[image: image6.jpg]e
Windows Server System

[image: image7.jpg]

[image: image1.png]Microsoft:

SQL Server 2000

Microsoft SQL Server Migration Assistant™ for Oracle
Facilitating Database Migration
Published: March 2005
For the latest information, please see http://www.microsoft.com/sql/migration.
[image: image6.jpg]
Contents

1Introduction

Assessment Phase
1
Schema Conversion
3
Data Migration
5
Business Logic Conversion
5
Validation, Integration, and Performance Analysis
12
Conclusion
14

Introduction
SQL Server is the premier relational database management system on the market today. According to recent reports by IDC (see http://news.com.com/Database+sales+show+some+life/2100-1012_3-5602603.html), SQL Server is the fastest growing database on the market. Customers are adopting SQL Server in large numbers because of its low total cost of ownership, ease of management, robust security and enterprise class scalability, availability and reliability. However, many customers are still running their applications on other database such as Oracle and DB2. This is primarily because of the cost and complexity of migrating these databases to SQL Server.
To address this situation, Microsoft is offering a new product to make migration to SQL Server easier. Microsoft SQL Server Migration Assistant (SSMA) automates the process of migrating from other databases to SQL Server. This paper will explain each step of the database migration process and discuss how SSMA significantly speeds up, and reduces the cost of, every one of the steps. The initial release of SSMA addresses Oracle to Microsoft SQL Server 2000 migration.
SQL Server Migration Assistant consists of the following major components:

· Migration Analyzer — evaluates the complexity of the migration project.
· Schema & Data Migrator and SQL Converter — performs database conversion and provides a powerful IDE for cross-platform database developers.
· Migration Tester — provides automated validation of the migration process.
Migrating your application from other database systems to SQL Server includes the following phases.
· Assessment phase
· Schema conversion
· Data migration
· Business logic conversion
· Validation, integration, and performance analysis
The following sections cover each of these steps using the SQL Server Migration Assistant to show how the migration is accomplished.
Assessment Phase

When IT has determined that it would be beneficial to migrate a number of databases from Oracle to SQL Server; the first step in the migration is to assess the difficulty, time and cost of the migration. Factors that contribute directly to this are the “complexity” of the databases and of the applications that use them. While there is no formal measure of database complexity, a database will be increasingly complex and costly to migrate the more business logic objects (stored procedures, functions, triggers, packages, and so forth) it contains. Adding to the migration complexity are system function differences between the two platforms. Functions provided on one platform may not be provided on the other, or there may be syntactic or semantic differences in the implementation of common functions.

The complexity of migrating the applications to the new database also need to be assessed. Contributing to the complexity is the number of SQL requests made by the application, because all of them must be converted. More importantly, the degree to which dynamic SQL is used adds significantly to the conversion complexity, because a major code rewrite may be necessary to convert dynamic SQL queries.

The result of the migration assessment is an estimate of the amount of effort that is required to accomplish each step in the migration process, and the overall expense of the project. It should be noted that conducting a migration assessment can itself be a time consuming and costly effort. It’s not unusual for an assessment to take several months for a large migration project, and to cost tens of thousands of dollars.
Fortunately, there’s a new migration assessment tool, SSMA Migration Analyzer, which performs a deep analysis to obtain estimates of the time and effort required to migrate a database. Typically, an assessment will take less than a day to complete. The tool provides an estimate of the labor required to migrate the database manually, as well as the percentage of the database that can be converted automatically. The Migration Analyzer computes approximately 100 specific statistics that comprehensively characterizes the database. The SQL Converter typically converts more than 90 percent of the SQL code, automatically, and it has accomplished up to 99 percent automatic code conversion. In addition to the comprehensive profile of the Oracle database, the assessment report indicates the database objects that the SQL Converter can’t convert together with the specific constructs in the code that cause the problem.

