
[image: image1.jpg]Microsoft

Windows Server2003

[image: image7.wmf]

Preparation, Verification, and Deployment of Applications
Microsoft Corporation

Published: November 2002
Abstract

This white paper describes how to prepare for and implement an application deployment process, whether the deployment involves new software or updates to existing software.

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server, Visual Basic, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

4Introduction

5.NET Advantages

5Deployment

7Preparing for Application Deployment

7Assemblies

7Assembly Manifest

9Global Assembly Cache (GAC)

10COM/.NET Interoperability

12Deployment Guidelines

12Private Deployment

12Shared Deployment

13Deploying for Localization

13Creating Auto Updatable Windows Applications

16Implementing the Deployment Process

20Deploying Different Types of Applications

24Deploying the Windows Server 2003 and the .NET Framework

25Conclusion

26Related Links

Introduction

Traditionally, deploying applications and updates to applications has been expensive, intrusive to operations, and error-prone. When it was only possible to have one version of a DLL running on a machine that had to be shared among all applications requiring that DLL’s services, updating a DLL to correct a problem in one application might break another application. DLLs being used by applications could not be updated without halting the application, and often, even restarting the machine. This so-called “DLL Hell” wasn’t unique to Windows®, but Microsoft has architected a uniquely robust solution to the problem.

.NET Advantages

In the .NET Framework, DLLs are private to a single application by default. However, developers can explicitly publish shared components without being subject to “DLL Hell.” Windows allows multiple versions of a single DLL to be installed on a single machine and even loaded simultaneously. Side-by-side (SxS) deployment allows multiple versions of the .NET Framework, custom components, and applications to coexist. The .NET architecture's advanced process isolation and version control eliminates DLL conflicts and allows for zero-impact installations.

Deployment

Windows Server 2003 makes deploying new applications easier, more reliable, and less expensive. The .NET Framework protects the existing investment by allowing interoperability with legacy COM components, but it eliminates COM’s cumbersome registry management. Self-describing, self-contained assemblies can be deployed without registry entries or dependencies. Using reflection, metadata within an assembly manifest can be examined, allowing administrative tools to query and use arbitrary assemblies. Private assemblies can simply be copied into any directory for deployment. Shared components are no longer recorded in the registry, but are fully qualified by strong names and stored in the Global Assembly Cache (GAC).

Developers can specify which version of a DLL an EXE should use, and the Common Language Runtime (CLR) enforces versioning policy. Administrators can use hosts, such as ASP .NET, to update DLLs on the fly, even on remote computers. Dynamic just-in-time (JIT) compilation allows code to be generated or transmitted dynamically at runtime. .NET offers excellent interoperability with Web standards, including XML/SOAP. Refer to “Integration Outside the Firewall” for details on integrating legacy applications with .NET.

Incremental and on-demand deployment allows you to deploy only what you need when you need it; updates can be deployed with less bandwidth, and changes can be automatically propagated to application servers and clients. Caching and incremental downloading keep bandwidth requirements to a minimum.

.NET also offers multi-tiered security, a significant improvement over other languages and technologies including COM and non-Microsoft products. Because identity is code-based rather than user-based, different code segments can enforce different security restrictions, therefore allowing partially trusted code. Security policy is set by the administrator, and no certificate dialog boxes appear. Refer to “Securing the Platform” for a full discussion.

.NET offers numerous deployment options, discussed in greater depth below. Briefly, the Microsoft Windows Installer reduces deployment time and costs, while supporting rich features, like automated updating of the GAC and uninstallation. Even traditional “desktop” Windows applications can be updated over a network. Deployment can be automated from the Microsoft System Management Server (SMS) Administrator console, or you can use Active Directory for easy, enterprise-wide distribution. Administrators can use the Microsoft Windows Installer to advertise, publish, repair, or install updates on demand. The Microsoft Application Center manages deployment across a server cluster. It can monitor, manage, and remove network load balancing (NLB) member nodes without halting the server application.

One of the biggest problems with smart applications was the deployment of those applications to client machines. The .NET Framework has support for building smart Windows applications that support a new concept known as trickle-down deployment. This technology allows you to deliver Windows applications over HTTP. The applications are automatically downloaded to the client workstation at run time. Updates to the application can be posted to the deployment server and will automatically flow to the client workstations. The deployment server can be any HTTP server, including Internet Information Services (IIS). You can also use NLB clusters to deploy these applications.

