in single quotation marks. To include a single quotation mark inside a string literal, use two single quotation marks. Represent an empty string as two consecutive single quotation marks (' ').

· Numeric literals can contain the digits 0-9, a period, and the letter E (or e). Numeric literals represent numbers, including positive and negative integers, decimal numbers, and currency values. Numeric literals can be defined by using scientific notation (for example, 2.3E-05). Do not enclose a numeric literal in single quotation marks, or it is interpreted as a string literal and is compared by using string comparison techniques. Currency values cannot contain currency symbols.

· Hexadecimal literals can contain the digits 0-9 and the letters A-F and a-f. A hexadecimal literal represents an unsigned integer specified in hexadecimal notation. Hexadecimal literals must begin with 0x.

· Note The SQL-92 standard requires that hexadecimal literals be enclosed in single quotation marks, however, SharePointPSSearch does not support that notation.

· Boolean literals represent logical values, and can be either TRUE or FALSE. Do not enclose a Boolean literal in single quotation marks, or it is interpreted as a string literal.

· Date literals represent specific dates, time stamps, or relative times, and are enclosed in single quotation marks. You must put dates in the form year/month/day or year-month-day, where the month, day, and year are numbers. Specify the year with a four-digit value, for example, 2004. Time values must be in the form hours:minutes:seconds. Relative time syntax is based on the DATEADD function.

Go back to the top (

Case Sensitivity in Searches
Microsoft SharePoint Portal Server Search (SharePointPSSearch) queries are not case-sensitive. This includes query keywords (SELECT is identical to Select, select, and sELect) and search terms. If an identifier or literal uses Unicode characters that have case-mapping semantics, then the search engine considers all the cases equivalent.

Go back to the top (

Accent Insensitivity in Searches

Not only are Microsoft SharePoint Portal Server Search queries not sensitive to case; they are also not sensitive to accents when using either the FREETEXT or CONTAINS predicates. A search for the term "resume" also returns documents that contain "résumé". If an identifier or literal contains accented Unicode characters, the search query also matches entries that contain Unicode combined characters that use the base character of the accented character in the identifier or literal.

Note This is not the case for the character ranges 0x2e81-f8ff and 0x1100-0x11ff.
Go back to the top (

Casting the Data Type of a Column
At times you may need to cast string data extracted from documents as another data type, so that an appropriate comparison can be made. Cast an identifier or literal as another data type by using the following syntax:

CAST (<identifier> | <literal> AS <datatype>)

For example:

CAST ('10000' AS DBTYPE_I4)

Related Topics

Data Type Mappings

Go back to the top (

Data Type Mappings

The following table lists the mappings between variant data types and OLE DB data types.

	Variant data type
	OLE DB data type

	VT_BOOL
	DBTYPE_BOOL

	VT_BSTR
	DBTYPE_BSTR

	VT_BYREF
	DBTYPE_BYREF

	VT_CY
	DBTYPE_CY

	VT_DATE
	DBTYPE_DATE

	VT_DECIMAL
	DBTYPE_DECIMAL

	VT_EMPTY
	DBTYPE_EMPTY

	VT_FILETIME
	DBTYPE_FILETIME

	VT_GUID
	DBTYPE_GUID

	VT_I1
	DBTYPE_I1

	VT_I2
	DBTYPE_I2

	VT_I4
	DBTYPE_I4

	VT_I8
	DBTYPE_I8

	VT_NULL
	DBTYPE_NULL

	VT_R4
	DBTYPE_R4

	VT_R8
	DBTYPE_R8

	VT_STR
	DBTYPE_STR

	VT_UI1
	DBTYPE_UI1

	VT_UI2
	DBTYPE_UI2

	VT_UI4
	DBTYPE_UI4

	VT_UI8
	DBTYPE_UI8

	VT_VECTOR
	DBTYPE_VECTOR

	VT_WSTR
	DBTYPE_WSTR

The following table lists mappings between XML data types and OLE DB data types.

	XML data type
	OLE DB data type

	BIN.BASE64
	DBTYPE_BYTES

	BIN.HEX
	DBTYPE_I8

	BOOLEAN
	DBTYPE_BOOL

	CHAR
	DBTYPE_STR

	DATE
	DBTYPE_DATE

	DATETIME
	DBTYPE_DATE

	DATETIME.TZ
	DBTYPE_DATE

	FIXED.14.4
	DBTYPE_R4

	FLOAT
	DBTYPE_R8

	I1
	DBTYPE_I1

	I2
	DBTYPE_I2

	I4
	DBTYPE_I4

	I8
	DBTYPE_I8

	INT
	DBTYPE_I8

	LONG
	DBTYPE_I4

	NUMBER
	DBTYPE_R8

	R4
	DBTYPE_R4

	R8
	DBTYPE_R8

	STRING
	DBTYPE_WSTR

	TIME
	DBTYPE_FILETIME

	TIME.TZ
	DBTYPE_FILETIME

	UI1
	DBTYPE_UI2

	UI2
	DBTYPE_UI2

	UI4
	DBTYPE_UI4

	UI8
	DBTYPE_UI8

	URI
	DBTYPE_WSTR

	UUID
	DBTYPE_GUID

Related Topics

Casting the Data Type of a Column

Go back to the top (

Using Localized Searches
Microsoft SharePoint Portal Server Search (SharePointPSSearch) supports full Unicode searching. You can index documents that use Unicode, and create search queries that use Unicode identifiers and literals. However, the language setting of an application or the operating system can have far-reaching effects on how SharePointPSSearch works.

This section includes the following topics:

· Document and System Locale Settings

· Specifying Languages
Go back to the top (

Document and System Locale Settings

When the operating system, or even an application, is set to use a particular language and locale, many settings are affected. These settings include numeric format, date format, currency format, uppercase and lowercase mapping, dictionary sort ordering, tokenization, and others. Although these settings help Microsoft Windows and Microsoft SharePoint Portal Server Search (SharePointPSSearch) provide excellent localized support, unexpected results can occur when documents from one locale are searched by using a system set to another locale.

For example, the list of "noise" words (words discarded during indexing and from queries because they give no meaning or context) in each language is very different. In German, the word "die" is equivalent to the English word "the". If you index a German document and then search for "die" by using an English query system, documents might be returned, even though the word should be ignored. A German system given the same query would return an error stating that the search query contained only noise words.

When the IFilter object processes a document's text properties and content, it reports the language of that document to the content indexer. By using this information, SharePointPSSearch can apply the appropriate word breaker and noise words list.

Go back to the top (

Specifying Languages
You can specify the language used in search queries. Both the FREETEXT and CONTAINS predicates for the WHERE clause support specifying a language. You can indicate the query language by providing a numeric locale identifier (LCID) in the CONTAINS or FREETEXT predicate, by using the following syntax:

CONTAINS | FREETEXT
([<column_identifier>,]'<content_search_condition>' [,LCID])

For more information, see the syntax for the CONTAINS and FREETEXT predicates.

Go back to the top ((

Understanding Relevance Values

When used in a relational database, rows that are returned by a search query must meet all the conditions called for by the query. In contrast, a Microsoft SharePoint Portal Server Search (SharePointPSSearch) query can return documents that meet the search conditions to varying degrees.

For example, a search for the term "program" in a relational database produces records that contain that specific spelling of the word. Whether a record contains one or one hundred instances of the word has no impact on the results. In contrast, SharePointPSSearch returns a relevance value associated with the matching documents. The relevance of documents having "program" in the title is higher than those that contain the word only in the last paragraph. Similarly, documents containing variations of the search term, for example "programs" and "programming" also match and are returned by the query.

SharePointPSSearch queries return integer relevance values in the column named "rank".

In addition:

· Rank values returned by the query are integers ranging from 0 to 1000.

· Higher rank values indicate documents that better match the search conditions.

· Rank values apply only to the current query, so they cannot be compared for results across queries.

· Rank values are relative to the other documents matching the query. Therefore, the rank value of a particular document depends on the other documents that also match the query.

· Rank values for items matching a purely relational predicate are 1000.

You can manipulate the returned rank values by using column weights in the CONTAINS and FREETEXT WHERE clause predicates, and the RANK BY clause.

Go back to the top (

Overview of the Search Query

The Microsoft SharePoint Portal Server Search (SharePointPSSearch) query is similar to a standard SQL query, as shown in the following syntax:

SELECT <columns>

FROM <catalogs>

WHERE <conditions>

RANK BY <conditions>

ORDER BY <columns>

In the following query example, the document size, title, and relevance ranking are returned for documents that are larger than 10,000 bytes long and are part of the Portal Content scope. Each matching file is assigned the rank value of 1000 by SharePointPSSearch, and the results are sorted in ascending size order.

