Managing the DW: Expect Disaster

Introduction

A SQL Server data warehouse system usually consists of a relational data warehouse database that is populated by an ETLM (Extract, Transformation, Loading, and Management) system. After populating the relational schema, the ETLM system processes Analysis Services cubes. The experienced data warehouse architect will design the data warehouse and especially the ETLM system with the expectation that problems (mini-disasters) will occur. Because data warehouses are usually populated in batch, data backups are easy to manage.
ETLM system design

ETLM systems are built using SQL Server Data Transformation Services (DTS), a 3rd party ETLM toolset, or using a scripting language to glue together TSQL scripts, stored procedures, and other data management objects. The ETLM application is a distributed system, with the additional complexity of management implied by distributed systems. 

This complexity generates risk for the ETLM system. The data warehouse integrates data from multiple unrelated systems, and a change or problem with any of these upstream systems affects the data warehouse. Most ETLM "disasters" arise from poor communication between source system database administrators and the DW database administrators. A "minor" change in a source system -- changing the meaning of a code -- might trigger a load failure in the data warehouse. More commonly, "bad" data will be loaded into the data warehouse, and the incorrect data must be identified and fixed. A network glitch in the distributed system can cause similar problems.

There are three common load symptoms in the data warehouse:

· Failed load

· Incomplete data loaded

· Incorrect data loaded

A complete load failure is the easiest situation to design for. All ETLM toolsets can easily be configured to alarm upon step failure (or zero-row insert). Recovering from a complete load failure consists of troubleshooting where the error occurred, and restarting data processing from that point forward. 

An ETLM system built using DTS should be designed to query the system table sysdtssteplog for the count of rows processed in each step.

Modularize the ETLM application, and design for restartability at any checkpoint.

An incomplete data load is more difficult to identify and recover from. The ETLM system should check data completeness at each processing step, by comparing row counts, checksums, or hash values at the source and target. An identified incomplete data load should notify the operator.

Not all incomplete loads can be identified in this way. The problem could lie with the source data, or with a very basic assumption about the structure of the source data. If data volumes are relatively predictable, it's useful to check row counts and aggregate fact amounts against recent loads, to ensure each day's set of data is of the expected order of magnitude.

Once the incomplete load event has been identified, there are two recovery options:

· Back out the partial data and reload full, or

· Load the incremental data only.

Both of these approaches are useful. 

Tag all data rows in the data warehouse with an audit key to simplify the identification of rows loaded during any specific process.

There are multiple approaches to solving incorrect data. If the incorrect data stems from a systemic error in the ETLM logic, it is probably best to restore the DW tables to the point before the error was introduced, and reapply loads using the corrected ETLM system. Often, however, the volume of data in error is tiny compared to the full volume of data loads. If load volumes are high relative to the load window, the DBA may choose to develop a TSQL script to correct the erroneous data. Of course, such a script must be developed and tested on a Development server with a copy of the data.

When designing the ETLM system to recover gracefully from errors, it's important to remember that those errors may not be discovered for days or weeks. A very high-volume data warehouse, for example one storing clickstream or telephone call-level detail data, may find it physically impossible ever to catch up. Most data warehouses, if confronted with a serious data error, will have to plan carefully how to recover -- perhaps over a period of days -- while delivering an acceptable level of service to business users. To that end, it is good practice to improve the efficiency of all components of the ETLM system beyond that needed to fit the normal load window. When an abnormal situation arises, you'll need all the head room you can find. 

Everyday disasters and Analysis Services cubes

In most respects, a data warehouse that uses Analysis Services MOLAP cubes as query server is in good shape to handle the kind of "everyday disasters" described above. That is because users can be accessing Analysis Services cubes while costly processing on the relational data warehouse occurs in the background (usually on a separate server). Analysis Services has been designed for incremental cube processing to require minimal downtime (usually zero). Users receive consistent query results from the "before" image of a cube during its reprocessing. 

Incrementally processing data for a skipped or incomplete load from any point in the past is simple; it's the same process as is used for normal daily processing. The only wrinkle is to ensure the query against the source data picks up only the missing data. As described above, if an audit key is a standard part of all DW schemas, this source query is easy to formulate.
The most difficult problem that an Analysis Services DBA will face is that there is no notion of a "delete" or "update" of fact data in an Analysis Services cube. There are two ways to "fix" incorrect data in a MOLAP partition, and the downstream aggregates in any storage mode:

· "Back out" bad data by inserting offsetting transactions so that totals work out correctly. This approach is difficult to implement under "disaster" conditions, and can have undesirable side effects like throwing off transaction counts and other computed measures.

· Fully refresh the data in the partition. This is by far the most common approach, and works especially well if you have designed the cube to be partitioned by time in order to minimize the volume of data that must be reprocessed.

The cube can remain available for queries during reprocessing. It is a business decision whether to take all or part of the cube offline in order to avoid serving incorrect results, or whether it is more appropriate to warn users of problem areas yet leave the data online.

Often the internal systems in a data warehouse do not require extreme levels of fault tolerance because their operations are batch, and problems can be fixed offline.  For some companies, whose data is their product, the font-end systems are mission-critical.  These are often OLAP servers and the web servers in front of them.

Real disasters

Recovering from standard disasters such as disk failures and earthquakes is much the same process for a data warehouse as for any other database system. The DW DBA must be familiar with techniques for backing up and restoring very large databases. In the case of a data warehouse, it is almost always true that the vast majority of the database is static, for data loaded in the distant past. Use this information to your advantage in designing your backup and restore strategies. 
See the Analysis Services 2000 Operations Guide at http://go.microsoft.com/fwlink/?linkid=22634 for more information on operating an Analysis Services database.
Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, PivotTable, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

4/2/2001

Page 1