Trickle-down deployment works because an assembly contains a manifest that describes all of its dependences. This means you no longer have to register a component in order to use it. There are several advantages this provides, including trickle-down deployment and version control. Together, these mean installing a new client application will not have adverse side effects and installing an application can be as simple as a user clicking a link on a web page or in an email. The Code Access Security infrastructure in the .NET Framework allows systems administrators to control what code can do based on where it comes from. This makes dynamically downloading and running applications safe.

Preparing for Application Deployment

It is important for IT professionals to understand what an assembly is and how it works. This is important because with this understanding you can more easily figure out your deployment needs and find and solve problems when they occur. It is also important to understand how .NET applications interact with COM components because that will impact how you deploy your applications. Once you have a good understanding of how .NET applications work, you can use deployment guidelines to minimize the amount of work you must do to install and maintain applications.

Assemblies

The basic unit of deployment in Windows is an assembly. They contain not only the executable code but may also supporting files, such as bitmaps and other resources that may be required by the application. Dynamic assemblies can be created at runtime using System.Reflection.Emit, allowing code to be compiled and integrated into your application on the fly! Although .NET assemblies differ from COM components in several important ways, interoperability between the two is supported. Let’s look at how assemblies work before discussing how they differ from, and interoperate with, COM components.

Assemblies are not registered in the Windows registry and don’t contain a GUID. Private assemblies (also known as local assemblies) are exclusive to a single application. They are stored in a local, private folder and are not registered in the Windows registry or Global Assembly Cache (GAC). Shared assemblies (also known as strong-named assemblies) are available to multiple applications. They are identified by their strong name and stored in the GAC. More than one version of an assembly can be stored in the GAC, and components are version-checked at runtime.

Assembly Manifest

Each assembly’s contents are described by a single manifest associated with the assembly. The manifest can be stored using Microsoft intermediate language (MSIL) code in an EXE or DLL file, or in a separate PE file containing the manifest only. The manifest is metadata that describes the files that are contained in the assembly, including their version numbers. The manifest also describes which other assemblies this assembly is dependent upon. Non-executable resources, such as images and data files, that may be required by the application are not described in the manifest (management of non-executable resources is left to individual developers) although they are included in the assembly.

The Assembly Linker (also known as the Assembly Generation Tool), al.exe, creates assembly manifests and installs assemblies into the GAC. If your compiler or development environment already provides these features (such as Visual Studio .NET), you won’t need this tool. It is most commonly used to create a single assembly from multiple component files developed in different languages. For details on the Assembly Linker, see Assembly Generation Tool

You can use the MSIL Disassembler utility (ildasm.exe) to display the manifest contained in a PE file. The default path for this tool is "C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin".

An assembly’s manifest is roughly analogous to an enhanced COM type library. A manifest’s metadata includes each assembly’s name, version, culture, and public key. It also details the types that each assembly references and exports, and even its execution security requirements.

The following figure shows the interface for ILDASM with the EmployeeCSFascadeLayer.dll loaded. You can see the manifest is highlighted in this figure.

[image: image2.wmf]

Double clicking on the MANIFEST item results in the following data being displayed.

[image: image3.wmf]

You can clearly see in the manifest the .NET Framework classes used (such as System.Data) and the custom classes used (such as DataAccessLayer and EmployeeLayer). The manifest makes it easy to see what the assembly references. You will not, of course, see items here that late-bound (i.e. not referenced at design time), as the manifest has no information on those items.

Version information is not embedded within each component but rather recorded in the manifest. The versioning and dependency metadata is used to ensure that the correct version of each component can be loaded at runtime. The contents of the manifest are stored in the GAC for shared assemblies. The version information is ignored for private assemblies, for which there is no automated runtime version management.

For more on assemblies, see the following topics

Assemblies
Assembly Manifest

Global Assembly Cache (GAC)

The Global Assembly Cache (GAC) is a central repository where shared assemblies are registered. The GAC allows multiple versions of the same component to be installed simultaneously. Copies of all shared assemblies are stored into the GAC, whereas private assemblies are not. Although the GAC is viewable as a simple directory in the Windows File Explorer, Visual Studio .NET Studio includes tools to insert assemblies into the GAC automatically. The command-line utility gacutil.exe can be used to install assemblies in the GAC manually. To remove a GAC assembly, simply delete it from the GAC directory using Windows Explorer.