SELECT

"DAV:getcontentlength",

"urn:schemas-microsoft-com:office:office#Title",

"Rank"

FROM Portal_Content..Scope()

WHERE ("DAV:getcontentlength" > 10000)

ORDER BY "DAV:getcontentlength"

The SharePointPSSearch query syntax supports many options, enabling more complicated queries.

The following table describes each clause in the SELECT statement, and the features it supports.

	Clause
	Description

	SELECT
	Specifies the columns returned by the query.

	FROM
	Specifies the location to search. You can request that SharePointPSSearch check for matching documents in a given content index, in the specified folder only, or the specified folder and in all subfolders. By using the COALESCE_TABLE function, you can request that the query return the results of the first matching search from more than one search. By using the UNION ALL element you can search across content indexes.

	WHERE
	Specifies what constitutes a matching document. This clause has many options, enabling rich control over the search conditions. For example, you can match against words, phrases, inflectional word forms, strings, numeric and bitwise values, and multi-valued arrays. You can also apply statistical weights to the matching conditions, and combine matching conditions with Boolean operators.

	RANK BY
	Specifies modifications to the normal methods for calculating rank. Allows you to specify weights for specific matching conditions, and to multiply or add values to the normal calculated rank results.

	ORDER BY
	Specifies the sort order for the results returned by the query. You can specify more than one field on which the results are sorted, and you can use ascending or descending ordering.

Go back to the top (

SELECT Statement

The first clause of the SELECT statement defines which columns to return in the rowset. Following is the basic syntax for the SELECT statement:

SELECT <columns> …

You specify what information to return in the <columns> specification. You must specify at least one column of information to retrieve.

Note Microsoft SharePoint Portal Server Search (SharePointPSSearch) does not support using column aliases.

This section includes the following topic:

· Specifying Query Columns

Related Topics

FROM Clause

 HYPERLINK \l "GeneralQueryLanguage"

General Query Language Information

 HYPERLINK \l "ORDERBYClause"

ORDER BY Clause

RANK BY Clause
WHERE Clause

Go back to the top (

Specifying Query Columns

Following is the columns portion of the SELECT clause syntax:

<column> [{, <column>} …]

Separate multiple column specifiers by using commas.

Column names can be either regular or delimited identifiers. In Microsoft SharePoint Portal Server Search (SharePointPSSearch), most of the properties derived from the document are specified using namespace-qualified Uniform Resource Names (URNs). Examples are "DAV:href" and "urn:schemas-microsoft-com:office:office#Author". URNs must be specified as delimited identifiers, enclosed in double quotation marks.

When the query returns a document that does not have the requested column, the value of that column for the document is NULL.

In the SQL query, you are allowed to use the asterisk (*) to specify that all columns in a table are to be returned. However, no defined and fixed set of properties applies to all documents. For this reason, the SQL asterisk is not permitted in the <columns> setting.

Casting Column Data Types

SharePointPSSearch does not support casting the column data type as it is returned in the query.

Column Aliasing

SharePointPSSearch does not support column aliasing. It also does not support limiting the column length, but returns the full length of each text property.

Examples

This example returns the size of the document, and a Hypertext Transfer Protocol (HTTP) link pointing to the matching documents. The URN column name "DAV:href" contains a colon, and therefore must be enclosed in double quotation marks.

SELECT size, "DAV:href" FROM Portal_Content..Scope() WHERE...
Go back to the top (

FROM Clause

Following the SELECT statement, you use the FROM clause to specify where to search for matching documents. Following is the top-level syntax of the FROM clause:

FROM <qualified_scope> |<union_all_scope>

The "scope" of the search is the location from which the query returns the results. You must qualify FROM clause scope specifications with a content index name. A content index is the full-text index, pointer to the property store, and other data that describes content across content sources, scopes, and servers. Unqualified scope specifications are not supported.

Following is the syntax for qualified scope specifications:

<content index>..SCOPE ()

Use the UNION ALL scope when searching in more than one catalog.

Examples

SELECT "DAV:href","DAV:displayname"

FROM Portal_Content..Scope() WHERE…
SELECT "DAV:href","DAV:displayname"

FROM Non_Portal_Content..Scope() WHERE…
This section includes the following topics:

· UNION ALL Scope Specifications

· COALESCE_TABLE Function

Related Topics

General Query Language Information
SELECT Statement
WHERE Clause
Go back to the top (

UNION ALL Scope Specifications

Microsoft SharePoint Portal Server Search (SharePointPSSearch) supports searching in multiple content indexes through the UNION ALL scope specification. The syntax follows:

(<union_all_specifier>) [AS] <scope_alias>
The UNION ALL specifier construct specifies the content indexes where the search is performed. The AS keyword and scope alias are optional. If you include the scope alias, it must be a valid regular or delimited identifier.

Following is the UNION ALL specifier syntax:

TABLE Portal_Content..Scope() UNION ALL TABLE Non_Portal_Content..Scope()

[UNION ALL TABLE <qualified_scope>] [AS] <scope_alias>…

Each TABLE keyword specifies that the qualified scope is to be treated as a separate table. UNION ALL specifies that the two tables be combined in the UNION manner.

Note UNION ALL is not the same as a database JOIN; a UNION ALL effectively combines the two tables into a single table having all the rows and columns.

The search query can combine more than two search scopes by simply adding UNION ALL keywords and TABLE specifiers.

Example

SELECT "DAV:href","DAV:displayname"

FROM (TABLE Portal_Content..Scope()

UNION ALL TABLE Non_Portal_Content..Scope()) WHERE…
SELECT "DAV:href","DAV:displayname"

FROM (TABLE Portal_Content..Scope()

UNION ALL TABLE Non_Portal_Content..Scope()) AS MyNewScope WHERE…
Related Topics

COALESCE_TABLE Function

 HYPERLINK \l "FROMClause"

FROM Clause

Go back to the top (

COALESCE_TABLE Function

When users search for documents, if an exact match cannot be found, it is customary to return the closest matches that can be found. Microsoft SharePoint Portal Server Search (SharePointPSSearch) supports this in search queries through the COALESCE_TABLE function, where you specify both exact match and freetext match search conditions.

When you use the COALESCE_TABLE function, you get the results from the first SELECT statement that returns any results. It is part of the FROM clause, and its syntax follows:

COALESCE_TABLE(<select_statement>[;<select_statement])
You cannot use more than one COALESCE_TABLE function in each query. If you use the COALESCE_TABLE function in the FROM clause, you cannot use other scope specifiers in that FROM clause (excluding the scope specifiers contained in the SELECT statements).

With some restrictions, each SELECT statement within the function is a complete SELECT statement that uses either the CONTAINS or FREETEXT predicates. Each SELECT statement must have the same scope specification. To improve the search results, all the SELECT clauses should be similar enough that they return sensible results. For example, users requesting information about "computers" might be surprised to receive a list of documents describing "food".

The syntax for the SELECT statement using the CONTAINS predicate follows:

<SELECT_clause> <FROM_clause>

WHERE CONTAINS(<column>,'<simple_term>'[,<language>])

[<RANK_BY_clause>]

[<ORDER_BY_clause>]

The syntax for the SELECT statement using the FREETEXT predicate follows:

<SELECT_clause><FROM_clause>

WHERE FREETEXT(<column>,'<simple_term>'[,<language>])

[<RANK_BY_clause>]

[<ORDER_BY_clause>]

The column specifiers must use the asterisk (*) to indicate all rows. The outer SELECT statement specifies the columns returned to the application.

Important You can use the asterisk (*) to indicate columns only within the exact match SELECT or freetext match SELECT statements of a COALESCE_TABLE function. Asterisks in the COALESCE_TABLE function are allowed because the SELECT clause names the specific columns to return. You cannot use asterisks as column specifiers in the SELECT clause.

The COALESCE_TABLE function does not require that the simple term be the same in both the exact match SELECT and freetext match SELECT statements. However, the scope specifications must be identical in both SELECT statements.

Related Topics

FROM Clause

 HYPERLINK \l "UNIONALL"

UNION ALL Scope Specifications

Go back to the top (

WHERE Clause

The conditions that determine whether a document is included in the results returned by the query is specified by the WHERE clause. At the highest level, there are two parts to the WHERE clause syntax:

…WHERE [<group_aliases>] <search_condition>
To simplify complex queries, you can assign an alias to a group of one or more columns. This can improve the readability of complex queries that search for the same information across multiple columns specified by using Uniform Resource Names (URNs). For more information about group aliases, see WITH…AS Group Alias Predicate.

