[image: image1.wmf]Internet

Firewall

WWW Server

Database Server

RAID drive

Firewall

Internet Gateway

Wireless

Infrastructure

PocketPC Device

Welcome to

New Zealand

.NET

PocketPC

Application

Wireless

Provider

Internet

Gateway

HTTP/S Request

GeoVector

.NET Core

Technology

using .NET

Compact

Framework

HTTP/S Request

Microsoft

Internet

Information

Server (IIS)

Spatial

Data

Spatial

Data

Microsoft

SQL2000CE

GeoVector Pointing Card

GPS

Compass

Microsoft

SQL Server

Welcome to New Zealand

Major functionally mapped to infrastructure

COPYRIGHT 2002, GEOVECTOR CORPORATION. ALL RIGHTS RESERVED.

© 2002 Microsoft Corp. All rights reserved.

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corp. on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose, without the express written permission of Microsoft.

[image: image2.png]» -

Smart Device Development With

o O &,
Visual Stuglio .net

A&t Compact Framework

Microsoft may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in these documents. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give any license to these patents, trademarks, copyrights or other intellectual property.

[image: image3.png]=}

Emuator Help

g B O

About Backliight Clock

O &

Contrast Memory

@ = B

Regional Remove Screen
Settings Programs

e e

Microsoft, Visual Studio, the Visual Studio logo, Windows, IntelliSense, Visual Basic, Visual C++, Visual C#, ActiveSync, PowerPoint, MSDN, Windows NT, the Windows logo and the Internet Explorer logo are either registered trademarks or trademarks of Microsoft Corp. in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Microsoft Corp. • One Microsoft Way • Redmond, WA 98052-6399 • USA

Contents

[image: image4.wmf]
Contents
3
Executive Overview
5
Introduction
7
Design Goals
10
Visual Studio .NET
13
Smart Device Programmability
17
The .NET Compact Framework
20
Core Framework Services
23
User Interface
26
Data Access and Integration
29
SQL Server Windows CE Edition
31
Communications
32
Device-Specific Classes
35
Product Demo
36
Building “Hello World”
38
Case Studies
46
XEROX
48
Northrop Grumman
51
Tesco
54
Numeric Computer Systems
58
Accompany-ME
62
FlyteComm
65
GeoVector
68
Intrinsyc
72
MakeLogic
75
Vertigo Software
78
Summary
80
Summary
82
Appendices
84
Appendix A: .NET Compact Framework Features At a Glance
86
Appendix B: Frequently Asked Questions
89
Appendix C: .NET Compact Framework Differences From the Desktop
92
Appendix D: Glossary
95
Appendix E: System Requirements
98

[image: image5.png]Packet PC 2002

teEeEn |
Gy Today Topa] ot fave oz
[Calendar 6335263 w [«
[Contacts)765-5540 w [

e) 2466375
Prictmlorer) 227572

() Inbox) 260-0210
(& Internet Explorer) 894-1943
3} MSN Messenger) 660-4664

otes) 2414500

) 7944345
& Phone) 17-5091
 windowsMedia |} 115-6006
) 3697264
) 830-5003
7277894
) 761-6950

53 Programs
g Settings

Executive Overview
[image: image6.png]e 2 b
Visual Studio.net AL Compact Fram

ﬁ

Introduction

[image: image7.png]e 2 b
Visual Studio.net AL Compact Fram

ﬁ

“Empower people through great software anytime, anyplace, and on any device”
Over four years ago, Microsoft began an initiative to enable software developers to reach beyond the boundaries of the traditional desktop. Developers would now be able to build applications for the world of mobile devices with the same languages, skills, and practices they use for the desktop and server. At the same time, the industry has continued to evolve, providing an opportune time for developers to achieve goals virtually impossible a few short years ago.
Moore’s Law—the promise that processing power will double every eighteen months—continues to hold true. As we push the limits of hardware beyond levels ever thought possible, we continue to find deeper and more abundant power in smaller and more compact spaces. Today’s typical handheld device has more processing power than a high-end personal computer of only a few years ago. Constraints on microprocessor capabilities and memory space across ROM, RAM, and other media have become less strict, providing an opportunity for software developers to raise the bar of software quality and performance, drastically improving user experiences. Keeping pace with advancements in hardware innovation requires the productive and flexible tools that enable developers to rapidly build and deploy applications.
And yet, with all of the traditional focus on raw power, Moore’s Law is quickly becoming overshadowed by the sweeping rise of ubiquitous Internet connectivity. To add even more excitement, the Internet is no longer limited to the personal computer with hardwired landlines to conventional local area networks. Reaching beyond the desktop, virtually every device is connected, from cell phones and personal digital assistants (PDAs) to media appliances and set-top boxes. Building connected applications with the Internet in mind requires powerful tools with innovative developer technology.
As today’s applications are architected around the thought of being “connected”, the new rising challenge lies in producing mobile applications that are able to maximize the investments of corporations and consumers, while minimizing the development and integration effort of software producers. To address this challenge, a new array of industry standards have emerged. Some promote convergence toward integration, such as XML and Web services standards. Others, unfortunately, have resulted in a divergence within major marketplaces, such as the splintering of mobile Web markup languages into HTML, cHTML, WML, and others. To achieve optimal efficiency, developers require the tools to rapidly assemble applications to capitalize on mobile opportunities, while still maintaining the flexibility to swiftly adapt to meet the needs of a burgeoning industry.
The Mobile Application Landscape
Mobile devices are essentially becoming miniature PCs in many respects. As a result, existing development models used for the desktop apply on these as well. Since most developers are already familiar with the thin client and smart client models, they will find the transition to developing for mobile devices to be very comfortable.
The Mobile Web
While this guide focuses on device development using the smart client model, it is beneficial for the reader to be aware of Microsoft’s complimentary Web client model, ASP.NET. With ASP.NET’s mobile controls, developers are able to build server-side mobile Web applications that adaptively render for hundreds of different mobile clients, including all major PDAs, cell phones, pagers, and other devices.

Reaching beyond the desktop empowers businesses to reach the billions of Web-enabled consumer devices in regular use today. Mobile Web applications have been successful due to the fact that they offer the same benefits of conventional Web development, such as centralized deployment and maintenance. However, these applications are often limited in that they require an Internet connection and may only run in the context of a client Web browser.
The Smart Client
Today’s applications often require much deeper functionality than that of a Web browser. It is for these applications that we look to the smart client model. Smart client applications have several distinct advantages over browser-based applications:

· Offline functionality: Smart client applications live entirely on the device and are able to run with full fidelity with or without an Internet connection.
· Rich, responsive user interface: Smart client applications run locally without requiring roundtrips to a server for processing user input, supporting complex UI, as well as advanced features such as multimedia and realtime communication.
· Device integration: Smart client applications are able to integrate with assets of the device, such as telephony, hardware extensions, and operating system features.

For smart client device development, Microsoft provides Visual Studio .NET and the .NET Compact Framework to enable developers to rapidly and efficiently build robust and dependable applications for the ever-increasing array of devices, from consumer handhelds to industrial appliances, and everything in between.

A Revolutionary New Platform
Welcome to the Microsoft .NET mobile development platform, the first comprehensive development environment for rapidly designing, building, debugging, and deploying mobile applications. Whether it’s a wireless customer checking their current flight status from a cell phone or a mobile employee scanning inventory supply from a networked PDA, connected devices continue to play an increasing role in the everyday lives of millions of people.
[image: image8.png]Microsoft

.Net Compact Framework

Different applications operate under different constraints, and the flexibility to deliver on all requirements is crucial to ensure a sucessful user experience. Rather than forcing developers into a “one size fits all” application model, Microsoft enables developers to select from the traditional Web and smart client models they already know and use in order to properly architect mobile applications.