The following are some of the statistics computed by the Migration Analyzer over all database objects in the source Oracle database. The statistics include:

· Total number of database objects such as procedures, functions, triggers, tables, indexes, packages, sequences, and views.
· Total number of code lines, including per-object statistics.
· Total number of SELECT, INSERT, DELETE, and UPDATE statements.
· Total number of CURSORs, RECORDs, and EXCEPTIONs.
· Total number and percentage of automatically convertible components.
· Estimated complexity of conversion.
· Estimated migration of the project length in terms of manual work hours (assuming the SSMA is NOT used).
The statistics provided by the Migration Analyzer can be saved into an external file in Excel-compliant format to enable the user to work with this data offline if they choose.
The following screen shot shows how the Migration Analyzer presents these statistics to the user:

[image: image2.png]< SQL Server Migration Assistant -- Migration Assessment Report
Object Name. Totel Objects Person Hours Wi Person Hours Wi... Complexty wiaut .. Complexity wih £)
5 BOOK_USER) 620 146,75 275 o503
5 Functons 950 %8 70 1730
ACCOUNT_BALANCE 025 085 15| i
BETANSTR 135 268] 157
BOOKTITLE 10 158 6 281
DATE RANGE 143 28 e 168
DYNCALS 243 657 8
MY_TO_DATE 23 805]
TABCOUNT 027 03 s
WORDCOUNT 073 207 124
5 Packages 1o 255 i)
= BOOK_INFO 1 007 033 x
= PackagedProcedres. 007 033 2
DiSPLAY. 007
EMPLOYEE PKG 245 958
= EpLUI 148 53
= PackagedFunctions 148 53
ONEROW 118
© EvpLLR 0m 0m
= PackagedFunctions 0m 0m
ONEROW 0
= ERRPKG 268 80
= PackagedFunctions 137 563
ERRTEXT 13
5 PackagedProcedres 13 23
RAISE 105
RECNGO 013
RECNSTOP 013
© FLEO 0m
= PackagedFunctions 0m
DEBLIGGING 0m
PATH o0m
PATHLST 0m
5 PackagedProcedres 0m
0BG 0m

]

Csrowteamngtine] [severpot.] [_ewmams o] |

Schema Conversion
Schema and object mapping

The schema is the basis for defining the target database. In migrating from Oracle to SQL Server, the new schema can be derived in a fairly straightforward manner from the original schema. Because of feature differences between the two platforms, the mapping between the schemas may not be one to one. An example of where this arises is in dealing with long-valued attributes such as BLOBs.

Oracle supports multiple BLOB-valued attributes per table while SQL Server supports only one per table. In this case, a single table in Oracle may map to multiple tables in SQL Server. Because of such differences, migrating the data between databases may not be a simple table copy, because the new table structures may be somewhat different from the old ones. Tools to help in the manual definition of database schemas have been available for many years. Another set of tools exist to transform and physically move large databases between platforms. The Schema & Data Migrator (SSMA) automatically converts an Oracle database schema (tables, constraints, indexes) to a Microsoft SQL Server schema and physically migrates the data to populate the new database.

When the SSMA starts the user connects to:
· The source Oracle database specifying the following parameters:
Hosname, port, SID, username, password.

· The target Microsoft SQL Server (SQL SERVER) database specifying the following parameters
Hostname, port, instance name, database name, schema, username, password.
The user will be presented with the following GUI:
[image: image3.png]SQL Server Migration Assistant for Oracle:

File Edit Tools View License Help

B3 %y | B Assessment £ comvert saL g hirate Dot (@) | H (@

4 source DB - Oracle saL Text
8 my_to_vate create or replace PROCEDURE "E00K_USER". accounts_loop_L
(€] tabcount 1S
(& wordcount account_id accounts.account_idWTYPE
i Packages S| balance remsining accounts.balancesIVPE;
[I7) Procedures BEGIN
B _accounts_loop_1] Loop
(Bl accounts_loop_2 balance_remaining := account_balance (account_id):
12 s b IF nalence. senatning < 2000
(5} i schese e
g e par;
(Bl insert_book_no_complair ELSE
2 oo appiy_balance (account_id, batance_sensinind)
5 oo eyenke2 B
(B set_all_ranks3 END L0O]
V1 [Pl set book info | [END;
< i Ii >
3 Torgot00_saL sorver S Ton
S A CREATE A
B TROCEDIRE 247, ACcOUITS 1007 1
0 @ iem as
0B kate 7
08 st ~ Generated by SQL Server Migration Assistant for Oracle
[B test_connectot m -~ Please, contact SSMAINFOSmicrosoft.com or visit http://go.microsoft.com/fwlink/?Linkl
O B vetal ey
= 0B 2 DECLARE
IE) Functions
& [B Procedres Jussis u
[WRC_AccounTs Loop 1 + WARNING ORAZMS-4016 line: 3 col: 16: Type NIBBER was changed to float(53)
[] B GENERATE_LOAD_DATA, Povvoy:
[B GENERATE_LOAD_DROP.
[0 B GETSUMTOTABLE
g & omaro faccount,_14 float (59,
0 & rrocéoure 02
[B TEST_ADD_NEW_EMPLO 4
0 B et oo tenpeo ARG 0RANS-4016 tines 4 cots 25: Type NDBER was changed to f1ost (55) @
< i Ii > < i >

bone. Sor

The upper half represents the source database objects, accessible through the navigation controls on the left. Similarly, the lower half presents translated objects ready for insertion into the source database. The user can select source objects, in this case from the Oracle database (default or any other schema), that are to be converted to the SQL Server schema. The converted objects can then be browsed in the lower half of the display. In addition, when the user has reviewed the generated objects and possibly made some revisions to the schema, they can generate a script for loading the generated schema into SQL Server.

For Oracle system functions and procedures that don’t have direct counterparts in SQL Server there is a database SYSDB with schema SYS, and the installation scripts will load UDFs, stored procedures, and extended stored procedures that emulate the behavior of Oracle objects. When a table is saved as a script, two files are produced: one with table and index definitions, and another one with constraints and triggers. A new column ROWID of uniqueidentifier data type with NEWID() default value will be added to each converted table to assist with trigger conversions.

Data type mapping

When converting tables, Oracle scalar data types will be converted to SQL Server data types based on the following rules:

varchar2 → varchar

char → char

number → numeric

date → datetime

long → text

nvarchar2 → nvarchar

boolean → smallint

Constraint mapping and conversion

Defaults on Oracle will be converted to defaults on SQL Server, primary keys to primary keys, unique keys to unique keys, foreign keys to foreign keys, NOT NULL constraints to NOT NULL, check constraints to check constraints. Defaults, primary keys, unique keys, and foreign keys will preserve their names.
View conversion

Views on Oracle will be converted to views on SQL Server.

Index conversion

Indexes on Oracle will be converted to indexes on SQL Server.

Sequence conversion

· Sequences on Oracle will be emulated on SQL SERVER using a table and two functions. Each sequence will be represented as a row in the SequenceEmulator table.

· SeqName.CURRVAL will be converted into a db_get_curr_sequence_value function call.

· SeqName.NEXTVAL will be converted into a db_get_next_sequence_value function call.

Data Migration
Another set of tools exist to transform and physically move large databases between platforms. The Schema & Data Migrator (SSMA) automatically converts an Oracle database schema (tables, constraints, indexes) to a Microsoft SQL Server schema and physically migrates the data to populate the new database.

After the schema is converted, the data can be migrated. It will be migrated on a per table basis one by one or all selected tables at once. Because the data migration process inserts records into the target table, it is the user’s responsibility to see that no constraints or triggers will prevent records from being inserted into the table.