The search condition portion of the WHERE clause specifies matching criteria for the search. Documents are returned if they meet the specified comparisons and logical combinations of the query. The result of a search condition is a Boolean value, either TRUE or FALSE. If the result is TRUE, the document is included. If the result is FALSE, it is not.

Documents returned in a Microsoft SharePoint Portal Server Search (SharePointPSSearch) query are assigned rank values according to how well they match the search conditions. Each of the query search conditions can include a RANK BY clause that supports modifying the returned rank values.

Search predicates are expressions that assert some fact about some value. Documents that "match" the predicate requirements have an appropriate value for the property specified in the predicate.

A search condition consists of one or more predicates or search conditions, combined by using the logical operators AND, OR, or AND NOT. The optional unary operator NOT can be used to negate the logical value of a predicate or search condition. You can use parentheses to group and nest logical terms.

The following table shows the logical operator precedence order.

	Order (precedence)
	Logical operator

	First (highest)
	NOT

	Second
	AND

	Third (lowest)
	OR

Logical operators of the same type are associative, and there is no specified calculation order. For example, (A AND B) AND (C AND D) can be calculated (B AND C) AND (A AND D) with no change in the logical result.

Important You cannot apply the unary logical operator NOT to the CONTAINS predicate or to the FREETEXT predicate if that predicate is the first one within the WHERE clause. For example, WHERE NOT CONTAINS ('computer') is not accepted; however, WHERE CONTAINS ('software') AND NOT CONTAINS ('computer') is accepted.

In complex queries, you may want to place more emphasis on matches in some columns than in others. For example, when searching for documents that discuss "software design", finding the search term in the document title is more likely to be a "good" match than finding the individual words inside the text of the document. To influence the ranking of documents in this manner, the Microsoft Office SharePoint Portal Server query language supports weighting the search conditions. For more information about column weighting, see CONTAINS predicate and FREETEXT predicate.

There are two groups of search predicates in SharePointPSSearch. Full-text search predicates typically match the meaning of the content, title, and other columns, and support linguistic matching (for example, alternative word forms, phrases, proximity searching). In contrast, non-full-text search predicates match the value of the specified columns and do not include any special linguistic processing, but in several cases offer character-based pattern matching.

Note If the query returns a document because a non-full-text predicate evaluates to TRUE for that document, the rank value is calculated as 1000. Using the rank coercion function can modify the rank value.

The following tables describe the full-text and non-full-text search predicates.

	Full-text predicate
	Description

	CONTAINS
	Supports complex searches for terms in document text columns (for example, title, contents). Can search for inflected forms of the search terms, test for proximity of the terms, and perform logical comparisons. Search terms can include wildcards.

	FREETEXT
	Searches for documents that match the meaning of the search phrase. Related words and similar phrases will match, with the rank column calculated based on how closely the document matches the search phrase. Search terms cannot include wildcards.

	Non-full-text predicate
	Description

	LIKE
	Column values are compared using simple pattern matching with wildcards. The pattern matching of the LIKE predicate is simpler but less powerful than that of the MATCHES predicate.

	Literal Value Comparison
	Column values are compared against string, date, time stamp, numeric, and other literal values. This predicate supports equality as well as inequalities such as greater than and less than.

	MATCHES
	Column values are compared using regular expression matching. The regular expression capability of the MATCHES predicate is more flexible and powerful than that of the LIKE predicate.

	Multi-valued (ARRAY) Comparisons
	Multi-valued columns are compared against a multi-valued array of literals.

	NULL
	Column values that are undefined for the document can be detected by using the NULL predicate.

Examples

For examples of the WHERE clause, see the individual predicate topics.

This section includes the following topics:

· WITH…AS Group Alias Predicate

· Full-Text Predicates
·

 HYPERLINK \l "NonFullTextPredicates"

Non-Full-Text Predicates

Related Topics

FROM Clause

 HYPERLINK \l "GeneralQueryLanguage"

General Query Language Information

 HYPERLINK \l "OverviewSearchQuery"

Overview of the Search Query

Go back to the top (

WITH…AS Group Alias Predicate

Column group aliases provide a way to use shorter names in place of the name of a column or a group of columns. The optional group alias predicate is part of the WHERE clause, and its syntax follows:

…WHERE[WITH(<columns>) AS #<alias_name>]

[,WITH(<columns>) AS #<alias_name>]

You can specify more than one group alias, separating the WITH…AS predicates by commas.

When a group alias is referred to in a WHERE clause predicate, the condition is applied to each column in the group. The logical values resulting from matching each column are combined by using the OR logical operator.

The alias must be defined before it can be used, and it can only be used within the WHERE clause. The alias_name must be a regular identifier preceded with a required pound sign (#).

Note Only the FREETEXT predicate supports column grouping and aliases by using the WITH…AS predicate. The CONTAINS predicate does not support column grouping and aliasing.

The columns specifier can contain one or more column specifiers, separated by commas. The list of columns must be enclosed in parentheses and weighting can be assigned to each. Each column has the following syntax:

<column_identifier> [<weight_assignment>]
For information on specifying column weights, see FREETEXT Predicate and CONTAINS Predicate.

The column identifier can be regular or delimited.

Examples

The following WHERE clause examples demonstrate when you could use the group alias predicate.

…WHERE FREETEXT(
"urn:schemas-microsoft-com:publishing:BestBetKeywords",

'"computer software"')

OR FREETEXT(

"urn:schemas-microsoft-com:office:office#Title",

'"computer software"')

OR FREETEXT(

"urn:schemas-microsoft-com:office:office#Comments",

'"computer software"')

OR CONTAINS(
"urn:schemas-microsoft-com:office:office#Keywords"

'"computer""software"')

The preceding example can be simplified by using a group alias, as shown in the following example.

…WHERE WITH(

"urn:schemas-microsoft-com:publishing:BestBetKeywords",

"urn:schemas-microsoft-com:office:office#Title",

"urn:schemas-microsoft-com:office:office#Comments",

"urn:schemas-microsoft-com:office:office#Keywords")

AS #Doc-Descriptions

FREETEXT(#Doc-Descriptions,'"computer software"')

The following is an example of positive weighting where the Title property is given more weight in determining the relative rank.

…WHERE WITH(

"urn:schemas-microsoft-com:office:office#Title":0.8,*:0.5,

"urn:schemas-microsoft-com:office:office#Keywords")

AS #Doc-Descriptions

FREETEXT(#Doc-Descriptions,'"computer software"')

The following is an example of negative weighting where the Title property with weight of 0 is not considered.

…WHERE WITH(

"urn:schemas-microsoft-com:office:office#Title":0,*:1.0,

"urn:schemas-microsoft-com:office:office#Keywords")

AS #Doc-Descriptions

FREETEXT(#Doc-Descriptions,'"computer software"')

Related Topics

FREETEXT Predicate

 HYPERLINK \l "fullTextPred"

Full-Text Predicates

 HYPERLINK \l "NonFullTextPredicates"

Non-Full-Text Predicates

Go back to the top (

Full-Text Predicates

The Microsoft SharePoint Portal Server Search (SharePointPSSearch) query language supports two full-text search predicates. The CONTAINS predicate performs comparisons on columns that contain text. The CONTAINS clause can perform matching on single words or phrases, based on the proximity of the search terms. In comparison, the FREETEXT predicate is tuned to match the meaning of the search phrases against text columns.

This section includes the following topics:

· CONTAINS Predicate

· FREETEXT Predicate
Related Topics

Non-Full-Text Predicates

Go back to the top (

CONTAINS Predicate

The CONTAINS predicate is part of the WHERE clause, and supports searching for words and phrases in text columns. The CONTAINS predicate has features for matching words, matching inflectional forms of words, searching using wildcards, and searching using proximity. You can also apply weights in a CONTAINS predicate to set the importance of the columns where the search term is found. The CONTAINS predicate is better suited for "exact matches, in contrast to the FREETEXT predicate, which is better suited to finding documents containing combinations of the search words spread throughout the column.

Following is the basic syntax of the CONTAINS predicate:

…CONTAINS([<fulltext_column>,]'<contains_condition>'[,<LCID>])…
The fulltext column reference is optional. With it, you can specify a single column or a column group against which the CONTAINS predicate is tested. When the fulltext column is specified as "ALL" or "*", all indexed text properties are searched. Although the column is not required to be a text property, the results might be meaningless if the column is some other data type. The column name can be either a regular or delimited identifier, and you must separate it from the condition by a comma. If no fulltext column is specified, the Contents column, which is the body of the document, is used.