The GAC is located under the SystemRoot folder (usually WINNT or Windows) and is represented by a folder named Assembly. The following figure shows this in Windows Explorer.

[image: image4.wmf]

You can see how the display is different from a standard folder as it shows things like the type, version, and public key token. This is because the installation of .NET Framework installed an add-in to Windows Explorer so it could handle the GAC.

The .NET Framework uses the GAC for runtime version checking as described in “Change Management During Deployment.”

Shared assemblies must be strongly-named, meaning that they require a unique identifier used to ensure the right version is loaded even when multiple versions are installed. The Strong Name utility (also known as the Shared Name utility), sn.exe, will generate a key pair for signing a strongly-named assembly.

For more information, see Global Assembly Cache.

COM/.NET Interoperability

To protect the investment in legacy COM components, Microsoft has ensured that .NET applications can call older COM components. Conversely, to allow COM applications to take advantage of newer .NET features, Microsoft has also ensured that COM applications can call .NET components and vice versa.

Let’s see how .NET assemblies compare to older COM component before covering interoperability. COM terminology was ambiguous insofar as the name COM component was used both when referring to COM classes and COM modules (EXEs or DLLs). Assemblies typically contain one or more EXEs or DLLs, technically known as .NET Portable Executable (.NET PE) files.

The .NET Framework ships with numerous useful utilities, including the ones mentioned below used to provide COM interoperability (COM Interop).

To call a .NET component from a COM application, the .NET component must appear like a COM component. Developers can use the .NET assembly registration utility (RegAsm.exe) to register a .NET assembly in the Windows registry with its own GUID. The GUID allows the .NET component to be recognized as a unique COM component. The GUID is only for interoperability with COM, as .NET components typically don’t use them (.NET uses strong-named assemblies to uniquely identify components in the GAC).

To make a .NET assembly look like a COM component to a COM application, use the type library exporter (tlbexp.exe) to generate a COM-style type library (.tlb) file from a .NET assembly. For example, the following command-line invocation creates a type library called someutil.tlb from the someutil.exe assembly:

tlbexp.exe someutil.exe

The resulting type library can be imported by a VC++ or VB application, allowing it to access a .NET assembly as if it were a COM component.

Conversely, to call a COM component from a .NET application, the COM component must appear like a shared .NET assembly. Developers can use the type library importer (tlbimp.exe) to generate a .NET assembly from a COM type library. For example, the following command-line invocation creates a. NET-compatible DLL, someutil.dll, from the type library called someutil.tlb.

tlbimp.exe someutil.tlb

At runtime, any method invocations on the DLL are redirected to the original COM component. Visual Studio .NET can handle both of these tasks for you automatically so it is usually not necessary to run tlbmip manually. Instead, you can run regasm on an assembly that has a GUID assigned (again, this is done automatically by Visual Studio .NET).

COM+ integration is a completely separate issue from COM interop. In .NET, COM+ has been renamed Enterprise Services to avoid confusion with the legacy COM components. COM+ is not being phased out, in fact it has been greatly enhanced in the latest version of .NET.
For more information, see

COM Interop
Advanced COM InterOp
COM Interop is also discussed in the “Application Integration Inside the Firewall” white paper

Deployment Guidelines

Unlike COM components, which require developers and administrators to know much of the plumbing underlying COM, .NET assemblies are inherently components and self-describing as shown earlier. .NET assemblies can be public (shared) or private, but they don’t need to be registered if they are to remain private. In either case, when creating an assembly, you’ll typically gather the files to be deployed. You should include any dependencies, such as DLLs when compiling your executables. The .NET Framework components you require will not be deployed as part of your assembly. Instead, the machine on which the assembly is run must have the appropriate version of the .NET Framework installed. You can bootstrap the installation of the .NET Framework as described later.

Although multiple versions of shared assemblies can be maintained, it is best to implement a code revision tracking system for both private and shared assemblies. Microsoft Visual SourceSafe is a robust revision management system that interfaces with other Microsoft and third-party products. It can and should be used to maintain complete revision histories of all your components.