Business Logic Conversion
As noted previously, the complexity of a database from a migration perspective is a function of the number of business logic objects it contains, the size of those objects, and the particular language features used to implement them. Additional complexity derives from differences in the system function libraries provided in the two platforms.

For example, Oracle’s stored procedure language, PL/SQL, has many features not supported in Transact-SQL (T-SQL), the stored procedure language of SQL Server, and even where similar features exist, the languages contain many syntactic and semantic differences. To migrate a PL/SQL object that uses a feature that has no T-SQL counterpart requires that that capability be emulated in T-SQL using the available features. Developing a good emulation can be quite subtle and time consuming. In fact many subtleties need to be addressed in the migration whether developing emulations for missing features or accounting for semantic differences in corresponding features.

SQL conversion

· Outer joins of (+) form on Oracle will be converted to ANSI-standard outer joins on SQL Server.

· Hints on Oracle will be converted to hints on SQL Server. Currently supported hints include FIRST_ROWS, INDEX (tablename indexname), APPEND, MERGE_AJ, MERGE_SJ, MERGE(tablename). Some of the Oracle hints don’t have equivalent SQL Server hints, and they will be ignored.

Example:

	Oracle
	Microsoft SQL Server

	select /*+ first_rows index (rank_table ix_rank_table_1) */ r_id

from rank_table;
	select r_id

from rank_table with (index (ix_rank_table_1))

option (fast 1)

· Boolean data type on Oracle is converted to smallint on SQL Server, using various rules.

Example:

	Oracle
	Microsoft SQL Server

	declare
 v1 boolean := true;

 v2 boolean := false;

 …

begin

 …

 v1 := (x>3) and v2;
end;;
	Declare

 @v1 smallint,

 @v2 smallint

 set @v1 = /* TRUE */ 1

 set @v2 = /* FALSE */ 0

begin

 set @a = case when ((@x>3) and (@v2 <> /* FALSE */ 0)) THEN /*TRUE*/ 1 ELSE /*FALSE*/ 0 end

end

Stored procedure and function conversion

Stored procedures on Oracle will be converted to stored procedures on SQL Server.

· String parameters with unspecified length will be converted to varchar(8000) and a warning will be reported.

· Numeric parameters with unspecified length and precision will be converted to numeric(38, 10) and a warning will be reported.

Functions on Oracle will be converted to user-defined functions on SQL Server.

· A function containing UPDATE/INSERT/DELETE statements will be replaced with a function and a stored procedure containing the body of the source Oracle function.

· A function containing an output parameter will be replaced with a stored procedure. There is a limited number of cases where such replacement may not be fully equivalent, and those cases should be handled manually.

Trigger conversion

Triggers will be converted to triggers based on the following rules:

· BEFORE triggers will be converted to INSTEAD OF triggers.

· AFTER triggers will be converted to AFTER triggers.

· Row-level triggers will be emulated using cursor processing.

· Multiple triggers defined on the same operation will be combined into one trigger.

Example:

	Oracle
	Microsoft SQL Server

	create trigger tr_bi_rank_table

 before insert on rank_table for each row

begin

 select seq_rank_id.nextval
 into :new.r_id from sys.dual;

end;
	create trigger instead_of_insert_on_rank_table

 on rank_table instead of insert

as

 /* begin of trigger implementation */

 set nocount on

 /* column variables declaration */

 declare

 @column_new_value____1 numeric,

 @column_new_value____2 varchar(50),

 @column_new_value____3 numeric,

 @column_new_value____4 char(1)