You can also specify the fulltext column reference with an asterisk (*), indicating all columns.

You can specify the search locale for the CONTAINS predicate. This instructs the search engine to use the appropriate word breaker, noise word list, inflectional forms, and sort order for the search query. To specify the locale, provide the Microsoft Windows standard locale identifier, also known as the LCID. For example, 1033 is the LCID for United States-English. Place the LCID as the last item inside the parentheses of the CONTAINS clause. For important information about searching and languages, see Using Localized Searches.

Note The default search locale is the system default locale.

The contains condition portion must be enclosed in single quotation marks for single words or double quotation marks for phrases, and consists of one or more content search terms that are combined by using the logical operators AND or OR. You can use the optional unary operator NOT to negate the logical value of a content search term.

NOT can only occur after AND. You cannot use the NOT operator if there is only one match condition, or after the OR operator.

You can use parentheses to group and nest content search terms. The following table describes the logical operator precedence order.

	Order (precedence)
	Logical operator

	First (highest)
	NOT

	Second
	AND

	Third (lowest)
	OR

Logical operators of the same type are associative, and there is no specified calculation order. For example, (A AND B) AND (C AND D) can be calculated (B AND C) AND (A AND D) with no change in the logical result.

The following table describes the types of content search terms.

	Type
	Description
	Examples

	Word
	A single word without spaces or other punctuation. Double quotation marks are not necessary.
	…WHERE CONTAINS ('computer')

	Phrase
	Multiple words or included spaces.
	…WHERE CONTAINS
('"computer software"')

Or, to use a double quote mark:

… WHERE CONTAINS
('"computer ""science"" "')

	Wildcard
	Words or phrases with the asterisk (*) added to the end. For more information, see Using Wildcards in the CONTAINS Predicate.
	…WHERE CONTAINS
('"compu*"')

Matches "computer", "computers",

"computation", and "compulsory"

	Boolean
	Words, phrases, and wildcard strings combined by using the Boolean operators AND, OR, or NOT. Enclose the Boolean terms in double quotation marks.
	…WHERE CONTAINS
('"computer monitor" AND

 "software program" AND
 "install component"')

… WHERE CONTAINS
 (' "computer" AND

 "software" AND

 "install" ')

…WHERE CONTAINS
('"computer software install"')

	Near
	Words, phrases, or wildcards separated by the function NEAR. For more information, see NEAR Term.
	…WHERE CONTAINS
('"computer" NEAR "software"')

	FormsOf
	Matches a word and the inflectional versions of that word. For more information, see FORMSOF Term.
	…WHERE CONTAINS
('FORMSOF

 (INFLECTIONAL, "happy"))

Matches "happy", "happier",

"happiest", "happily", and so on.

	IsAbout
	Combines matching results over multiple word, phrase, or wildcard search terms. Each search term can optionally be weighted. You can optionally specify the rank calculation method, which combines the weights and how many of the items the document matches. For more information, see ISABOUT Term.
	…WHERE CONTAINS
('ISABOUT ("computer" WEIGHT (0.5) ,

 "software" WEIGHT (2.0) ,

 "development" WEIGHT (10.0)

) RANKMETHOD INNER PRODUCT
')

This section includes the following topics:

· Noise Words and the CONTAINS Predicate

· Using Wildcards in the CONTAINS Predicate

· FORMSOF Term

· ISABOUT Term

· RANKMETHOD Term

· NEAR Term
Related Topics

Full-Text Predicates
Non-Full-Text Predicates

 HYPERLINK \l "WHEREClause"

WHERE Clause

Go back to the top (

Noise Words and the CONTAINS Predicate

When creating search queries, remember that words that are very common or carry no meaning about the content are removed when the content is indexed. These "noise" words cannot be matched in full-text searches. For example, searching for the phrase "this is a test" is equivalent to searching for the word "test," because "this," "is," and "a" are all discarded when the documents are indexed.

Note For information on updating noise word files, see KB 837847: How to customize SharePoint Portal Server 2003 by using IFilters, noise word files, and thesaurus files.

When noise words are discarded from CONTAINS content search terms, they are treated as placeholders. The phrase being searched for is expected to have the same number of words, but the noise words match any other single word. This can have unexpected results when the noise words are intended by the user as logical operators. For example, a user who wants to search for all documents that contain both "computer" and "software" might type "computer AND software". If the string is inserted into the CONTAINS predicate unchanged, it would be submitted as:

CONTAINS('"computer AND software"')
The Microsoft SharePoint Portal Server Search (SharePointPSSearch) engine recognizes "AND" as a noise word, and discards it. It then matches all documents in which "computer" and "software" are separated by other noise words. SharePointPSSearch would return documents containing "computer programming software", "computer drawing software", and even "computer running software". However, documents that contained simply "computer software" would not be returned.

The following CONTAINS predicate would return documents more closely matching the intent of the user:

CONTAINS('"computer" AND "software"')
Related Topics

FREETEXT Predicate

WHERE Clause

Go back to the top (

Using Wildcards in the CONTAINS Predicate

The CONTAINS predicate supports the use of the asterisk (*) as a wildcard for words and phrases. You can add the asterisk only at the end of the word or phrase. The presence of the asterisk enables the prefix-matching mode. In this mode, matches are returned if the column contains the specified search word with zero or more other characters. If a phrase is provided, matches are detected if the column contains all the specified words with zero or more other characters.

Examples

The first example matches documents that have any word in the href column beginning with "serve".

…WHERE CONTAINS("DAV:href", '"serve*"')
The second example matches documents with any phrases in the href column that begin with "comp" and in which the next word begins with "serve". For a document to match, it must match all the terms.

… WHERE CONTAINS("DAV:href", '"comp serve*"')
Note The asterisk works only for prefix-matching; it does not work for suffix-matching. The following syntax does not match documents with any word in the href column ending with "serve".

WHERE CONTAINS("DAV:href", '"*serve"')

Related Topics

FREETEXT Predicate
WHERE Clause
Go back to the top (

FORMSOF Term

The FORMSOF term performs matches by using other linguistic forms of the word. Following is the FORMSOF term syntax:

FORMSOF (<generation_type>,<match_words>)
The generation_type specifies how Microsoft SharePoint Portal Server Search (SharePointPSSearch) chooses the alternative word forms.

Two values are available:

· INFLECTIONAL chooses alternative inflection forms for the match words. If the word is a verb, alternative tenses are used. If the word is a noun, the singular, plural, and possessive forms are used to detect matches.

· THESAURUS chooses words that have the same meaning, taken from a thesaurus.

The match_words part can be one or more words, separated by commas. The words cannot contain spaces or punctuation, so you do not need to enclose them in quotation marks.

Examples

The following example searches for inflectional matches for the word "run". This example matches documents containing "run", "running", or "ran".

…CONTAINS('FORMSOF(INFLECTIONAL,"run")')
The following example searches for thesaurus matches for the word "happy". This example matches documents containing "happy", in addition to words like "glad", "cheerful", and "pleasant".

…CONTAINS('FORMSOF(THESAURUS,"happy")')
Note For information about updating the thesaurus for SharePointPSSearch, see "End-User Experience" in the Managing External Content in Microsoft Office SharePoint Portal Server 2003 chapter of the Microsoft SharePoint Product and Technologies Resource Kit or the Knowledge Base article KB 837847: How to customize SharePoint Portal Server 2003 by using IFilters, noise word files, and thesaurus files.

Related Topics

FREETEXT Predicate
WHERE Clause

Go back to the top (

ISABOUT Term

While this feature is still supported in the current product version, it may be removed in the future. If you write new applications, avoid using this deprecated feature. If you modify existing applications, you are strongly encouraged to remove any dependency on this feature.

The ISABOUT term matches columns against a group of one or more search terms and has the following syntax:

ISABOUT(<components>) [RANKMETHOD <method>]
The optional RANKMETHOD term specifies the calculation method used to rank the documents that match one or more of the components. If no RANKMETHOD is specified, the default Jaccard Coefficient ranking method is used. For more information about using RANKMETHOD, see RANKMETHOD Term.

The ISABOUT term can have one or more components. The columns specified in the CONTAINS predicate are tested against each component. The document is included with the results if at least one of the components matches. Commas separate multiple components.