Private Deployment

You can simply copy a private .NET assembly, such as an EXE and any required private DLLs, into a local folder and run it. To delete the private assembly, simply delete the folder containing it. Private assemblies can be deployed in either a single directory or multiple directories. The manifest created at compile-time tells the .NET Framework how to find DLLs that may be in other subdirectories. The following folder shows the directory structure for a component that uses other private assemblies.

[image: image5.wmf]

You could copy this folder to another system and it would contain everything needed for the primary component to execute.

Shared Deployment

To deploy a shared assembly, perform the following steps to make it publicly available:

1. Use the Strong Name utility, sn.exe, to generate a key file such as myfile.key.

2. Use the Assembly Linker, al.exe, to generate an assembly using myfile.key as the key and specifying the assembly’s version information.

3. Register the assembly in the GAC using gacutil.exe or alternative utilities such as Windows Explorer or by creating a Windows Installer installation package.

When deploying a revised shared assembly, be sure to increment its version number, which has four parts: major.minor.revision.build. Changing the build number implies that the revision is a mandatory bug fix upgrade and should be installed. Changing the revision number implies that only minor changes have been made, but the new version is still fully backward-compatible. Changing the minor version number implies substantial changes have been made but that backward compatibility has been maintained whenever possible. Minor versions might include features not available in their predecessors, but older features should remain unaffected by the revision. Changing the major version number implies that the new version is substantially different from the previous version and is most likely not backward compatible.

Remember that your shared assembly should have unique namespaces. Adopt a class naming convention that will avoid conflicts with components from other vendors. For example, you might prefix each class name with your company name, such as “mycoBaseClass” to reduce the likelihood of conflicts.

Deploying for Localization

.NET is ideal for incremental localization. You can deploy the main portions of an application that are not culture- or language-dependent. Alongside this “hub” you can deploy one or more localized modules. You should always provide a fallback version if the localized version, in say Spanish, is not available.

For more information, see the following topics.

ResourceManager Class
Structuring a .NET Application For Easy Deployment
Path for Private Components
Creating Auto Updatable Windows Applications

Any Windows application will support this concept of trickle-down deployment. For instance, let’s consider a simple application that was used in the “Building High Performance Applications” white paper to illustrate the concept of chatty vs. chunky calls to a component. This application consists of the following files:

winchattychunky.exe

ClassForTesting.dll

This application can be auto-deployed by simply copying these files to a Web site. A user can then access the application by either clicking a link to the EXE or by entering the URL to the EXE in the browser. The application will automatically download via HTTP and execute. The download will include any components referenced by the EXE such as the DLL in this example.

As the assemblies are downloaded they are stored in a download cache on the client. The next time the application is run, the .NET Framework will automatically check the Web server for updates to the application. If any of the assemblies on the Web server have been updated, the new versions will be downloaded and used. If there are no updates, the versions already in download cache are used.

If you were to look in the download cache as you ran an application in this fashion, you could see that only that first assembly will be initially downloaded. The runtime only downloads assemblies when they are used and so it will not download the whole application in one chunk.

Applications that are downloaded in this fashion from an intranet are from the intranet zone. By default, applications from this zone do not have access to the file system or other key resources such as a database. When the user tries to run the application, code access security prevents the code from accessing these resources.

You can change the settings for this application by using the Administrative Tools/ Microsoft .NET Framework Wizards. Open this item and select the Trust Assembly Wizard. Then enter the URL to the assembly as shown below:

Once you have entered the URL, click Next and set the security policy.

When the application needs to be updated, you can simply put the new version of the updated assembly on the Web server(s). The application will automatically be downloaded the next time it runs.

For more information, see the following topics

.NET Client Applications: .NET Application Updater Component
MSDN Magazine: Advanced Basics -- Best Practices for Windows Forms Applications
Implementing the Deployment Process

The deployment process is important because that is where you will spend most of your time. If you take the time to fully understand what is going on here and what is possible, you can automate many tasks and learn how to solve many problems that may occur later.

This paper assumes that the computers to which you are deploying your application have the required version of the .NET Framework installed. If not, see the bootstrap process below or the paper on “Managing Multiple Versions of the .NET Framework.”
Earlier, we learned about assemblies, manifests, and the GAC. In order to deploy applications optimally, we should also understand configuration files (also known as policy files). Briefly, versioning and security are managed, in part, by configuration files at the application, machine, and publisher levels. For each level, there is a configuration file with corresponding scope. Refer to “Change Management During Deployment” for details on config files.