Figure 1—Microsoft .NET Mobile Development
Design Goals
[image: image9.png]ulu,;:..;r t

¥ ¢ Visual Studio.net

ASP.NET Mobile Smart Device
Controls Programmability

ggg
Mobile Web Pages

Local Code

ddd

Mobile Web .NET Compact
Browser: Framework

The design goals for Visual Studio .NET and the .NET Compact Framework were built to meet customer demand, providing the flexibility required to optimize device innovation while fulfilling the enterprise needs of corporations in every capacity. Building a development platform of this scope can be very challenging, so selecting the appropriate design goals is crucial for success.
Improve Time-to-Market
· Deliver solutions with a minimum of program code. Provide an advanced object-oriented programming model enabling developers to create sophisticated mobile applications with a minimum of plumbing. Developer effort should be focused on constructing business objects rather than memory management and integration issues.
· Leverage existing skills. Developers must be able to work effectively without costly specialized training. Existing experience developing desktop and server software should be immediately applicable and the solution must offer familiar tools, programming languages and class libraries. Developers should be able to concentrate fully on their business and customer usage requirements.
· Provide state-of-the-art development tools. Deliver well designed development tools. Tools must provide a fully integrated development and debugging environment with extensive support for third party integration. Provide a high fidelity desktop emulator to enable software testing from the convenience of the developer desktop as well as debugging support for applications as they run on production hardware. Integrate device and emulator debugging directly into the development environment.
· Support powerful devices. Support a wide variety of target devices to enable organizations to capitalize on the most powerful innovations in device capabilities. Shield developers from the details and nuances of each individual hardware platform, providing a consistent development, debugging, and deployment experience across device implementations of different vendors.
Simplify Integration
· Integrate with XML Web services. Access XML Web services with a minimum of programming effort while supporting advanced aspects of XML Web services such as authentication, SOAP headers and asynchronous access. Include support for a variety of XML Web service standards and cooperate with XML Web services hosted on a variety of vendor platforms.

· Leverage existing software investment. Provide the ability to integrate existing software components into new solutions with a minimum of programming effort.

· Support device-specific features and special-purpose device hardware. Take full advantage of device features and peripherals and interoperate with special purpose APIs and drivers, with the extensibility for third-party vendors to integrate their own components and tools.
· Simplify data access and synchronization on or off the device. Provide access to enterprise data in a loosely-coupled environment. Support disconnected data management with the ability to integrate data from multiple sources and mix data from both relational and XML sources. Provide the option of device-based relational database access with a rich SQL dialect and transactional integrity. Support data synchronization with enterprise servers even when servers are located behind a firewall.

· Support industry standards. Support standards for common points of integration such as XML Web services, TCP/IP, HTTP, SSL, wireless infrared, and others.
Improve Operations
· Simplify application deployment. Support simplified application deployment through XCOPY deployment, requiring no effort on behalf of the developer. Provide setup package development with a single mouse click.
· Increase reliability of applications. Ensure program integrity and reliability by eliminating memory leaks, complex plumbing, and integration problems with a secure, managed execution environment.
· Enhance performance. Provide superior application performance that enables developers to capitalize on device capabilities and provide a rich and responsive user experience.

By holding true to these design goals, Visual Studio .NET and the .NET Compact Framework enable software developers to build robust, connected mobile applications in rapid fashion with minimal development effort, and deliver on the goal to “empower people through great software anytime, anyplace, and on any device”.
Visual Studio .NET

[image: image10.png]e 2 b
Visual Studio.net AL Compact Fram

ﬁ

Historically, developing smart client applications for mobile devices has been a difficult undertaking. The paradigm difference from conventional desktop development has often proved to be an impassible barrier for many developers. With significant investments in specific programming languages, development environments, and class libraries, it has always been unfeasible for developers to begin smart client projects without extensive retraining. Today, this has all changed.

Visual Studio .NET

[image: image11.png]Microsoft'”
Visual Studio .net

With Visual Studio .NET, developers can now use the same consistent design, development, debugging, and deployment tools for all applications, ranging from conventional desktop and Web applications to Web services and applications for smart devices. With an array of intuitive tool windows, visual designers, code editors, context-sensitive help, and automated mechanisms for performing both routine and complex development tasks, Visual Studio .NET helps ensure that developers deliver solutions on-time, every time.
Figure 2—Visual Studio .NET
Smart Device Programmability
[image: image12.png]e 2 b
Visual Studio.net AL Compact Fram

ﬁ

With a transition from desktop to smart device development comes a change in development requirements. Visual Studio .NET enables developers to easily meet these requirements through smart device programmability features that extend the capabilities of the Integrated Development Environment (IDE).

High-Fidelity Emulation

[image: image13.jpg]a0 R3
ERP
System

SQL Server
2000

il

IS Web
Server Inspection
Supervisor
= Deskiop
TGS i Browser
|
nspeciors
sawe2o pesonmens soLce o6 > Pocket PC 2000
e ot
- el
ey
i
cngat v

AlWebAceass s Auhetcated and Ercapted

'SOL CE Database is Encnpted

[image: image14.png]Add Web Reference.

Navigate to 3 web service URL (asmx or wsdl)and click Add Reference to add al the avaiable services found at that LR

R [Fepieric magport e 20imappant wed

"CommonService" Description

Documentation

Microsoft MapPoint et common web-service
indService" Description

Documentation

Microsoft MapPoint.Net geocoding webservice. <p />4 formal descrptio of the.
MapPoin. et suie of services appears at this ste <ja>

RenderService" Description

Documentation

Microsoft MapPoint.Net map rendering web-service. <p A formal descripton of
the MapPoint. Nt suite o services appears af this
ste

Description

Web services found ot this URL:

T Service Found

- mappoint

eb reference pame:

MapPoint

Add Reference

Visual Studio .NET provides a high-fidelity emulator that enables developers to debug smart device applications from the comfort of their desktop, without requiring hardware to run and test on. The emulator provides true emulation at the microchip level, meaning that a full Windows CE-based operating system, such as Pocket PC, can run within the context of a virtual hardware device on top of the developer’s desktop operating system. As a result, the testing and debugging experience is true to life, enabling developers to begin building software without requiring a production device. This also comes in very handy when software development must begin before a device has completed production.

Figure 3—Pocket PC 2002 Emulation
Integrated Device and Emulator Debugging

Efficient application debugging is a critical part of any development process. Visual Studio .NET provides realtime debugging for applications running in the emulator or on an actual device, using the same tools and debugging features developers already use to debug desktop and server applications. Featuring breakpoints, statement stepping, variable watching, stack dumps, application assertions, and exception handling, developers have a full arsenal of features to diagnose and repair application bugs quickly and easily.
The CAB Wizard

Although .NET Compact Framework assemblies can be copied directly to the target device with no special setup or configuration, applications sometimes require that multiple files be deployed as a single unit. CAB files are one of the easiest ways to install software composed of multiple files onto smart devices as they provide a single distribution package that can be used to deploy and configure each component as necessary. To simplify the process of creating these packages, Visual Studio .NET provides the CAB Wizard.