Following is the component part syntax:

<match_term> [<weight_term>]
You can use the optional WEIGHT term to change the relative importance of each term within the ISABOUT term. If no weight term is applied, the default 1.0 weight is implied.

The following table describes possible match term types.

	Type
	Description
	Examples

	Word
	A single word without spaces or other punctuation.
	… WHERE CONTAINS

 ('

 ISABOUT ("computer","software")

 ')

	Phrase
	Multiple words or included spaces.
	… WHERE CONTAINS
 ('

 ISABOUT

 ("computer software",

 "hardware")

 ')

	Wildcard
	Words or phrases with the asterisk (*) added to the end. For more information, see Using Wildcards in the CONTAINS Predicate.
	…

…WHERE CONTAINS
 ('

 ISABOUT

("compu*","soft*")

 ')

Matches "computer", "computers", "computation", and "compulsory"

ISABOUT Column Weighting

The ISABOUT term ranks matching documents based on how closely each document matches the set of match terms in the query. You can use column weighting to place more importance on matching some match terms compared to others. Each match term in the ISABOUT term can have a weight value applied. The WEIGHT term has two alternative syntaxes.

The long syntax follows:
<match_term> WEIGHT(<weight_value>)
The weight is applied to a single match term, and is indicated by the keyword "WEIGHT".

The weight value must be between 0 and 1.0, with no more than three decimal places. Specifying any weight values outside this range results in an error message. The weights are multiplied against the un-weighted ranking value.

If no weight is specified for a match term, the default value, 1.0, is implied.

Example

The following example applies weights to the two ISABOUT match terms, using the long and shortened weight indicators.

…WHERE CONTAINS(

"urn:schemas-microsoft-com:office:office#Description",

'ISABOUT("computer" WEIGHT (0.75),"software":0.25)')

Related Topics

FREETEXT Predicate

 HYPERLINK \l "WHEREClause"

WHERE Clause

Go back to the top (

RANKMETHOD Term

You can use the RANKMETHOD term to specify which statistical algorithm to use to rank the documents that match one or more of the ISABOUT match terms. Following is the syntax of the ISABOUT term when using RANKMETHOD:

ISABOUT (<match_terms> RANKMETHOD <rank_method>)
The following table describes the available rank methods.

	Rank method
	Description

	JACCARD COEFFICIENT
	Calculates ranking results from the relative proportion of matching terms, excluding any terms that are not matched.

	DICE COEFFICIENT
	Calculates ranking results from the frequency of multiple terms found together, compared with the probability they are found in isolation.

	INNER PRODUCT
	Calculates ranking results by using the integral of the products of the ranks of the individual matching documents.

	MINIMUM
	Calculates ranking results from the lowest rank score from all the matching documents.

	MAXIMUM
	Calculates ranking results from the highest rank score from all the matching documents.

Note When no RANKMETHOD is specified, the default Jaccard Coefficient method is used.

Example

The following example shows an ISABOUT term that specifies a RANKMETHOD.

… …WHERE CONTAINS(

"urn:schemas-microsoft-com:office:office#Description",

'ISABOUT
("computer" WEIGHT (0.75),"software":0.25)

RANKMETHOD INNER PRODUCT')

Related Topics

FREETEXT Predicate

 HYPERLINK \l "ISABOUT"

ISABOUT Term

 HYPERLINK \l "WHEREClause"

WHERE Clause

Go back to the top (

NEAR Term

The NEAR term is used to specify that two content search terms must be relatively close to one another to be recognized as matching for the CONTAINS Predicate.

The syntax for the NEAR term is:

<content_search_term> NEAR | ~ <content_search_term>
The NEAR term can be represented by the keyword "NEAR" or by a tilde (~).

When the words joined by NEAR in the query are found within approximately 50 words of one another inside the column being searched, the NEAR term returns a match. The closer together the two words are, the higher the calculated rank for the NEAR term. The farther apart the two words are, the lower the rank.

Note The number of words is approximate. It may be less than 50.

The following table describes content search term types that can be used with a NEAR term in a CONTAINS predicate.

	Type
	Description
	Examples

	Word
	A single word without spaces or other punctuation. Double quotation marks are not necessary.
	…WHERECONTAINS('computer

NEAR software)')

	Phrase
	Multiple words or included spaces.
	…WHERE CONTAINS('"computer software" NEAR hardware)')

	Wildcard
	Words or phrases with the asterisk (*) added to the end. For more information, see Using Wildcards in the CONTAINS Predicate.
	…WHERE CONTAINS('"compu*" NEAR "soft*"')

Note If the match words specified with the NEAR term are both found in the column being searched, but are farther apart than 50, the result is still returned, but has a rank of 0.

Example

The following example shows chaining of NEAR terms, using both the short and long forms of the term:

…WHERE CONTAINS('computer NEAR software ~ "setup application"')
Related Topics

Full-Text Predicates

 HYPERLINK \l "WildcardsCONTAINS"

Using Wildcards in the CONTAINS Predicate

HYPERLINK \l "WHEREClause"

WHERE Clause

Go back to the top (

FREETEXT Predicate

The FREETEXT predicate is part of the WHERE clause, and supports searching for words and phrases in text columns. Use the FREETEXT predicate to find documents containing combinations of the search words spread throughout the column. In contrast, use the CONTAINS predicate to find "exact" matches. You can also perform exact-phrase matching with the FREETEXT predicate by placing the phrase in double quotation marks.

Following is the basic syntax of the FREETEXT predicate:

FREETEXT
([<fulltext_column>,]'<freetext_condition>'[,<LCID>])…

The fulltext column reference is optional. With it, you can specify a single column, or a column grouping alias against which the FREETEXT predicate is tested. All indexed text properties are searched. Although the column is not required to be a text property, the results might be meaningless if the column is some other data type. The column name can be either a regular or delimited identifier, and you must separate it from the condition by a comma. If no fulltext condition is supplied, the Contents column, which is the body of the document, is used.

You can also specify the fulltext column reference with an asterisk (*), indicating all columns.

You can specify the search locale for the FREETEXT predicate. This instructs the search engine to use the appropriate word breaker, noise word list, inflectional forms, and sort order for the search query. To specify the locale, provide the Microsoft Windows standard locale identifier, also known as the LCID. For example, 1033 is the LCID for United States-English. Place the LCID as the last item inside the parentheses of the FREETEXT clause. For important information about searching and languages, see Using Localized Searches.

Note The default search locale is the system default locale.

You must enclose the freetext condition portion in single quotation marks, and it must consist of one or more search terms. The FREETEXT predicate does not support logical operations. To search for a phrase as if it were a single word, enclose the phrase in double quotation marks.

When you use the FREETEXT predicate, the search query results return documents containing one or more of the search terms. The terms do not need to appear in any particular order. Documents that contain more of the search terms may have higher rank column values.

Examples

The following example searches for documents containing "computer", "software", "hardware", or combinations of those words:

WHERE FREETEXT('computer software hardware')

Note You cannot use both single-word and phrase matching in the same FREETEXT predicate.

When performing queries with contractions, you must escape the quotation mark in the contraction when using FREETEXT, but not when using CONTAINS.

For example, the following syntax fails:

WHERE FREETEXT(*,'"We'll always have Paris"')

The correct syntax includes two single quotation marks, not a double quotation mark.

The following syntax succeeds:

WHERE FREETEXT(*,'"We''ll always have Paris"')

This section includes the following topic:

· Noise Words and the FREETEXT Predicate

Related Topics

CONTAINS Predicate
Non-Full-Text Predicates

WHERE Clause

Go back to the top (

Noise Words and the FREETEXT Predicate

When creating search queries, remember that words that are very common or carry no meaning about the content are removed during indexing. These "noise" words cannot be matched in full-text searches. For example, searching for the phrase "this is a test" is equivalent to searching for the word "test" because "this", "is", and "a" are all discarded when the documents are indexed.

When noise words are discarded from FREETEXT content search terms, they are ignored in the search. The search results and rankings are based on the list of search terms with the noise words removed.

For example, a user who wants to search for all documents that contain both "computer" and "software" might type "computer and software". If the string is inserted into the FREETEXT predicate unchanged, it would be submitted as:

FREETEXT('computer and software')
The search engine recognizes "and" as a noise word, and discards it. It then matches all documents that contain "computer", "software", or both.

Note For information on updating noise word files, see KB 837847: How to customize SharePoint Portal Server 2003 by using IFilters, noise word files, and thesaurus files.