Publishers of assemblies, either third parties or internal developers, can specify that applications should use a newer version of an assembly by including a publisher policy file (also known as a binding policy or publisher configuration file) with the updated assembly. A publisher configuration file is an XML file that globally redirects applications and assemblies from using one version of a side-by-side assembly to another version of the same assembly.

The publisher policy file must be compiled into an assembly and placed in the GAC. Thus, the three steps involved in deploying a publisher policy are:

1. Prepare the publisher policy (binding policy) file, which is an XML-based text file.

2. Create a strong-named (signed) publisher policy assembly containing a manifest. Visual Studio .NET (VS.NET) will create the manifest for an assembly for you, or you can use the al.exe utility to manually create a manifest.

3. Add the publisher policy assembly to the GAC using gacutil.exe or other method.

For details on publisher policy files and the steps required to deploy them, see Creating a Publisher Policy File.

Once an assembly has been built (compiled) it must be packaged for deployment. The appropriate deployment method depends on the nature of the installation, such as the type of assembly (private or shared), whether it is an initial deployment or a maintenance release, the number of client machines it must be deployed to, the sophistication of the users of those machines, the frequency of updates, etc. Likewise, the packaging method depends on your choice of deployment method. For example, you can use .zip files and simply unzip the files on the target system or just copy the files to the target system. You can create more sophisticated installations by using the Visual Studio .NET Setup Wizard to create Microsoft Windows Installer .msi files.

Here are three example deployment scenarios.

At the simplest level, you might want to update a private assembly on a single-user machine. You can place the zipped assembly files on an FTP site for the user to download manually, or use xcopy to copy the files to a remote machine, depending on the user’s sophistication. This technique is less appealing for shared assemblies, which must be installed in the GAC manually.

For initial deployment in more complicated scenarios, the VS.NET Setup Wizard offers many advantages for first-time installations, such as the ability to create folders and databases needed by an application. Don’t confuse the Visual Studio .NET Setup Wizard with other setup wizards, packaging and deployment wizards, and setup toolkits available for other Microsoft products.

The Setup Wizard is used to add a deployment project to your solution and configure it to deploy your application. Projects created using this wizard will place the deployment files on your local computer for later distribution. You can specify the project type, often a CAB file, and the files to be deployed. See the Visual Studio .NET documentation for more details on using the Setup Wizard.

The Microsoft Windows Installer, which uses .msi files, is a convenient deployment method for both simple and advanced installations. In order to deploy projects using the .msi files, the client machines must have Windows Installer 2.0 installed. An administrator can ensure that the Windows Installer is installed on each client using SMS as described in Deploying Windows Installer Setup Packages with Systems Management Server 2.0 .

Microsoft Windows Installer .msi files can be generated with several tools, including the Visual Studio .NET Setup Wizard. They can be used for simple installations, similar to xcopy, but they can also perform custom actions, such as setting up folders and shortcuts. Windows Installer supports dynamic properties, allowing it to examine the user configuration to make logical decisions, such as whether the components necessary to proceed are present. The Windows Installer is an excellent choice for deploying shared (strong-named) assemblies, because it can update the GAC, as is required for shared assemblies. To successfully install a deployment that uses .msi files, including the bootstrap setup described below, the client computer must already have Windows Installer 2.0 itself installed. If not, Windows Installer must either be installed manually on the client or installed over a network using System Management Server (SMS).

SMS can also be used to deploy your assembly as follows:

1. Create the .msi file using the VS.NET Setup Wizard or other method.

2. Create an SMS package containing the .msi file. An SMS package is the basic unit of SMS software distribution. It contains the source files for the program and the details that direct the distribution process.

3. Create an SMS program for the SMS package. Each SMS package contains at least one SMS program, which is a command-line that runs on each targeted computer to control package execution.

4. Create a distribution point for the package. SMS distribution points are shares on site systems where package source files are copied for access by client computers.

5. Create an advertisement for the program. An advertisement specifies the programs available to client computers, which computers will receive the advertisement, and when the program will be scheduled for installation.

For details on using SMS to package, advertise, and deploy assemblies, see Deploying Windows Installer Setup Packages with Systems Management Server 2.0.