The CAB Wizard automatically creates a default CAB file configuration containing your application and any dependent assemblies. In addition, the CAB will automatically install the .NET Compact Framework onto the device if not present. The installation is fully configurable, making it easy to add custom behaviors to the install process.
[image: image15.png][0502] Customer Operations

D Odometer

& Odometer Enty
b oders
New Order
Newln
D Accounts

& ColectsR
D Completion

b Complete vist

X |F|=2| 7]

The .NET Compact Framework

[image: image16.png][0501] Customer Det:

Do | npaidnvoiss | o |

Chaino 130
Custio 7857
Name Midvale General Store
Address1 Morison Rd & Fergus.
Address2

Ciy

BilPeriod Moritly

Linit 100.0000
CrediHoldFlag Nomal
PaymeniType Charge

History

Historically, developing smart client applications for mobile devices has been a difficult undertaking. The paradigm difference from conventional desktop development has often proved to be an impassible barrier for many developers. With significant investments in specific programming languages, development environments, and class libraries, it has always been unfeasible for developers to begin smart device projects without extensive retraining. The .NET Compact Framework endeavors to solve these challenges by providing the same programming languages, development environment, and class libraries developers already know and use for desktop and server application development.
The .NET Compact Framework

[image: image17.png]PowerPoint

Remote
Client,

NET
Compast
Framework

PowerPoint
pplication

Presentation
Files (ppt)

PowerPoint

Remote
Server

Full NET
Framework

Pocket PG

Desktop { Laptop

In a nutshell, the .NET Compact Framework is a subset of the .NET Framework. This includes a managed execution engine that provides system services, such as memory management, as well as a rich set of class libraries for building graphical user interfaces, integrating with XML Web services, using the hardware and software assets of the device, accessing data, as well as a full set of classes for networking, multithreading, and application building blocks.
Figure 4—The .NET Compact Framework
Core Framework Services
[image: image18.png]

The .NET Compact Framework currently supports all devices running Pocket PC 2000, Pocket PC 2002, Pocket PC Phone Edition, as well as Windows CE 4.1 and above, totaling over 50 device OEMs and growing. In order to be able to support such a wide variety of device hardware with a single development model, the .NET Compact Framework utilizes an ECMA-compliant implementation of the Common Language Infrastructure to provide a consistent application framework that is independent from the operating system and hardware of the device.
The Common Language Runtime

The Common Language Runtime (CLR) is built on top of operating system services. It is responsible for actually executing the application—ensuring that all application dependencies are met, managing memory, CPU requirements, programming language integration, and so on. The runtime supplies many services that help simplify code development and application deployment while improving application reliability.

The developer doesn’t actually interact with the runtime, however. Developers use a unified set of classes built on top of the runtime. These classes may be used from any language that complies with the Common Language Specification, such as Visual Basic .NET, C#, and many others. The .NET Compact Framework also provides an extensive set of classes for data access, XML Web services, user interface, graphics, networking, and more.
The CLR is a high-performance execution engine. Code that targets the runtime and whose execution is managed by the runtime is referred to as managed code. Responsibility for tasks such as creating objects, making method calls, and so on is delegated to the CLR, which provides additional services to the executing code, such as memory management (including garbage collection), process management, thread management, and CPU abstraction. All of this frees the developer from having to write CPU- or platform-dependent code.
At development time, the runtime’s role changes slightly. Because it automates so much (for example, memory management), the runtime simplifies the developer experience. In particular, features such as object lifetime management, strong typing, cross-language exception handling, cross-language debugging, delegate-based event management and dynamic binding, dramatically reduce the amount of code a developer must write in order to turn business logic into robust, reusable components.

The key features of the runtime include a common type system (enabling cross-language integration), just-in-time compilation, memory management, platform abstraction and simplified deployment.
The CLR makes use of the Common Type System (CTS) capable of expressing the semantics of modern programming languages. The Common Type System defines a standard set of data types and rules for creating new types of objects. The runtime understands how to create and execute these types. Compilers for the .NET Framework use runtime services to define data types, manage objects, and make method calls instead of using tool, platform, or language-specific methods.

Multi-language Integration
The Common Type System enables multi-language integration, enabling developers to work in parallel even if they use different languages. Code written in one language can inherit implementation from classes written in another language; exceptions can be thrown from code written in one language and caught in code written in another; and operations such as debugging work seamlessly across languages. This means that developers can easily reuse components and libraries written in any language, from any language.
Just-In-Time Compilation

The .NET Compact Framework utilizes a Just-In-Time (JIT) compiler to execute applications as native code. This provides a drastically higher level of performance than most managed environments, which rely on interpreters that must repeatedly translate and execute each program instruction, substantially hampering program performance.
The JIT compiler converts the program to native code during execution. Once compiled, the instructions are then cached and executed directly without requiring further compilation from the runtime. The JIT compiler is intelligent and efficient about optimizing the compiled code for each individual device platform. By only compiling relevant portions of code, the .NET Compact Framework provides a “pay as you go” model for optimal performance and memory usage.

Accessing Platform-Specific Features

The .NET Compact Framework is designed to improve developer productivity by encapsulating platform-specific details in the runtime. Smart device applications often require access to custom or special purpose hardware, so for these situations, the .NET Compact Framework supports a facility known as Platform Invoke.
Platform Invoke enables applications to map platform specific DLL entry points into .NET Compact Framework applications. Once mapped, these entry points can be called as easily as any other .NET methods, thus enabling applications to directly access platform specific facilities.
Application Class Libraries
The .NET Compact Framework includes a rich set of application classes to provide a solid foundation for the development of both applications and specialized class libraries. For common application scenarios, such as data management, there are the XML and ADO.NET classes. User interfaces issues are addressed by the Windows Forms classes. In addition, classes for XML Web services and device features are provided.

The classes in the .NET Compact Framework are a compatible subset of the .NET Framework, allowing developers to immediately employ the skills they already use for desktop development. The .NET Compact Framework also adds a few special purpose classes that focus on device specific scenarios where there is no desktop equivalent. These additional classes allow developers to fully utilize the capabilities of smart devices, such as the Software Input Panel (SIP) and infrared data port.
The Base Class Libraries
The Base Class Libraries (BCL) provide the foundation for the .NET Compact Framework. They include a wide variety of collection classes, thread management and synchronization classes, full featured stream-based input/output classes, networking classes, data type and conversion classes, and many more. The Base Class Libraries are designed to address common plumbing issues and provide a foundation for high-level class and application development.
User Interface
[image: image19.wmf]Poor user experience is one of the most common reasons mobile device applications fail. The terminal-graphics and lazily performing interfaces common among so many device applications often leave users frustrated. Whether running on a desktop or smart device, applications must provide a responsive and intuitive user experience. The Windows Forms classes give .NET Compact Framework developers the tools they need to build these interfaces.
Windows Forms

[image: image20.jpg]saLce

ME-Client

MSN Messenger

Location Services

Local WinCE API

a | Supply Chain

[e

X

= 3
ME-Server
e — AsseUins ioy)
[y
528 Comneciors

The Windows Forms library is a set of object-oriented and extensible classes designed specifically for building rich user interfaces. It includes a comprehensive set of controls ranging from simple buttons and text boxes to complex controls, such as the DataGrid, TreeView, and TabControl classes, as well as common usage dialogs such as OpenFile and SaveFile dialogs. All controls are based on a common hierarchical architecture making it easy to develop custom controls as well as add special capabilities to existing controls.
Figure 5—Windows Forms Controls
The power of the Windows Forms classes are further enhanced by their tight integration with Visual Studio .NET. .NET Compact Framework applications utilize all of the same design and layout features of Visual Studio .NET, making it simple to design and build smart devices applications with the same rich user interface features as desktop applications. Using the Windows Forms Designer, developers can rapidly design highly effective user interfaces. Using the same drag-and-drop interface, developers can add controls, set properties, and write code against event [image: image21.wmf]handlers in the same way they have been building software for years using Visual Studio .NET.

Figure 6—Windows Forms Designer
GDI+
While high-level controls are great for corporate applications, game developers require the power and flexibility of pixel-level graphical programming for the highest, most fully featured gaming experiences. For this deeper graphics development, the .NET Compact Framework supplies a set of libraries, known as GDI+, for drawing and imaging that are optimized for the device. With classes for Bitmaps, Pens, Brushes, and other painting functions, GDI+ makes creating highly interactive graphical applications easier than ever. Through the Graphics object, developers can draw directly to the screen using pens and brushes, or full images and text.