FREETEXT Column Weighting

The FREETEXT predicate ranks matching documents based on how closely each document matches the set of freetext conditions in the query. You can use column weighting to place more importance on matching the freetext condition in one fulltext column as compared to other fulltext_columns. Each fulltext_column in the FREETEXT predicate can have a weight value applied. The WEIGHT term has two alternative syntaxes.

The following example shows the long syntax of the WEIGHT term:

<fulltext_column> WEIGHT(<weight_value>)
The following example shows the syntax for the shortened form of the WEIGHT term:

<fulltext_column>:<weight_value>
The weight is applied to a single fulltext_column, and is indicated either by the keyword "WEIGHT" or by a colon (:).

Important Do not include spaces between the match term, the colon, and the weight value in the shortened syntax.

The weight value must be between 0 and 1.0, with no more than three significant decimal places. Specifying any weight values outside of this range results is an error message. The weights are multiplied against the un-weighted ranking value.

If no weight is specified for a fulltext_column, the default value 1.0 is implied.

Example

The following example applies weights to the two fulltext_columns, using the long and shortened weight indicators:

…WHERE FREETEXT(

("DAV:displayname"

WEIGHT(0.75,"urn:schemas-microsoft-com:office:office#Title":0.25)'computer')

Go back to the top (

Non-Full-Text Predicates

The Microsoft SharePoint Portal Server Search (SharePointPSSearch) query language supports five non-full-text search predicates. The following table describes these predicates.

	Non-full-text predicate
	Description

	LIKE predicate
	Column values are compared using simple pattern matching with wildcards. The pattern matching of the LIKE predicate is simpler than that of the MATCHES predicate, but not as powerful.

	Literal value comparison
	Column values are compared against string, date, time stamp, numeric, and other literal values. This predicate supports inequalities such as greater than ('>'), and less than ('<').

	MATCHES predicate
	Column values are compared using regular expression matching. The regular expression capability of the MATCHES predicate is more flexible and powerful than that of the LIKE predicate.

	Multi-valued (ARRAY) comparisons
	Multi-valued columns are compared against a multi-valued array of literals.

	NULL predicate
	Column values that are undefined for the document can be detected using the NULL predicate.

Important Search queries using the NULL or MATCHES predicates can require that SharePointPSSearch scan the entire catalog, which may degrade the query's performance.

Related Topics

Full-Text Predicates

Go back to the top (

LIKE Predicate
The LIKE predicate performs pattern-matching comparison on the specified column by using the following syntax:

…WHERE <column> LIKE <wildcard_literal>
The column can be a regular or delimited identifier, and must be single-valued. That is, the column cannot be a multi-valued column. The column is also limited to the properties in the property store.

The wildcard literal is a string literal, enclosed in quotation marks, and optionally can contain wildcards. The match string can contain multiple wildcards if needed. The following table describes the wildcards that the LIKE predicate recognizes.

	Wildcard
	Description
	Example

	% (percent)
	Matches zero or more of any character.
	'comp%r' matches 'comp' followed by zero or more of any characters, ending in an r.

	_ (underscore)
	Matches any single character.
	'comp_ter' matches 'comp' followed by exactly one of any character, followed by 'ter'.

	[] (square brackets)
	Matches any single character within the specified range or set.

For example [a-z] specifies a range; [aeiou] specifies the set of vowels.
	'comp[a-z]re' matches 'comp' followed by a single character in the range of lowercase a through lowercase z, followed by 're'.
'comp[ao]' matches 'comp' followed by a single character that must be either a lowercase a or a lowercase o.

	[^] (caret)
	Matches any single character that is not within the specified range or set. For example, [^a-z] specifies a range that excludes lowercase a through lowercase z; [^aeiou] specifies a set that excludes lowercase vowels.
	'comp[^u]' matches 'comp' followed by any single character that is not a lowercase u.

Note To match the wildcard characters percent sign '%', underscore '_', and the left square bracket '[', place the character inside square brackets. For example, to match the percent sign, use '[%]'

Related Topics

Full-Text Predicates
Literal Value Comparison
MATCHES Predicate
Multi-valued (ARRAY) Comparisons
NULL Predicate
Go back to the top (

Literal Value Comparison
The literal value comparison uses standard comparison operators for matching a single-valued column to a literal value. For information about comparing multi-valued columns, see Multi-valued (ARRAY) Comparisons.

The following example shows the literal value comparison predicate syntax:

…WHERE <column> <comp_op> <literal>
Note The right side of the comparison must be a literal. You cannot compare a column against a computed value, and you cannot compare a column against another column.

The column part can be any valid column, and can be type-cast if necessary. For more information, see Casting the Data Type of a Column.

The literal can be any string, numeric, hexadecimal, Boolean, or date literal. Only exact matches are allowed, and wildcards are ignored. The literal can also be type-cast.

The following table describes the supported comparison operators.

	Comp_op
	Description

	=
	Equal to

	!= or <>
	Not equal to

	>
	Greater than

	>=
	Greater than or equal to

	<
	Less than

	<=
	Less than or equal to

Examples

The following are examples of the literal value comparison predicate.

…WHERE
"urn:schemas-microsoft-com:office:office#Group" = 'Accounting'

…WHERE
"urn:schemas-microsoft-com:publishing:IsCurrentVersion" != TRUE

…WHERE
size >= 10000

Related Topics

Full-Text Predicates
LIKE Predicate
DATEADD Function
MATCHES Predicate
Multi-valued (ARRAY) Comparisons
NULL Predicate
Go back to the top (

DATEADD Function
The DATEADD function performs time and date calculations for matching properties having date types. Use the DATEADD function to obtain dates and times in a specified amount of time before the present. The following example shows the DATEADD function.

DATEADD (DateTimeUnits, OffsetValue, DateTime)
Parameters

DateTimeUnits specify the units of the DateTimeValue parameter. This can be one of "YEAR", "QUARTER", "MONTH", "WEEK", "DAY", "HOUR", "MINUTE", or "SECOND". This value is case-sensitive, and quotation marks are not required around the parameter.

OffsetValue specifies the time offset, in the units specified by the DateTimeUnits parameter. OffsetValue must be a negative integer. Positive values are not supported.

DateTime is a time stamp from which to calculate the offset. This cannot be a date literal. It must be either GETGMTDATE or the result of another DATEADD function.

Remarks

The DATEADD function can only be used in literal value comparisons and only on the right side of the comparison operator.

The GETGMTDATE function returns the current date and time in Greenwich Mean Time (GMT). Remember that this value may not be the same as the local time of your computer.

Do not use the equals (=) comparison operator, because the internal time representation can produce rounding errors that result in unexpected matching results.

You can use multiple DATEADD functions to combine offset units.

Examples

The following example WHERE clause matches documents that were modified within the last five days:

...WHERE "DAV:getlastmodified" <=DATEADD (DAY, -5, GETGMTDATE())
The following example WHERE clause matches documents that were modified within the last two days and four hours:

...WHERE "DAV:getlastmodified" <=DATEADD (DAY, -2, DATEADD (HOUR, -4, GETGMTDATE()))
Related Topics

Full-Text Predicates
Literal Value Comparison
Multi-valued (ARRAY) Comparisons
Go back to the top (

MATCHES Predicate
The MATCHES predicate can perform complex pattern matches on text columns, including "group" or "count" matches. Group matches search for alternative groups of characters in the column, while count matches search for a specified number of occurrences of a match pattern.

Following is the syntax for the MATCHES predicate:

…WHERE MATCHES(<column>,'<group_match> | <count_match>')
The column can be a regular or delimited identifier, and must be single-valued. That is, the column cannot be a multi-valued column. The column is also limited to the properties in the property store.

You specify the text that the MATCHES predicate searches for by using a string literal enclosed in quotation marks. The MATCHES predicate can perform either group matching or count matching. However, you cannot mix the two matching styles.

The following table describes the two matching styles.

	Matching style
	Description

	Group matching
	Consists of search patterns that are matched zero or more times. Also supports defining alternative patterns.

	Count matching
	Consists of search patterns that are matched a specified number of times.

Escaping Special Characters

In the matches string, all the characters with special meaning must be "escaped" from their simple character meaning. The vertical bar (|) character is the escape character, and must appear immediately before the special character. The special characters that must be escaped are the asterisk (*), the question mark (?), the plus sign (+), the right and left parentheses ((and)), the right and left braces ({ and }), and the right and left square brackets ([and]). When a comma (,) is used inside a pattern to delimit alternative patterns, the vertical bar must escape the comma.

Creating Search Patterns

A search pattern is the basic unit of text that the MATCHES predicate searches for in the specified column. When wildcards are in the MATCHES predicate, they apply to the most recently defined pattern.