Custom Actions of course work with SMS but also anytime you install via an MSI file. You can create custom actions to perform tasks such as creating and loading a database, creating or editing XML configuration files, or any other actions. The custom installers can be an executable program or a class such as a Visual Basic .NET class.

Active Directory (AD) provides another important deployment option. See the Active Directory home page for an overview of and details on AD. For our purposes, AD allows you to deploy software with administrative privileges across a network. It can be used to deploy the .NET Framework itself, which is required on all client machines. Note, however, that AD is not designed to install the Windows Installer 2.0 itself, so use SMS to deploy Windows Installer 2.0 before deploying any packages that rely on it to perform installation.

Active Directory’s GUI management tool’s Application Dependencies feature determines which files are required by the application. AD uses the Reflection interface to query an assembly’s manifest to determine a list of dependencies. Active Directory can then query the remote client to determine which files are already installed, and deliver only the new files that are needed. It can also deploy different packages depending on a user’s group and privileges. That is, AD can deliver custom solutions instead of a one-size-fits-all deployment.

Active Directory offers several convenient configuration options for deploying packages over a network. Once you have a folder containing the files you wish to deploy, you can use AD as described in detail in Redistributing the .NET Framework. Although that example demonstrates distributing the .NET Framework, the procedure is similar for deploying any AD package.

Several AD package options are noteworthy. Under Start (Programs (Administrative Tools you can set the Default Domain Policy for your package (under the Group Policy tab of the Properties dialog box for Active Directory Users and Computers). Under the Group Policy tab, use the Computer Configuration node to set policies that are applied to computers, regardless of who logs on to them. Similarly, use the User Configuration node to set policies that apply to users, regardless of the logon computer. Under either the Computer Configuration or User Configuration node, you can create the package as follows:

1. Right-click Software Installation. Point to New, and then click Package on the shortcut menu.

2. A dialog box is displayed that prompts you for the path to the Windows Installer file (.msi) for the package. Browse to and select the .msi file you created earlier.

3. Choose the Advanced Published or Assigned selection and click the OK button.

A window appears in which you can choose to Auto Install or Publish the software. If you choose Auto Install, the software will be installed automatically on every computer in the domain. If you choose Publish, the software is added to the list of available products, but is not installed unless a user chooses to install it.

If the network administrator chooses the Publish option when creating the AD package, the package is added to the list of software available to computers in the domain. After you complete the setup of the AD package, you should verify the package from one of the client computers. To do so, log on to any computer that is a part of the domain. Then, use the Add New Programs option in the Add or Remove Programs control panel to access the package. If properly configured, users who want to install the AD package can select if from the list of available software and click the Add button. If desired, they can later uninstall it using the Add or Remove Programs control panel as well. If the package is not available under Add New Programs, then return to the AD administrative tool and ensure that it is configured correctly.

More sophisticated deployment scenarios can be scripted and automated with the Active Directory Services Interface (ADSI). In short, ADSI is a programmable API that controls Active Directory and other supported directory services.

For more information, see the following topics:

Systems Management
ADSI Overview

Active Directory Service Interfaces

Walkthrough: Using a Custom Action to Create a Database During Installation
Finally, Microsoft Application Center 2000 can automatically deploy an update across a cluster. It offers the advantage of allowing the application to be updated on the fly. It can update a service on one node without taking down the service as a whole across the cluster. It can also schedule deployment at times of low demand. For more on Application Center 2000 see Application Center Product Documentation
Deploying Different Types of Applications

As you begin to deploy applications, you will discover issues like the fact that assemblies that are used with COM+ have different deployment requirements than assemblies that are local to an application and do not use COM+ and that sometimes, it is appropriate to drive deployment from the client-side rather than server-side.

We saw earlier that shared .NET components must be registered in GAC. Therefore, xcopy would be a poor choice for deploying shared assemblies. Instead, you should use the Windows Installer to install shared assemblies, as it will automatically update the GAC with the deployed component and its version information.

.NET components can be installed and configured in COM+ automatically by using COM+ Attributes in the assembly and its classes. Then a user with administrator privileges can execute the assembly and it will auto-install into COM+. This allows .NET to take advantage of the services architecture for component programming models that COM+ provides, which make it suitable for an enterprise environment. The System.EnterpriseServices namespace provides an important infrastructure for enterprise applications. This namespace provides .NET objects with access to COM+ services making the .NET Framework objects more practical for enterprise applications.