[image: image22.wmf]

Figure 7—GDI+ Graphics
Timers and Threading

Building highly interactive applications can be a difficult undertaking. Processor-intensive algorithms and blocking function calls can result in unresponsive applications and a poor user experience. For example, imagine a chat application that always waits for the peer to send a message over the network before allowing the user to write an additional message. This application may become unresponsive to the user while waiting for the next message to be received. With timers and threading, the application developer has several options to solve this dilemma.
Data Access and Integration
[image: image23.png]

Data management is at the core of virtually every application. Some data is directly accessible from the database, whereas other cases may require data access through business objects that layer business rules on top of the data store. Some data is completely managed within an enterprise, whereas other cases require access across platforms and vendors.
Data and XML
Mobile applications face all of these issues, plus the challenge of managing data in a casually-connected world. In many scenarios network connectivity is only occasionally available and never guaranteed. Mobile applications must access enterprise data when connected, but also utilize local data stores to ensure a consistent user experience when network connectivity is unavailable. To fulfill this need, the .NET Compact Framework includes ADO.NET. ADO.NET is built around a core XML model, solidifying the premise that data and XML are tightly coupled concepts in .NET Compact Framework development.
ADO.NET is a collection of data access classes supporting a disconnected in- memory cache known as the DataSet, along with data providers for both SQL Server and SQL Server Windows CE Edition (SQL Server CE). For easy interoperability, ADO.NET uses XML as its native data format, simplifying interoperability with XML and XML documents. ADO.NET is designed for loosely coupled environments and supports streaming APIs in both connected and disconnected scenarios. These classes, in conjunction with the XML classes, provide a complete data management solution for smart device applications.

DataSets
DataSets are the main point of data access in .NET Compact Framework applications. They can be populated from a variety of sources, including SQL Server, SQL Server CE, and XML, and even provide support for easily managing data from multiple sources simultaneously. The DataSet is independent of the data source, providing a consistent model for searching, filtering, and sorting data from any source, whether connected or not.
Data Adapters
The SQL Server and SQL Server CE provider classes both contain data adapters for interacting with the DataSet. When data is initially required, a query is submitted to the data source through the data adapter, which then populates the DataSet. Once populated, all data interaction occurs directly on the DataSet without requiring roundtrips for each interaction. The DataSet tracks changes locally, applying the changes to the data source when again connected through the data adapter. Utilizing a local in-memory representation and avoiding the overhead of server roundtrips provides substantially improved performance over tightly coupled data models.
The DataSet is able to read and write XML data and uses XML as its serialization and deserialization format. This format contains not only the actual data, but also a complete history of changes that have occurred on the data, allowing DataSets to be passed between application instances with no loss of fidelity. The serialization format of .NET Compact Framework DataSets is compatible with that of the .NET Framework, simplifying data access between servers and smart device applications.
XML

For those scenarios where applications need to deal directly with XML content, the .NET Compact Framework provides classes implementing both the XML Document Object Model (DOM) as well as streaming XML classes. The XML DOM provides applications with a rich tree-based API for reading and manipulating XML content. If performance is paramount, the XML streaming APIs provide a lightweight, low resource solution for reading and writing XML.
The SQL Server Provider

SQL Server is a high performance, enterprise data store. Using the ADO.NET SQL Server provider, .NET Compact Framework applications can issue commands and queries directly to SQL Server accessing both data and stored procedures. The provider supports cursor-based access to tabular data as well as providing full support for accessing XML formatted results. Applications can operate directly on the data as well as read and write data between SQL Server and a DataSet. Placing data in a DataSet allows the application to disconnect from SQL Server and operate on data locally, re-synchronizing with the server at a time that is convenient for the user.
SQL Server Windows CE Edition
SQL Server Windows CE Edition enables smart device applications to be completely self-contained. While still having the reliability and convenience of a true relational database in the small memory footprint of smart devices, SQL Server CE features include nested transactions, multi-column indices, NULL columns, and a wide range of data types. The SQL dialect is compatible with SQL Server, supporting INSERT, UPDATE, and DELETE commands, as well as SELECT queries including aggregates, INNER and OUTER JOIN commands, sub-selects, and GROUP BY. In addition to including big database features, SQL Server CE includes features unique to mobile devices such as support for external memory cards and 128-bit data encryption to help ensure data security. When the time comes to coordinate with a central data server, SQL Server CE also offers two solutions, Remote Data Access and Merge Replication.
Remote Data Access and Merge Replication
Remote Data Access provides a simple way for SQL Server CE to pull data from SQL Server and later apply changes made locally back to the server. Remote Data Access is the preferred solution when data on the device will not also be changed on the server. For more sophisticated synchronization scenarios, data changes on the device need to be coordinated with changes on the server. For this, Merge Replication coordinates with SQL Server to identify changes on both systems and then publishes the changes to each data store. Merge Replication supports full conflict detection and resolution.

Both Remote Data Access and Merge Replication are internet based using HTTP and Internet Information Services (IIS) to connect to SQL Server. By connecting through IIS, applications can take advantage of IIS authentication and authorization services as well as access data located behind firewalls. Remote Data Access and Merge Replication can be used over both Local and Wide Area Networks and can use wired and wireless connections to communicate with SQL Server. There is also support for using a desktop’s network connection when cradled. SQL Server CE also supports data compression, a vital feature for applications that may have to communicate over thin wireless network connections when a high bandwidth connection is unavailable.
[image: image24.png]Nert: What Is A Web Servica?

[Sdeston Top sottom o0

Figure 8—SQL Server CE Integration
Communications
[image: image25.png]Fiight Info Sampie Application

NapPoint Senvc

FiyteConyn Fasd
P

FlyteComm Products

E
=1

[image: image26.jpg]6 departed
- from SFO

09/03/2002 0:

International Airport (SFO) enpected to
arrive on 09/03/2002 11:44 .M. to John
F. Kennedy Tnternational Airport (FFK).
Current alttude is 38000 F, current speed

Building truly connected software requires flexible and robust communications support. With the .NET Compact Framework, developers can connect smart device applications to the connected world through XML Web services, network sockets, and even HTTP access libraries.

XML Web Services

[image: image27.wmf]Internet

Firewall

WWW Server

Database Server

RAID drive

Firewall

Internet Gateway

Wireless

Infrastructure

PocketPC Device

Welcome to

New Zealand

.NET

PocketPC

Application

Wireless

Provider

Internet

Gateway

HTTP/S Request

GeoVector

.NET Core

Technology

using .NET

Compact

Framework

HTTP/S Request

Microsoft

Internet

Information

Server (IIS)

Spatial

Data

Spatial

Data

Microsoft

SQL2000CE

GeoVector Pointing Card

GPS

Compass

Microsoft

SQL Server

Welcome to New Zealand

Major functionally mapped to infrastructure

COPYRIGHT 2002, GEOVECTOR CORPORATION. ALL RIGHTS RESERVED.

XML Web services provide lightweight, platform-independent access to application functionality and data. Through XML Web services, companies can provide features such as flight information, detailed maps, realtime stock quotes, and virtually any type of data in a loosely-coupled architecture, even through firewalls. The use of open standards makes them perfectly suited for mobile device applications that may require support from a variety of network and data providers. Microsoft has made significant investments in application development technology to support the XML Web services vision, and has even been recognized as leading the industry charge by leading analysts such as Gartner.
Figure 9—Gartner Magic Quadrant: XML Web Services
[image: image28.jpg]p
S e o e
i

Koy Information
ool
iyt vy

i —
S 105 ey

Scenic teghlights |
Spmcne s st o
i

i 3w Ragon ot

The .NET Compact Framework provides a rich environment for consuming XML Web services, including support for authentication and authorization. With Visual Studio .NET, developers can integrate XML Web services into smart device applications without writing a single line of code.
Figure 10—XML Web Service Integration
Visual Studio .NET integrates XML Web services as business objects developers can directly code against. With this model, developers concentrate on writing business logic against the functionality of the service, rather than writing plumbing code for network communications or XML Web services protocols. However, if developers need to work directly against the raw metal of networking, they will find extensive support through flexible class libraries.
HTTP and Socket Networking
The .NET Compact Framework provides rich support for HTTP and socket-level communications through extensive class libraries, enabling the developer to integrate HTTP, TCP, or even UDP networking with ease.