For example, the plus sign is a wildcard that matches one or more of the preceding patterns. The following pattern matches values that contain one or more "M" characters.

'M|+'
If more than one character appears before the wildcard, only the last character is affected by the wildcard. The following example matches values that begin with "softwar" followed by one or more "e" characters.

'software|+'
To increase the size of a pattern that applies to a wildcard beyond one character, enclose the pattern in escaped parentheses. For example, the following string matches columns that have one or more sequential occurrences of "Comp."

'|(Comp|)|+'
This would match "Comp", "CompComp", "CompCompComp", and other similar permutations.

You can indicate alternatives inside a pattern by separating them with an escaped comma. For example, the following string matches columns that have one or more sequential occurrences of "Computer" or "Software".

'|(Computer|,Software|)|+'
It would match "Computer", "ComputerComputer", "ComputerSoftware", "SoftwareComputer", "SoftwareSoftware", "SoftwareComputerComputerSoftwareSoftware", and so on.

In addition to defining sequences of characters to include, a pattern can also define a range or set of characters to include or exclude from the pattern. Place the desired characters inside escaped square brackets ([and]). To exclude a range or set of characters, place a caret (^) as the first character inside the escaped square brackets. The caret does not need to be escaped.

For example, the following string matches columns containing the letter c, followed by a vowel (a, e, i, o, or u), followed by the letter p.

'c|[aeiou|]p'
The string matches "cap", "cep", "cip", "cop", or "cup".

Similarly, the following string matches columns that have one or more of the letters in the specified range, such as "ca", "cb", "cc", "caa", "cab", "cac", "cba", "cbbbbcccaaaa", and so on.

'c|[a-c|]|+'
Using Group Matching

A group match search string consists of one or more patterns and escaped wildcards. The following table shows and describes the defined group match wildcard characters.

	Character
	Description

	*
	Asterisk matches zero or more occurrences of the previous search pattern.

	?
	Question mark matches zero or one occurrence of the previous search pattern.

	+
	Plus sign matches one or more occurrences of the previous search pattern.

	(...)
	Parentheses delimit the search pattern if the pattern consists of more than one character. They also surround a set of alternative patterns.

	{...}
	Braces delimit the count parameters in a count-matching string.

	[...]
	Square brackets delimit a range or set of characters in a group-matching string.

	,
	Comma separates alternative patterns inside a group-matching pattern.

The MATCHES predicate can have more than one group-matching, pattern-wildcard pair, but you cannot mix group matching with count matching.

The following example matches columns that have the word "computer" followed by zero or more occurrences of the number "75".

'computer|(75|)|*'
It matches "computer", "computer75", "computer7575", and so on.

The following example matches columns that have the word "computer" followed by zero or one "s". The pattern matches "computer" or "computers".

'computers|?'
The following example matches columns that have the word "soft" and one or more occurrences of "ware".

'soft|(ware|)|+'
The pattern matches "software", "softwareware", "softwarewareware", and so on.

The following example matches columns that have one or more sequential occurrences of "Computer" or "Software".

'|(Computer|,Software|)|+'
It matches "Computer", "ComputerComputer", "ComputerSoftware", "SoftwareComputer", "SoftwareSoftware", "SoftwareComputerComputerSoftwareSoftware", and so on.

Using Count Matching

The MATCHES predicate count matching style supports matching the search pattern a specific number of times, or a range of times. Braces ({…}) are used to indicate a count match.

A count match string consists of one or more patterns and count specifiers. You can specify a required number of matches by including the required number in the braces. The MATCHES predicate can match counts from 0 to 256.

The following example matches values that contain the pattern "software" exactly twice. That is, it matches "softwaresoftware". It does not match "software" or "softwaresoftwaresoftware".

'|(software|)|{2|}'
To specify that the pattern must be found at least the specified number of times, follow the count with a comma. The following example matches "computercomputer", "computercomputercomputer", and other similar permutations.

'|(computer|)|{2,|}'
Note Inside a pattern, the comma must be escaped to indicate it is separating two alternatives. The comma should not be escaped when it appears in a count specifier.

To specify that the pattern must be matched within a range of occurrences, include the minimum and maximum count values in the braces, separated by a comma. The following example matches from 1 to 5 occurrences of the letter o in the word "computer". It matches "computer", "coomputer", "cooomputer", "coooomputer", and "cooooomputer".

'co|{1,5|}mputer'
Note If the pattern is not surrounded by escaped parentheses, the wildcard and count specifier apply to the immediately preceding single character.

Related Topics

Full-Text Predicates
LIKE Predicate
Literal Value Comparison
Multi-valued (ARRAY) Comparisons
NULL Predicate
Go back to the top (

Multi-valued (ARRAY) Comparisons
Columns stored in the content index can have multiple values, and those multi-valued columns can be compared with the ARRAY comparison predicate.

The syntax for the ARRAY comparison predicate follows:

…WHERE <column> <comp_op> [<quantifier>] <comparison_list>
An error is returned if the column reference is not a multi-valued column. The column data type must be compatible with the elements of the comparison list. If necessary, the column reference can be cast as another data type.

The comparison operator (comp_op) can be any of the normal comparison operators. In a multi-valued comparison, the comparison operators have slightly different meanings depending on whether a quantifier is used, and which one is used. For this reason, the functions of the comparison operators are given in the tables describing each quantifier.

The comparison list specifies an array of literal values that are compared against the multi-valued column. The syntax for the comparison list follows:

ARRAY [<literal> [,<literal>]]
Important Be aware of the comparison list syntax. The group of literals that make up the comparison list must be surrounded by square brackets, as shown in bold. Do not surround individual elements of the comparison list by square brackets. The non-bold square brackets in the syntax indicate that part is optional. Therefore, ARRAY [1,2,3] is legal, but ARRAY [1[,2][,3]] is not.

The method used to determine whether the multi-valued comparison returns true or false is specified by the optional quantifier. The following sections describe each quantifier, and how each comparison operator functions when the quantifier is used.

Absent Quantifier

If no quantifier is specified, each element on the left-hand (LH) side of the comparison is compared to the element in the same position on the right-hand (RH) side. The comparison begins with the first element in the arrays, and progresses through the last element. If all the elements on the LH side are equivalent to the corresponding elements on the RH side, then the number of array elements is used to determine which array is greater.

The following table shows the operation of the comparison operators when no qualifier is specified and provides a brief description of each.

	Operator
	Description

	=
	'Equal to' returns true when each LH element has the same value as the corresponding RH element, and both arrays have the same number of elements.

	!= or <>
	'Not equal to' returns true when one or more LH elements have values that differ from the corresponding RH elements, or when the LH and RH arrays do not have the same number of elements.

	>
	'Greater than' returns true when the value of each LH element is greater than the value of the corresponding RH element. If all the LH element values exactly match the corresponding RH elements, and the RH array has elements with no corresponding LH elements, 'greater than' returns true.

	>=
	'Greater than or equal to' returns true when the value of every LH element is greater than or equal to the value of the corresponding RH element.

	<
	'Less than' returns true when the value of each LH element is less than the value of the corresponding RH element. 'Less than' also returns true when the LH side has fewer elements than the RH side.

	<=
	'Less than or equal to' returns true when the value of every LH element is less than or equal to the value of the corresponding RH element.

ALL Quantifier

The ALL quantifier specifies that each element in the left-hand (LH) side is compared against every element on the right-hand (RH) side. To return true, the comparison must be true for all elements on the LH side when compared to every element on the RH side. The number of elements in the LH and RH array sides has no effect on the result.

The following table shows how each comparison operator functions with the ALL quantifier.

	Operator
	Description

	=
	'Equal to' returns true when each LH element value is the same as every RH element value.

	!= or <>
	'Not equal to' returns true when one or more of the LH element values is different from any of the RH element values.

	>
	'Greater than' returns true when every LH element value is greater than every RH element value.

	>=
	'Greater than or equal to' returns true when every LH element value is greater than or equal to every RH element value.

	<
	'Less than' returns true when every LH element value is less than every RH element value.

	<=
	'Less than or equal to' returns true when every LH element value is less than or equal to every RH element value.

SOME (or ANY) Quantifier

The SOME quantifier and the ANY quantifier can be used interchangeably. The SOME quantifier specifies that each element in the left-hand (LH) side is compared against every element on the right-hand (RH) side. To return true, the comparison must be true for at least one of the elements on the LH side when compared to every element on the RH side. The number of elements on the LH and RH side arrays has no effect on the result.