 /* iterate for each row from inserted/deleted tables*/

 declare ForEachInsertedRowTriggerCursor cursor local forward_only read_only

 for select “RANK”, “RANK_NAME”, “R_ID”, “R_SN”

 from inserted

 open ForEachInsertedRowTriggerCursor

 fetch next from ForEachInsertedRowTriggerCursor

 into @column_new_value____1,@column_new_value____2, @column_new_value____3,@column_new_value____4

 while @@fetch_status = 0

 begin

 /* Oracle trigger tr_bi_rank_table implementation: begin*/

 begin

 select @ column_new_value____3 = SYSDB.SYS.DB_GET_NEXT_SEQUENCE_VALUE (‘SCHEMA_NAME’, ‘SEQ_RANK_ID’)

 end

 /* Oracle trigger tr_bi_rank_table implementation: end*/

 /* DML-operation emulation */

 insert into rank_table (“RANK”, “RANK_NAME”, “R_ID”, “R_SN)” values (@column_new_value____1,@column_new_value____2, @column_new_value____3,@column_new_value____4)

 fetch next from ForEachInsertedRowTriggerCursor

 into @column_new_value____1,@column_new_value____2, @column_new_value____3,@column_new_value____4

 end

 close ForEachInsertedRowTriggerCursor

 deallocate ForEachInsertedRowTriggerCursor

 /* end of trigger implementation */

Package conversion

· Package functions will be converted to user-defined functions using PackageName_FunctionName naming convention.

· Package procedures will be converted to stored procedures using PackageName_ProcedureName naming convention.

· Package variables are emulated using a table and a set of functions.

System functions

System functions will be converted to either Microsoft SQL Server system functions or user-defined functions from the provided system function library.
Control statements

· IF statement will be converted to IF statement.

· IF-ELSIF… ELSIF-ELSE-END IF statements will be converted to nested IF statements.

· NULL statement will be converted to a call to SYSDB.SYS.DB_NULL_STATEMENT procedure.

Example:

	Oracle
	Microsoft SQL Server

	declare v1 numeric;

begin

 v1 := 1;

 if v1 > 1 then

 dbms_output.put_line (‘1>1’);

 v1 := 100;

 elseif v1 > 2 then

 dbms_output.put_line (‘1 > 2’);

 v1 := 200;

 else

 dbms_output.put_line (‘None’);

 null;

 end if;

end;
	declare @v1 numeric

begin

 set @v1 = 1

 if (@v1 > 1)

 begin

 print ‘1>1’

 set @v1 = 100

 end

 else

 if (@v1 > 2)

 begin

 print ‘1>2’

 set @v1 = 200

 end

 else

 begin

 print ‘None’

 exec SYSDB.SYS.DB_NULL_STATEMENT

 end

end

· CASE statement will be converted to CASE statement.

· GOTO statement will be converted to GOTO statement.

Loop statements

· LOOP statement (with EXIT or EXIT WHEN) will be converted to WHILE (1=1) statement with BREAK statement.

Example:

	Oracle
	Microsoft SQL Server

	loop
exit when rank > max_rank;

 do something;

 rank := rank + 1;

end loop;
	while (1 =1)

begin

 if @rank > @max_rank

 break

 do something

 set @rank = @rank + 1

end

· WHILE statement will be converted to WHILE statement.

Example:

	Oracle
	Microsoft SQL Server

	while rank <= max_rank

loop
 do something;

 rank := rank + 1;

end loop;
	while (@rank <= @max_rank)

begin

 do something

 set @rank = @rank + 1

end

· Numeric FOR loop (including optional REVERSE keyword) will be converted to WHILE statement.

Example:

	Oracle
	Microsoft SQL Server

	for rank in 1..max_rank

loop

 do something;

end loop;
	declare @rank int

set @rank = 1

while (@rank <= max_rank)

begin

 do something

 set @rank = @rank + 1

end

Cursor conversion

· Cursors will be converted to cursors.