For smart device applications that require access to Web servers, the .NET Compact Framework provides a rich and flexible set of objects for making HTTP requests, including support for cookies, proxies, SSL authentication, as well as other protocol specifics.
Developers looking to write applications that use socket-level communications will find that the .NET Compact Framework provides ready-made classes for creating TCP and UDP servers and clients that can be up and running with a few lines of code. For even more power, developers can build applications directly against Socket objects that encapsulate raw sockets on the smart device itself.
Device-Specific Classes
[image: image29.jpg]

Although the .NET Compact Framework has been designed to subset the .NET Framework, the nature of smart devices requires extended support to make the most of device software and hardware innovation. In many cases this functionality can be accessed through .NET Compact Framework-specific classes, which provide functionality beyond the .NET Framework.
Software Input Panel
For example, the addition of the InputPanel class lets programs manage the device software-based input panel (SIP). With this class, developers can display and hide the SIP, or detect when the user has changed the state manually. With limited screen real estate, being able to optimize the application view is a key feature for smart device applications.

Wireless Infrared

A set of wireless infrared communication classes have also been added to simplify information exchange through the device infrared port. Infrared transfer is an easy way for users to connect smart devices to desktop machines and other devices without having to carry extra wiring or networking hardware.

Windows CE Interoperability

The .NET Compact Framework also has classes to simplify interoperability with the operating system and other applications, such as the MessageWindow and Message classes. With these classes developers can interoperate with native components and subscribe to Windows messages.
In both defining the subset and extension classes careful consideration has been taken throughout to ensure that the skills and experiences of developers familiar with the .NET Framework will translate to the .NET Compact Framework. For a summary of differences between the .NET Compact Framework and .NET Framework see Appendix “C”.
Product Demo

[image: image30.png]MicroGraphs Architecture

http://www.MAKELOGIC.com

Building “Hello World”
[image: image31.png]Wy User Controls
Device Controls
X Ponter
A Label
8l Button
i Textox
2 picturesox
HumericpDoun
8 Conbosox
= ProgressBar
1. TackBer
5 TabControl
Treeview

@ Radobutton

2 vscrolgar

¥ CheckBox

Clipboard Ring
General

14 Toolger
¥ DomainUipDown
01 Hscrolgar
8 ustpox
istiew
B Mantenu
[OperFieDisbg
[] panel
[saveFieDisog
Tagelist
EE statussr
[E] Contextienu
ES inputpanel

B Ter

The most effective way to realize the full potential of Visual Studio .NET and the .NET Compact Framework is to step into the shoes of a developer beginning a smart device project.
Building “Hello World”

1. The first step is to install Visual Studio .NET 2003. For details on the system requirements of Visual Studio .NET 2003, please see Appendix “E”.

2. [image: image32.png]Packet PC 2002

Score: 0 Level: 1

Lo 8
g @
A, (8

After installing Visual Studio .NET 2003, launch it from Start | Programs | Microsoft Visual Studio .NET 2003 | Microsoft Visual Studio .NET 2003
3. From the File menu, select New | Project…
4. In the “New Project” dialog, select “Visual Basic Projects” in Project Types, [image: image33.png]StockQuote - Microsoft Visual C# NET [design] - StockQuoteForm.cs [Design]*
Bl Edt Vew Pojct Buld Debug Dota Fomet Toos Window Hep

@ | | pebug -l % Pocket PC Device (efaut)

Toobox & X1t page | system Drowing StockQuoteForn 4) || Class Vew
My User Controls o CICRE

oz @arials StockQuote C# StockQuote
X Pointer

Teuote mformation vl
ALE] be displayed here]
8 Button T

i TextBox [Symbol
IName
[PictureBox f

HumericpDoun (change
29 Combosox % Change .

o Progressgar [Current info goes here 108 Solution Explorer B Class View

1= Trackgar
L TabCortral
Trestten

Propertes x
Cloar = 2

StockQuoteForm System. Window |

s
RadoButton O Auto Refiesh EIEEIRS

e Forscoor Contoltext 2
CheckBox. FormBorderstyle Fixedsinge 1

Tot Stackquote G
prp = =

[DemainUsDown Tet
91 Haolber The test contained inthe canrol.

Iz T @ L
R Toob...[E e 5" propertes [@ Oy el

B ount E]

“Smart Device Application” in Templates, and “Hello World” in Name and press OK.

5. [image: image34.png]Enterprise Backend
Oracle / db2 / etc

In the “Smart Device Application” wizard, select “Pocket PC” as the platform and “Windows Application” as the project type and press OK.
At this point, Visual Studio .NET will create a project folder called “HelloWorld” in the “Visual Studio Projects” folder in “My Documents”. This project folder contains a project shell that can be built and deployed immediately.

6. [image: image35.png]Microsoft Development Environment [design] - Start Page.

Ble

Edt Vew Buld Jods Window Hep

B-a-sud@ | iBR|o-o-§

- et

&E@.

o9e0L ¥ k)

start Page |

Projects Online Resources

Open an Existing Project

NewProject | | open Project

My Profile

arx

Salution Explarer 2 x
2

" Gdsokti, [BF cass | B 1der |

o924
(@ Help ~
‘Solution Explorer Ml
Venaaing Soltons, Proiects, and
2 Samples
visuslStudo Samples
(@1 Getting Started
resting New Sotions and Proiect
Uporading Exiting Code
Programming Lenquzces
Source ControlBascs
Instalig Help For isuel Suio
Customizing Dunamic Help
Intzoducing Vvl Studi NET
visualStudo NET
vl Studo walthvouchs
@) I T

B

Drag a button from the Toolbox onto the Windows Forms designer.

7. [image: image36.png]New Project
Broject Types: Templates

S s
Vel o Prjets

Visual 3 Projects

windows Class Lbrary _ Windows

1 0 Viual G+ Projects Applcation Control Ubrary
Setup and Deployment Projects

.51 oo e o I
Wisual Studio Solutions &yl o g

Smart Device ASP.NET Web ASP.ET Web
Applcation Applcation Service

A projectfor creating an application for Pocket PC and resource-constrained devices

Name: Heloworld

Location: CriDocuments and SettingsledkamMy Documents\is, v| Browse

Project wil be created at C:.. Jedkaimity Documentstyisusl Studi rojectsiHeloworld

Fhtor E3 Cancel

With the new button highlighted, change the Text property in the “Property Explorer” at the bottom right of the screen to “Press Me”.
8. [image: image37.png]Smart Device Application Wizard - HelloWorld)

Welcome to the Smart Device Application Wizard

This wizard creates a project ta develap an applicaton to run on a smart device.

What platform do you want to target?

ou currently have the following devices

Windows CE installed that wil un an appitcation targeting
ths pletforn.

Pocket PC Device (Default)

Pocket PC Emlator

What project type do you want to create?

(Class Lirary
[Non-graphical Application
[Empty Project

Double-click the “Press Me” button in the Windows Form designer.