The following table shows how each comparison operator functions with the SOME quantifier.

	Operator
	Description

	=
	'Equal to' returns true when at least one of the LH element values is the same as any of the RH element values.

	!= or <>
	'Not equal to' returns true when none of the LH element values is the same as any of the RH element values.

	>
	'Greater than' returns true when at least one of the LH element values is greater than any one of the RH element values.

	>=
	'Greater than or equal to' returns true when at least one of the LH element values is greater than or equal to any one of the RH element values.

	<
	'Less than' returns true when at least one of the LH element values is less than any one of the RH element values.

	<=
	'Less than or equal to' returns true when at least one of the LH element values is less than or equal to any one of the RH element values.

Examples

The following example checks whether documents are in the "Finance" or "Planning" categories:

…WHERE "urn:schemas-microsoft-com:publishing:Categories" =

SOME ARRAY['Finance','Planning']

The following comparisons all evaluate true. Remember that in actual use, the search query syntax requires the left-hand side to be a property, not a literal value.

ARRAY [1,2] > ARRAY [1,1]

ARRAY [1,2] > ARRAY [1,1,2]

ARRAY [1,2] < ARRAY [1,2,3]

ARRAY [1,2] = SOME ARRAY [1,12,27,35,2]

ARRAY [1,1] != ALL ARRAY [1,2]

ARRAY [1,20,21,22] < SOME ARRAY [0,40]

ARRAY [1,20,21,22] < ANY ARRAY [0,40]
Related Topics

Full-Text Predicates
LIKE Predicate
Literal Value Comparison
MATCHES Predicate
NULL Predicate
Go back to the top (

NULL Predicate
The NULL predicate indicates whether the document has a value for the indicated column. The NULL predicate syntax follows:

…WHERE <column> IS [NOT] NULL
The optional NOT keyword negates the result. The column can be a regular or delimited identifier.

Important To test whether a column has the NULL value, you must use the NULL predicate. It is not legal to use the NULL value in a comparison predicate. "WHERE column IS NULL" is the proper method. "WHERE column = NULL" is not allowed.

Example

The following example returns documents that have no related documents.

…WHERE "urn:schemas-microsoft-com:publishing:RelatedDocument" IS NULL
Related Topics

Full-Text Predicates
LIKE Predicate
Literal Value Comparison
MATCHES Predicate
Multi-valued (ARRAY) Comparisons
Go back to the top (

RANK BY Clause
The results from a search query include both the rows returned by the query and the rank column, if included in the query. The rank values are calculated by the search engine, and are returned as integers in the range zero (0)to 1000. To make the rank results more meaningful, the query can control how ranks are calculated, and can also affect the returned rank values. Both operations are performed in the RANK BY clause.

Following is the syntax for the RANK BY clause:

…WHERE(<search_condition>)

RANK BY[(]<rank_specification>[)]

The RANK BY clause is applied to the search condition immediately preceding it. You must surround the search condition with parentheses. Parentheses surrounding the rank specification are optional.

You can apply more than one RANK BY clause to a single condition. Include additional RANK BY clauses, one after the other, using parentheses.

Note Full-Text Predicates return rank values in the range 0 to 1000. Rank values for all documents matched by a non-full-text predicate are 1000. Modifications you make to the rank values should take this into account.

There are two types of rank specifications: WEIGHT and COERCION. The WEIGHT function applies a multiplier to the rank value for the returned row. The COERCION function can be used to multiply, add, or set a specific rank value for the row.

In each rank specification, you can include either zero or one WEIGHT function. You can also include zero or more COERCION functions. If you include both WEIGHT and COERCION functions in a RANK BY clause, the WEIGHT function must be first.

WEIGHT Function

Following is the syntax of the WEIGHT function:

…WEIGHT(<weight_multipler>)
Note The CONTAINS and FREETEXT predicate column weighting features support a shorthand format using a colon. The RANK BY clause does not support the shortened form.

The multiplier must be a decimal fraction value from 0.001 to 1.000. The weight value is multiplied by the value returned by the search condition predicate.

The following example WHERE clause uses the WEIGHT function to move documents having the word "computer" in the title higher than those having it the content field:

…WHERE CONTAINS ("urn:schemas.microsoft.com.fulltextqueryinfo:contents",'computer') RANK BY WEIGHT(0.25)

OR CONTAINS
("urn:schemas-microsoft-com:office:office#Title",'computer')

RANK BY WEIGHT (0.90)

Note RANK BY WEIGHT does not work with CONTAINS clauses that use Boolean conditions, for example:

…CONTAINS
("urn:schemas.microsoft.com.fulltextqueryinfo:contents",

'"computer" and "software"')

COERCION Function

You can use the rank COERCION function to change the returned rank value by adding, multiplying, or configuring it to a specific value. Following is the syntax of the COERCION function:

…COERCION(<coercion_operation>,<coercion_value>)
The coercion value must be an integer value, or a decimal value between 0 and 1. If a decimal value is supplied, only three digits of precision are allowed.

The following table describes the available coercion operation settings.

	Coercion operation
	Description

	ABSOLUTE
	The rank value returned is the value specified in the coercion value. The value must be from 0 to 1000.

	ADD
	The rank value returned is the sum of the original rank value and the specified coercion value. The value must be from 0.001 to 1.0.

	MULTIPLY
	The rank value returned is the product of the original rank value and the specified coercion value. The value must be from 0.001 to 1.0.

Important Microsoft SharePoint Portal Server Search (SharePointPSSearch) can return rank values only in the range of 0 to 1000.

Example

The following example uses the COERCION function to set the rank of all documents with "computer" in the title to 1000, while reducing by half the rank of documents containing both "computer" and "software" in the title.

…WHERE CONTAINS
("urn:schemas-microsoft-com:office:office#Title",'computer')

RANK BY COERCION(ABSOLUTE,1000)

OR CONTAINS("urn:schemas-microsoft-com:office:office#Title",'"computer" AND "software"')

RANK BY COERCION(MULTIPLY,0.500)

Related Topics

FROM Clause
Non-Full-Text Predicates

HYPERLINK \l "ORDERBYClause"

ORDER BY Clause

SELECT Statement
Understanding Relevance Values
Go back to the top (

ORDER BY Clause
The ORDER BY clause sorts the results based on the value of one or more columns you specify. Following is the syntax of the ORDER BY clause:

…ORDER BY <column> [<direction>] [,<column> [<direction>]]
The column specifier must be a valid column. You can use the column specifier to refer to columns by the order that they appear in the query. The first column in the query is numbered 1.

You can include more than one column in the ORDER BY clause, separated by commas.

The optional direction specifier can be either "ASC" for ascending (low to high) or "DESC" for descending (high to low). If you do not provide a direction specifier, the default, ascending, is used. If you specify more than one column, but do not specify all directions, the direction you specify last is applied to each column until you explicitly change the direction.

For example, in the following ORDER BY clause, the columns A, B, C, and G are sorted in ascending order, while columns D, E, and F are sorted in descending order.

…ORDER BY A ASC, B, C, D DESC, E, F, G ASC
Related Topics

FROM Clause
Full-Text Predicates
Non-Full-Text Predicates

RANK BY Clause
SELECT Statement
Go back to the top (

SET Statement

The SET statement can be used to specify certain options for the query. The options that you can specify using the SET statement are PROPERTYNAME and RANKMETHOD.

PROPERTYNAME

You can associate a property with a friendly alias for the query, using the following syntax:

SET PROPERTYNAME <guid_format>

PROPID <property_id> | <property_name>

AS <column_alias> [<type_clause>]

RANKMETHOD

You can specify the rank method for queries with the ISABOUT term, using the following syntax:

SET RANKMETHOD <rankmethod>
Note The RANKMETHOD methods that can be specified using the SET statement are JACCARD COEFFICIENT, DICE COEFFICIENT, and INNER PRODUCT. For more information about these methods, see RANKMETHOD Term.

Go back to the top (

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS

DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Microsoft, Microsoft Office SharePoint Portal Server, Microsoft SharePoint Products and Technologies, SQL, OLE DB, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

� This documentation will be released in January, 2005 as part of the Microsoft SharePoint Products and Technologies 2003 Software Development Kit (SDK). Look for updates on the � HYPERLINK "http://msdn.microsoft.com/office/understanding/sharepoint/default.aspx" ��Microsoft Office SharePoint Portal Server 2003 portal� on the � HYPERLINK "http://msdn.microsoft.com/office" ��Office Developer Center�.

1