· Cursor attributes will be converted as follows:

· cursor_name%NOTFOUND ((@@FETCH_STATUS = -1)

· cursor_name%FOUND ((@@FETCH_STATUS = 0)

· cursor_name%ISOPEN ((cursor_status (‘local’, ‘cursor_name’) = 1)

· cursor_name%ROWCOUNT (@v_cursor_name_rowcount declared and incremented after each fetch operation

Example:

	Oracle
	Microsoft SQL Server

	Declare
 cursor rank_cur is

 select rank, rank_name

 from rank_table;

 rank_rec rank_cur%ROWTYPE;

begin

 open rank_cur;

 loop

 fetch rank_cur into rank_rec;

 exit when rank_cur%NOTFOUND;

 do something;

 end loop;

 close rank_cur;

end;
	Declare
 @v_rank_cur_rowcount int,

 @rank numeric,

 @rank_name varchar(50)

declare

 rank_cur cursor for

 select rank, rank_name

 from rank_table;

begin

 open rank_cur

 set @v_rank_cur_rowcount = 0

 while (1=1)

 begin

 fetch next from rank_cur

 into @rank, @rank_name

 set @v_rank_cur_rowcount
 = @v_rank_cur_rowcount + 1

 if (@@fetch_status = -1)

 break

 do something

 end

 close rank_cur

 deallocate rank_cur

end

· Cursors with parameters will be converted to multiple cursors.

Example:

	Oracle
	Microsoft SQL Server

	declare
 cursor rank_cur (id number, sn char(1))

 is select rank, rank_name

 from rank_table

 where r_id = id and r_sn = sn;

begin

 open rank_cur (1, ‘c’);

 open rank_cur (2, ‘d’);

end;
	declare
 @id numeric,

 @sn char(1)

begin

 set @id = 1

 set @sn = ‘c’

 declare

 rank_cur_1 cursor for

 select rank, rank_name

 from rank_table

 where r_id = @id and r_sn = @sn

 open rank_cur_1

 set @id = 2

 set @sn = ‘d’

 declare

 rank_cur_2 cursor for

 select rank, rank_name

 from rank_table

 where r_id = @id and r_sn = @sn

 open rank_cur_2

end

· Cursor FOR loop will be converted to a cursor with local variables.

· CLOSE cursor_name will be converted to CLOSE cursor_name and DEALLOCATE cursor_name.

RETURN conversion

· RETURN statement will be converted to RETURN statement.

Comments conversion

· Comments will be converted to comments.

Variable declaration conversion

· Static variable declarations will be converted to variable declarations.

· Variable declarations including %TYPE have the column data type resolved at conversion time. For example, if a variable is declared in the following way:

var1 table1.col1%TYPE;

and the col1 in table1 has varchar2(50) data type, then it will be converted to:

var1 varchar(50)
· Variable declarations including %ROWTYPE on Oracle will be converted to a group of local variables on SQL Server.

· RECORDs on Oracle will be converted to a group of local variables on SQL Server.
Example:

	Oracle
	Microsoft SQL Server

	create or replace procedure test_proc

(

 arg_rec1 table1%ROWTYPE;

 arg_rec2 table2%ROWTYPE;

)

as

 type rec is record
 (

 col1 int;

 col2 table1.c1%TYPE;

 col3 varchar2(32)

);

 rec1 rec;

begin

 rec1 := NULL;

 rec1 := arg_rec1;

 rec1.col2 := arg_rec2.col1_table1;

end;
	create procedure test_proc

 @arg_rec1_col1_table1 numeric (38),

 @arg_rec1_col2_table1 numeric (38),

 @arg_rec1_col3_table1 varchar (32),

 @arg_rec2_col1_table1 numeric (38),

 @arg_rec2_col2_table1 numeric (38),

 @arg_rec2_col3_table1 varchar (32)
as

declare
 @rec1_col1 int,

 @rec1_col2 numeric,

 @rec1_col3 varchar (32)

begin

 set @rec1_col1 = null
 set @rec1_col2 = null
 set @rec1_col3 = null
 set @rec1_col1 = @arg_rec1_col1_table1
 set @rec1_col2 = @arg_rec1_col2_table1

 set @rec1_col3 = @arg_rec1_col3_table1

 set @rec1_col2 = @arg_rec2_col1_table1

end

Exception conversion

Exceptions will be emulated in Transact-SQL. The emulation can be turned on or off. If it’s off, then no exception handling will happen in SQL Server. If the emulation is on, then user-defined and system exceptions are converted using IF, GOTO statements, and user-defined functions. Currently supported system exceptions include NO_DATA_FOUND and TOO_MANY_ROWS. All user exceptions are supported.