This will create a button-click handler that contains code to be called when the user clicks the button:

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

End Sub
9. Add the line in italics:

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

Button1.Text = "Hello World"

End Sub
10. From the Debug menu, select Start to build and deploy the application. In the “Deploy” dialog, select Pocket [image: image38.png]icrosoft Visual Basic .NET [design] - Form1.vb [Design]™

Ble Edt Vew Projct Buld Debug Data Fomat Took Window el

B-a-sd@ &8 o - Debug - et] » ocket PC Device (Defaul) - R E.
e T

[& x| StatPoge Formi.vb [Design]* | 40 x| [Soltion Explrer - Helowiord & X
My User Controls ElalEEE)

Device Controls Form1 15 Solution Hellow/arld (1 project)

N Painter = @ Helloworld

A Label - (2l References

e vee [5) Assembyinfo.vb

8] bt Formi.vb

Bl Tt
) prarssox

[T NumericUpDown b
8 combosex Buttond
 Progresstr

. Trackgsr

5 TabControl

42 Treeview

"G ot [B3 s . | [index

@ Radobutton

2 vsaclear Properies B x
' Checlgiox Button] System Windows.Farms & |
14 Toolsar
KAEl
[DomaingDonn
¥ HScrollBar =
Fort Tahoms, St

EH ListBox Text Button
= =) —
B Mantenu Contextileru (nane)
[OperFieDisbg Ensbled Trus
Bl e vistle True

g E
A saveFieDiska L
windows Forms hd Teut
Cipboard ing & vanvienut bt et
General
R Toobox [B8 server £l B roperties [@ Dyranic e

B ount E]

Ready

PC Emulator and press Deploy.
[image: image39.png]Font Tahoma, 3pt

T e e
=

Contextieny (none)

Enabled Tue
visble Tue

a

Text

The text contained i the cortrol,

B Properties [@ Dynanic el

This will launch the Pocket PC Emulator. The first time the emulator is launched, Visual Studio .NET will install the .NET Compact Framework:
11. [image: image40.png]

After the .NET Compact Framework is installed, Visual Studio .NET will then deploy and execute the HelloWorld application.
12. Switch to the Visual Studio .NET window. Right-click on the line:
Button1.Text = "Hello World"
and select Insert Breakpoint. Switch back to the emulator and press the “Press Me” button. This will stop execution at the breakpoint in Visual Studio .NET.

13. In debug mode, Visual Studio .NET provides the developer with pertinent runtime information, such as the call stack, local variables, class memory, etc.[image: image41.png]PocketVision - Microsoft Visual C# NET [design] - DetailForm.cs [Design]

Bl Edt Vew Projct Buld Debug
B-a-cWl@ 4B
Tookox 2 x

Device Controls
X Ponter

A Label

8l Buton

B TextBox
B Mantenu
 Chedox
& RadioButton
 picturegox
[] panel

57 patacrid
8 Lstpox

8 conbosox

L TabCortral
91 Haolber

Dats Tooks

window

Help

» Debug E

[Burnmary

Assigned To

Status
Progress

Priority

Due Date

X

o 50120021108 g

Pocket PC 2002 Emulator (Defaul) =

Detailform.cs Design] | vetalForm.cs | 4 b o B x
ElElEIE
5b Soltion PocketVisior (2 projects) A
= G Pocketvision
- (i3] References
£ &g WebReferences
- @ Datahcress
- @ Login
@ ([contrals.
- @
= ([docs
@ @ foms
- (L images
@ @
7] ssemblylnfo.cs 2
DateDue Holder
" 6B soltion Evplorer [33 o v
[notes | Properies 5 x

o

DetailForm.cs Fi Praperties

2 vsulear Updete Delete Cancel NE
Cliboerd Ring -
General Buid Action Compie.
s e R Toobox B manvieru Guston Too
Custom ToolName
Task Lt -3 tasks 2 x|g
1] | v Descrtion File Fie Name DetaiForm.cs
* T000: Acd emai notfication evert CiDocuments and .. \DetalForm.cs
© T000: Acd server synch feature Ciboeuments and . DetalForm.cs | oo
+ TODO: Check for new SMS message CiAPocuments and ..\DetaiForm.cs vance
< | 3
TaskList | Bl Output [ER Find Resuks 1 |G Search Resuls ESF Propertes | @ Dynamie e

Developers can also change the contents of memory, such as the “Text” property of “Form1”. When the application continues, it will use the new variables assigned by the developer.

14. Select Continue from the Debug menu will execute the current line of code, changing button text to “Hello World”. Switching to the emulator will [image: image42.png]

show the updated button.

[image: image43.png]Deploy HelloWorld

Choose the device o target. If the .NET Compact

Framework s not akeady on the selected device i wil
be deployed along with your appication.

Set s Default

¥ show me this dislog each time 1 deploy the application

Case Studies

XEROX

Mobile Asset Management Solution uses .NET Compact Framework to Speed Service

[image: image44.png]]

Emuator Help

S — T
(@ sunday, October 05, 2002
-

Installing Micrasoft NET Compa
Copying fles.

‘Program Files\, NET Compact
Frameworkisystem .l

When Xerox Global Services wanted to eliminate the need for service personnel to carry paper information to and from printers and copiers in managed accounts, they built a Pocket PC application in C# using the .NET Compact Framework. The application uses SQL Server™ 2000 Windows® CE Edition (SQL Server CE) as a local data store, and synch​ronizes with a central SQL Server 2000 database using XML Web services and custom business rules. The application can synchronize over 802.11 wireless connections or use a cradle. Xerox Global Services was able to share C# code between their server and mobile applications, and found it easy to transfer their C# and Windows Forms skills from the .NET Framework to the .NET Compact Framework.

Situation

Xerox Global Services personnel use a central Asset Management system to track all network printers and copiers on behalf of their customers. The software keeps track of asset information such as the location of each asset, budget information, lease information, device capability, and meter reads. Much of the Asset Management workflow involves dispatching Xerox technicians to fix a problem, perform scheduled maintenance, perform supplies replenishment, or move an asset.

These technicians are almost never at their desks. That means that prior to the mobile application they did not have access to all of the information on the assets they manage (which is held on a SQL Server database) unless they carried it with them on paper. Similarly, they did not have the capability to perform information updates to assets in the system, since they are constantly onsite with the machine population.

Today, the field technicians carry information printouts with them to customer sites, bring back handwritten meter readings, and enter the readings into the computer manually. This is a labor-intensive, error-prone process.

[image: image45.png]

Solution

Xerox Global Services considered implementing the mobile Asset Management application on Palm OS, but rejected that option and settled on the Pocket PC. The deciding factors were the Pocket PC's rich features for enterprise use, its wireless connectivity, the advanced capabilities of the .NET Compact Framework, and the convenience of the SQL Server CE infrastructure.

Steve Schlonski, Directory of Software Development said, "Our mobile asset management extensions allow technicians to use a Pocket PC to access asset information and make necessary updates without having to wait until end of the day, and without having to write things down on paper. Technicians can also collect meter reads for non-networked copiers using the PocketPC, and view the service history for a particular asset without having to call somebody or go back to their desks.

"Finally, technicians can use the Pocket PC to receive email alert notifications from networked devices that have gone down.”

The application uses a bar code reader to capture asset numbers, and uses 802.11 wireless networking when it is available, both to interrogate networked assets and to synchronize with the server application. When wireless is not available, the application works in detached mode, and can synchronize using a cradle. SQL Server CE acts as the mobile device's local data store.

[image: image46.png]ET [break] - Form:

HelloWorld - Microsoft
Fle Edt Vew Projct fuld Debug Took Window Help
B-eldd B Debug - et -3 = .
i m = Hex - -
Start Page | Form1.vb [Design] Formivb | 4 b || Solution Explorer - Helloworld 2 x
[o# eurtont [7 cliek eiL=)
B Pwsiie Class Formi 153 Soltion Heloworid (1 project)
Inherits System.Vindovs.Forms.Form =" Gl Helloworld
Friend WithEvents Buttonl s System.Windows.Forms.Button i %‘:EF”T“:SF b
ssemblyinfo.
Friend VithEvents NainMenul is System.UVindovs.Forms.Mainlienu
& Formt.vb
Windovs Forw Designer generated code
Private Sws Buttoni_Click(ByVal sender As System.Object,
Byval e is System.Eventirgs)
= Handles Buttoni.Click
End Sub
End Class
(| 13 Soluion Explorer | Bl unring Documents.
2 x

‘
Col Stack
Type Neme Lna
‘© Hellotorld.exe!HelloworldForm! Buttont_Click(Object sender = {System. Windows.Forms Butt Basic

Name
[<torvuser Code>]
Basic

{5ystem Eventaras) System &
Object HelloWorl.exe1HelloWorld. Formt Main() Line 44 + Oxa bytes

sender {5ystem Windows Forms.Buton).