For more information, see the following topics

System.EnterpriseServices Namespace
Summary of Available COM+ Services
Applying Attributes to Configure COM+ Services
Attributed Programming
Another common scenario is deploying an ASP.NET Web-based application. In the simplest scenario, you might use Active Directory to deploy your application to a single server. Because a single server is involved, you don’t enjoy the scalability and reliability of a multi-server Web farm, but neither does your application need to be multi-machine aware.

If you do want to deploy your application to a Web farm, you’ll need to ensure that the application is distributed to all servers and that it does not rely on single-server assumptions. The physical deployment is fairly trivial; simply deploy the file to a master server and then use Application Center to schedule and manage deployment to the remaining servers in a Web farm. Ensuring that your application will run on a web farm is a bit trickier.

For data-driven applications, you can’t simply store data in a text file on the server, because that same text file wouldn’t be guaranteed to exist on all servers. Therefore, you’ll need to use an enterprise-savvy database on the back-end, such as SQL Server 2000. Likewise, you can’t rely on the session state being maintained by a single server process, because the application may be serviced by any processor in the web farm. Therefore, instead of configuring the server to maintain session state “in proc” (i.e., in a single process), to make the application “farmable,” configure it to save the state “out-of-proc” (out of process).

To initialize out-of-proc mode, use the ASPState service included with the .NET SDK. To use this state manager, you first need to start it by typing the following at a command prompt:

net start aspstate

Once the ASPState service is running, we need to configure ASP.NET to take advantage of this service by using the configuration file web.config, which might look like this:

<configuration>

 <sessionstate

 mode="stateserver"

 cookieless="false"

 timeout="20"

 sqlconnectionstring="data source=127.0.0.1;user id=sa;password="

 server="127.0.0.1"

 port="42424"

 />

</configuration>

Notice the mode is stateserver instead of the default, inproc. This setting tells ASP.NET to look for the ASP state service on the server specified in the server and port settings – in this case, the local server.

We can now call SessionState.aspx, set a session state value, stop and start the IIS process (iisreset), and continue to have access to the values for our current state.

To store state in a SQL database use the SQL Server mode as follows (note that the .NET SDK includes a lightweight version of SQL Server.)

Run the state.sql script with the osql.exe command-line tool included with SQL Server, such as

osql –S [server name] –U [user] –P [password] <state.sql

The state.sql script is included with the .NET SDK (see C:\winnt\Microsoft.NET\Framework\[version]\state.sql). It creates the ASPState database and also creates two tables and several stored procedures used to store data in SQL Server. Restart SQL Server to execute some start-up stored procedures. Then, modify the configuration settings as follows. Note that the mode is set to sqlserver and the sqlconnectionstring identifies the SQL Server serving the ASPState database. For example:

<configuration>

 <sessionstate

 mode="sqlserver"

 cookieless="false"

 timeout="20"

 sqlconnectionstring="data source=MySqlServer;

 user id=ASPState;

 password=1Gr8State"

 server="127.0.0.1"

 port="42424"

 />

</configuration>

As above, you can now call SessionState.aspx, set a session state value, stop and start the IIS process (iisreset), and continue to have access to the values of the current state.

For details on setting the session state, see ASP.NET Session State.

For examples of deploying ASP.NET applications in a distributed environment, see Distributed Deployment Scenario.

Deploying XML Web Service Applications is relatively easy provided that a Web server, such as IIS, is running on the application server that serves the file.

Follow these steps to publish a Web Service

1. Create a new .asmx file for the Web Service containing the <% @WebService %> directive and the class that provides the Web Service implementation (this acts as the entry point).

2. Your class should inherit from the WebService class of System.Web.Services. Tag your Web Service class with a namespace attribute to ensure that it can be uniquely identified.

3. Tag the public methods with the WebMethod attribute to make them publicly accessible to consumers of Web Services (i.e., to create so-called web methods). Untagged methods will not be publicly exposed.

4. Copy the asmx file and any assemblies used by the Web Service (excluding those that are part of the .NET Framework itself) in a virtual directory on the Web Server with executescript permission enabled.

See .NET Samples - XML Web Services Created with ASP.NET for examples of various types of Web services.