Procedure and function call conversion

· Procedure calls will be converted to procedure calls.

· Function calls will be converted to function calls.

Transaction management conversion

· BEGIN TRAN, COMMIT, and ROLLBACK statements on Oracle will be converted to the corresponding BEGIN TRAN, COMMIT, and ROLLBACK statements on SQL Server.

· Because in Oracle transactions are started automatically when a DML operation is performed, in SQL Server we will allow implicit transactions by using SET IMPLICIT_TRANSACTIONS ON statement or will use BEGIN TRAN and COMMIT TRAN.

· SAVEPOINT will be converted to SAVE TRANSACTION.

Validation, Integration, and Performance Analysis
The Zebra Visualization Tool extends the GUI to address the need for testing as well as to enable the user to follow the automated migration process. After the PL/SQL code has been converted, this tool allows the user to easily browse through the code and to find the corresponding code structures. One simply clicks the colored component in one window and they will see the corresponding converted component in the second window. The following screen shot shows how this correspondence is presented by using color-coded stripes.

[image: image4.png]SQL Server Migration Assistant for Oracle:

File Edit Tools View License Help

By %5 | [B assessmert G2 Convert saL fgiciaccats (@) €| F @

Source DB - Oracle

Zebra Parsed SaL

) my_to_sste
[tacourt
B} wordcourt
D Packages
[E) Procedures
[B] accounts_loop_1
B _account:
2] apply_palance
[B) i schecule
[B) calo_values
[B) courty
[B) insert_book_no_complar
[B) set_all_ranks
[B] set_al_ranks2
[B] set_al_ranks3
[B) set ook info
V1 [set_rank
< I >

k3

G CREMTE OR REPLACE]
] PROCEDURE. "B0TK_USER" . accounts_Loop_2

as
) EEGTH

Gl Loop

/% Calowlate the balance %/

balance_renaining 1= account_balance(account_id):

/% Ewbed the IF logic into the EXIT statement %/

EXIT WHEN (balence_remaining < 1000);

74 Target D5 - SaL server

E3

oo
quest
tom
eie
ot
o g—
vaa
0) Furctons
] B rroceires
[&) AccowTs Loop1
T _accounts_Loor 2]
GENERATE LoAD_DATA
GENERATE 04D DROP
ceTsiToTasLE
st 257
1Pl PROCFDIRE 12

© 8000000004

5]
B
B
B

/% Calowate the balance */

SET @balance_renaining = ZAV. ACCOUNT_BALANCE (Baccount_id)

%

/% Enbed the IF logic into the EXIT statement

After some objects are converted, the workspace can be synchronized with both the source and the target databases. The synchronization can be configured with the following options:

· Always overwrite database objects with local workspace objects.
· Always overwrite local workspace objects with database objects.
· Automatically merge objects based on the last change date.
Conclusion
SQL Server Migration Assistant enables customers to migrate their applications from other database to SQL Server easily and in a predictable manner. Microsoft SQL Server Migration Assistant automates almost every aspect of database migration. As a result, the time, cost, and risks associated with migrating to SQL Server are greatly reduced. With SQL Server Migration Assistant customers do not have to be locked into an expensive database on an expensive anymore.
[image: image5.jpg]-

Windows Server System™

Integrated server infrastructure software that
improves manageability, reliability, security, and
integration with your existing systems so you can
spend more time adding valuable new
capabilities to your business.

www.microsoft.com/windowsserversystem

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows Server System, Visual Studio, SQL Server, and SQL Server Migration Assistant, are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

1