8 ol stack | E1 Command Window | 1@ ereakoaints | B Output

S s 6l Locos [T Wi ¢
Ready

Benefits

Kirk Pothos, Software Development Manager: "It made a lot of sense for us to extend our .NET-based Asset Management application into the Mobile world. We were able to port some of our C# code from the desktop to the mobile application, which helped our productivity.

"Our developers were already familiar with the C# language and Windows Forms. It was easy and natural for them to pick up the .NET Compact Framework. We found that most of the capabilities we needed were already provided in the Compact Framework, which saved us from having to roll our own services. We're very happy with our choice.

"One area where we did roll our own service is synchronization. While SQL Server CE knows how to synchronize with SQL Server 2000, we have a lot of business rules that need to be applied when performing a data synchronization. What we did rather than a simple SQL merge operation was to write an XML Web service for synchronization with the server, and call it from the mobile client. The support for an XML Web services built into the .NET Framework and the .NET Compact Framework made this fairly easy.

"For data access, we used SQL Server CE as the data store on the Pocket PC. We then used the ADO.NET classes provided in the .NET Compact Framework to run queries and operate on data the same way we did in our web based application.

"One cool aspect of this project was that were able to build a 3-tier application on the Pocket PC platform using the .NET Compact Framework. As I just mentioned, we used SQL Server CE and ADO.NET for the data tier; we used C# for the business tier, and Windows Forms as our presentation tier."

Robert Gerardi, manager of Xerox Office Services Operations: "We see improved developer productivity, reduced time to market, and improved application performance from the use of Visual Studio® .NET. It gives us a single development environment for our desktop, server, and mobile applications. The C# language, the Visual Studio .NET forms designer, and the .NET Compact Framework give us a way to design mobile user interfaces that is as easy as Visual Basic®, and as powerful as Visual C++®.

"For our own organization, we are eliminating the human error from our duplicate data entry, reducing the time and labor it takes to input data into our system, and improving the synchronization of data in our central database. All of this improves our operational efficiency, resulting in better service for our customers.
[image: image47.png]

Northrop Grumman

Application uses the .NET Compact Framework and SQL
Server 2000 Windows CE Edition (SQL Server CE) to inspect the largest crane in the Western Hemisphere and eliminate 20,000 paper documents a year
[image: image48.png]e 2 b
Visual Studio.net AL Compact Fram

ﬁ

Northrop Grumman Newport News builds and maintains some of the largest and most sophisticated ships in the world – nuclear powered aircraft carriers and submarines. Building these vessels requires not only huge amounts of raw materials, but also gigantic sophisticated tools, such as a crane that scales over 290 feet. Merely inspecting and maintaining those cranes can generate massive amounts of paper documents and require teams of inspectors several days to complete.

But by leveraging their expertise with the Microsoft® .NET Framework, the Northrop Grumman Information Technology developers were able to craft a mobile handheld inspection system using the .NET Compact Framework that has the potential to save Northrop Grumman Newport News from having to produce and store 20,000 paper documents a year.
Kenny Roberts, Northrop Grumman Information Technology’s Manager of E-Business, noted that the .NET Framework helped them at several stages in the development process.

Multiple Benefits

“Using .NET has produced a reduction in time for our development process,” says Roberts. “.NET has made a difference in gaining customer acceptance and made it possible for customers to play an integral role during the development process. We storyboarded the application flow by building a prototype of the application forms using the .NET Compact Framework and Visual Studio® .NET. So, the customer new exactly how the application would look and how it would process information before we went into development. We were able to provide rapid turnaround for change requests and quickly push new builds of the product to customers for acceptance testing.”

It took one developer only two months to build Northrop Grumman’s crane inspection application, a testament to the RAD capabilities of Visual Studio .NET and the consistency from desktop to device of the .NET development platform.
“We were already building Web Applications with Visual Studio .NET and knew the productivity gains that can be achieved by using Visual Studio .NET and the .NET Framework,” says Roberts. “It made sense to us that the .NET Compact Framework could achieve the same benefits since it is just an extension of Visual Studio .NET. Other development tools could not provide the benefit of leveraging our existing .NET expertise and thus not achieve the same productivity and usability gains. “In previous years we had tried to build a similar product using various Java toolkits. However, these tools couldn’t provide the functionality that we needed at the time and it required that developers spend a lot of time learning the development tool, instead of focusing on the business process.”

[image: image49.png]e 2 b
Visual Studio.net AL Compact Fram

ﬁ

[image: image50.png]e 2 b
Visual Studio.net AL Compact Fram

ﬁ

Saving Time And Paper

Northrop Grumman’s application provides work/task assignments for Crane Inspectors. This includes all the documents necessary to perform the inspection, time-charging information, tasks, and notes from previous inspections. Inspectors work in teams inspecting different components of the cranes depending on their area of expertise (electrical, mechanical, structural, etc.).

These inspections can last several days and include teams of 5-10 inspectors. One of the cranes inspected includes the largest Crane in the Western Hemisphere, a 910 ton crane that can lift complete Aircraft Carrier assemblies. The application helps inspectors document deficiencies by recording hand written notes, selecting reusable key phrases and paragraphs, recording voice and machinery sounds, and capturing photographs of equipment problems. Once recorded, deficiency information will be able to be electronically forwarded to engineering, assigned a work tracking number in SAP R3, and forwarded to the appropriate work crew. Potentially eliminating the requirement to produce and store over 20,000 paper documents that were generated annually.

[image: image51.png]' L4 v
Visual Basic .NET C#

4

Visual Studio .NET

Windows Web Device
Forms Services Specifics

ADO.NET and XML

Visual Studio .NET

Base Classes

Commpnl

Fast And Reliable

“The entire Crane Inspection application took 4 months from inception to product -- only 2 months of that was development time,” says Roberts.
“Using the Web connectivity of SQL Server™ CE 2.0 and XML Web services, we were able to rapidly deliver a very robust product to the customer. We actually had one individual sit down and unsuccessfully try to break the application. We are convinced that we can build very reliable, rich, and portable applications using the .NET Compact Framework.”

Tesco

Supermarket Improves Truck Routing and Delivery with .NET Compact Framework

[image: image52.png]'Major Vendor Web Services Platform Influence Magic Quadrant'

Ability to
Execute

Challengers

Leaders

Microsoft
@

Oracle

Hewlett-Packard

BEA Systems o 1BM ()

Sun
Microsystems

As of October 2002

Niche Players

Visionaries

Completeness of Vision —>

“Source: Gartner Research,
October, 2002

When Tesco.com and the Tesco supermarkets wanted to extend their automation structure to their delivery vans, they turned to the Microsoft® .NET Compact Framework. They targeted Symbol industrialized Pocket PC devices with wireless links, connected to GPS receivers mounted in their vans. Using Visual Studio® .NET, they were able to quickly code a C# application to download customer order lists for a truck, route the truck to its destinations, capture any customer rejections of product substitutions, capture a customer signature along with its time and location, and log the truck's entire actual route.

Situation

Tesco.com is the e-commerce arm of Tesco PLC, the United Kingdom's largest food retail/supermarket company. With 270 stores and a Web site, they were eager to improve the efficiency of their home delivery process. Nick Lansley is IT New Technologies Manager at Tesco.

"We already had experience with Windows® 95-based tablet-style PCs in our stores, but we felt that the PCs would be too expensive and too fragile for use in a delivery van. We considered using Windows CE-based devices, but we didn't have any in-house experience with eMbedded Visual C++®, and we didn't have the budget to hire this project out.