Windows applications have traditionally been time consuming and therefore expensive to deploy. But using the .NET Framework, you can build applications using WinForms that look like traditional Windows applications but with all the benefits or the .NET updating architecture. To deploy complete applications, you can use xcopy, the Windows Installer, or SMS as described earlier. To recap, xcopy is best for simple, private installations; the Windows Installer allows the client to control the installation and is good for updating shared assemblies in the GAC; SMS is an automated tool that allows an administrator to push an update out to all relevant clients.

SMS offers another advantage. It can be used to deploy a small stub application that when run, searches out the required components and downloads them if necessary. Thus, an application can be auto-downloading. This reduces the amount of bandwidth required to deploy an application because only the users who need it receive the entire download. Conversely, it offers easier installation for novice users than would, say requiring them to download and unzip a file from an ftp site, or manually install an application using Add/Remove Programs.

The .NET Framework’s auto-update capability is especially useful for rolling out security changes to allow or deny applications access to resources. Rolling out a security update is a two-stage process. First, use SMS or another approach to deploy an enterprise policy file that contains the upgrade instructions. For example, an enterprise policy file might redirect users of v1.0.1 of a module to use the security fix, v1.0.2. When the application is run, the enterprise policy is consulted, causing the updated module to be deployed.

There are several application types that require special handling. For instance, it is good practice for developers to instrument their applications using custom Performance Counters and Event Log types. There are several options for these types of applications. Probably the best is for developers to place code in their application that installs the item if it does not yet exist. Windows Services are another type of application that also requires special handling.

Another way to handle these special cases is to use a ProjectInstaller. There are five predefined installation components that you can use in your projects:

EventLog installer (based on the System.Diagnostics.EventLogInstaller class)

The MessageQueue installer (based on the System.Messaging.MessageQueueInstaller class)

The PerformanceCounter installer (based on the System.Diagnostics.PerformanceCounterInstaller class)

The Service and ServiceProcess installers (based on the System.ServiceProcess.ServiceInstaller and System.ServiceProcess.ServiceProcessInstaller classes)

To add a ProjectInstaller, the developer simply right clicks the item to install (such as a Performance Counter or Window Service) and then selects Add Installer. Then the installer can be configured via the Properties page. The following figure shows a Performance Counter installer and you can see ProjectInstaller.vb file highlighted in the Solution Explorer.

[image: image6.wmf]

Once the installer is created, an MSI package for the application can be created and the installer will run during the installation process (as long as the person running it has Administrator privileges).

For more information, see the following topics

Introduction to Installation Components
Walkthrough: Installing an Event Log Component
Deploying the Windows Server 2003 and the .NET Framework

For details on rolling out the Windows Server 2003 on the server-side and configuring it during and after application deployment, see the Deployment Planning Guide.

When deploying any Windows application to the desktop, the computer running the application must have the .NET Framework installed. When deploying the .NET Framework, bear in mind that the minimum requirements are Windows 98 and Internet Explorer 5.01. MDAC 2.6 is also required for database access.

If you’ve installed Windows Server 2003 or Visual Studio .NET on a computer, both include the .NET Framework, so no further installation is necessary. To install the .NET Framework on a client computer, there are several options. In all cases, installing the .NET Framework requires administrative privileges. You can:

Instruct the user to manually install the .NET Framework. The installer is a free download from the MSDN Download Center

Use the Setup.exe Bootstrapper sample to install the .NET Framework and then launch a Windows Installer application of your choosing. This is convenient when deploying an application that requires the .NET Framework. It installs the Framework before launching an additional installer

Distribute the .NET Framework electronically using SMS or AD. The process is similar to distributing any application using SMS or AD, as described above

The .NET Framework installer is called Dotnetfx.exe. The framework can be installed silently using:

dotnetfx.exe /q:a /c:"install /l /q"

For more information, see the following topics

Microsoft .NET Framework Setup.exe Bootstrapper Sample

Redistributing the .NET Framework
Conclusion

The .NET Framework and Windows Server 2003 provide an efficient architecture for developing and deploying both new software and incremental updates. The .NET Framework offers complete control over multiple versions of the same component, even in shared directories. The ability to hot-swap components without halting the application or the server increases reliability and availability. Auto-deployment mechanisms offer increased efficiency and ease of use. The flexible architecture includes excellent legacy support while adding enviable capabilities that enable next-generation applications.

Related Links

What's New in Application Services
Application Server Technologies