"We did have expertise in C# and Visual Basic® .NET, however. Our company had already brought the .NET Framework on board, and we'd used it to implement XML Web services that let us interoperate with some of our partners. Using web services had allowed us to communicate with our “Tesco Pocket Shopper” grocery shopping application for Pocket PCs, for instance.
"We discovered the .NET Compact Framework during its alpha test period, got a copy for evaluation, and realized that programming a Pocket PC application with Visual Studio .NET is almost the same as programming a desktop application. Of course, we put up with the same alpha problems as everyone else – we built desktop Windows Forms and modified the generated code to work on the device. When we got the beta of the .NET Compact Framework, all those problems were fixed, and we could design device forms graphically and test them in the emulator.

Solution

"Our prototype solution was built by a single developer in 8 weeks. The application replaces all of the delivery driver's paperwork – and with the size of our stores and the amount of paper we have, paperwork was always getting lost. In addition, our solution “listens” to a Global Positioning System (GPS) receiver, which records the exact latitude and longitude of the delivery van. The application uses this information to plot a path to the customer’s home using an on-screen map.

"In the store, the application pulls across the orders for a delivery van to the Pocket PC over a wireless 802.11b network connection. The order list includes the customer locations and a list of product substitutions – we substitute for ordered products that are out of stock, but the customer has the option to reject the substituted product if she wishes.

"We use an industrialized Pocket PC manufactured by Symbol. We expect that it's rugged enough for our purposes, and is affordable enough to use in our vans. Each device has 802.11b wireless connectivity, which works with the wireless access points in our stores. In the van, the device docks in a cradle, and we have a GPS device connected to the cradle. The GPS provides the van's latitude and longitude as well as the current time and date.

"When the order list has been downloaded to the Pocket PC and the van has been loaded, the driver docks the Pocket PC in its cradle and it displays a map giving the route to the first customer. When the driver arrives and parks, he takes the Pocket PC device to the customer along with the order.

"The customer can accept or reject any product substitutions, and the device captures the customer's signature along with the van's current position and the time of day.

Business Benefits

"Once we've made a delivery to a customer, we have the exact latitude and longitude of a successful parking spot on file, so that it doesn't matter whether the same driver delivers to the customer on the next trip. That parking spot will show up on the map presented the next time round.

"We also log the entire trip as it progresses: the latitude, longitude, and time every few seconds. That information provides feedback to the mapping and routing vendor, and allows us to improve our routes and the accuracy of delivery times promised to customers.

"Once the delivery van completes its route and gets within the range of the store's wireless access points, the Pocket PC automatically uploads its logs to the store's central computer. The central database gets the lists of successful and unsuccessful deliveries, the delivered and rejected products, the customer signatures (as signed straight onto the Pocket PC’s screen) with their time and location stamps, and the truck's route log."

.NET Compact Framework Surprises

Angela Walker is the project’s IT developer at Tesco.com. “As a Visual Studio .NET and C# developer, I found I could get to grips with programming for .NET Compact Framework with very little extra learning. The Pocket PC emulator and remote debug tools were particularly useful and enabled me to discover and remove bugs and any unexpected behaviors very quickly.”

"We were surprised to discover that in the Pocket PC, like many other handheld platforms, but unlike Windows desktop platforms, only the foreground application runs – any other application in the background actually goes to sleep! The only way to make an application do several things at once is to use several threads running simultaneously. Fortunately the .NET Compact Framework has good support for handling multiple threads, which makes this easier than on most handheld platforms, some of which don’t support threads at all.

"However, threads have no 'thread abort' method in the .NET Compact Framework, unlike the full .NET Framework. So we had to use a work-around to signal threads to abort.

"On the plus side, virtually no change to the way a standard application is developed was needed for .NET Compact Framework development. Leveraging existing knowledge of development in Visual Basic .NET or C# (or any other .NET language) was all that was required. Very little extra thinking 'out of the box' was needed. Existing familiarity with the IDE was not compromised to develop in the .NET Compact Framework.

"Leveraging existing knowledge of C# was just fantastic. The emulator screen helped a great deal; and the remote debugging facility where the application on the Pocket PC could be remote-controlled from the desktop (development) machine was extremely useful and very time saving, particularly as the Pocket PC runs on a wireless (802.11b) LAN connection and could be installed in a Tesco.com delivery van parked nearby for testing."

Ongoing Development

Lansley: "Our trial has just begun at our Basingstoke store, with 4 delivery vans. Basingstoke is a nearly ideal test area: it's a small city surrounded by countryside villages. There are forests in the area, so we've been able to test the application in places where the GPS receiver can't acquire satellites easily.

"We're revising our application on a three-week cycle with feedback from the trial. We listen to the issues that the drivers find from using the application and design solutions to them very fast thanks to the rapid application changes that can be made using Visual Studio .NET and the .NET Compact Framework.

 “We have not yet planned rollout to other stores until we have perfected the application, and we have a clearer view of the costs of rollout. However with .NET Compact Framework development we will be able to reach these answers much more quickly because of its accelerated development nature."

Numeric Computer Systems
Mobile Salesmen Track Transactions Faster with .NET Compact Framework-based Application
NCS, a provider of solutions for the fast moving consumer goods industry, found itself in the situation of having three separate but similar applications that did not share objects and could not take advantage of emerging communications and hardware improvements. They turned to the Microsoft® .NET Compact Framework to build a unified mobile application framework with substantial shared code and separate front ends. The new applications run on Pocket PCs, and can take advantage of all the capabilities of these state-of-the-art devices. Mobile salesmen selling from their trucks can load inventory, sell items to customers, print invoices, collect payments, track all of this without paper records, and reconcile their transactions automatically at the end of the day. Dean Foods, one of the nation's leading food and beverage companies, has adopted eXpress Route for its delivery fleet.
Situation

eXpress Route was written in Borland C++ and Penright. It ran on palm size devices as well as running on MS-DOS with a GUI front end. eXpress SalesForce was a tablet format application written using Visual Basic® 6.0 that ran on Windows® 95, Windows 98 and Windows NT®. eXpress Merchandiser ran on Windows CE and MS-DOS and was written using Borland C++ and Penright/Mobile Builder. Its target format is palm size devices.

Having three similar applications built on differing technologies was a maintenance and deployment nightmare. NCS wanted to adopt a single development environment that would be able to target desktop, tablet, and palm-sized devices. In addition, they wanted:

· Stable device software and O/S. Reliable operation in the field (without reboots) for a minimum of 1 week.

· Ease of Deployment. Deploying the application must be simple and successful. Software upgrades should be simple downloads and not require registering remote components.

· Simplicity and Intuitiveness. The software must be simple to use and intuitive, and the framework should include controls that support good GUI design.

· Speed Of Operation. The software must perform key functions in a timely manner – e.g. during order entry it must be able to keep up with an average user entering data.
· Multiple Device Support from a Single Executable. With their previous technology they needed to support multiple processors for each Windows CE platform, each requiring a separate executable, which complicated their version control.
· Ability To Integrate Custom Modifications to Base Package. They wanted to allow clients to modify the base functionality easily. For example, almost every customer wants a customized invoice print format, which shouldn't require modification of the base package or the generation of a custom executable.
NCS considered building their new applications in eMbedded Visual Basic, but felt that it was too limited. They considered using eMbedded Visual C++®, but did not want to have to build separate executables for each Windows CE platform. They considered using Mobile Builder, but had unresolved issues with the product.

Solution

NCS settled on a solution using the C# language, Visual Studio® .NET, and the .NET Compact Framework, which gave them the unified development environment, high performance, and platform-independence they needed. Mike O'leary, Development Manager: "We decided to split the handheld application into 3 distinct parts: a shared business object, a shared commu​ni​cations module, and a front end. We planned three separate front ends for the .NET versions of eXpress Route, eXpress SalesForce, and eXpress Merchandiser. We've now implemented the eXpress Route front end. (See the figures at the left.)

"The eXpress Suite Business Object, a C# assembly, includes all of our standard functionality and the rules associated with each function. The business object includes things such as customer functions, product functions, and information about the setting. The business object also includes those of our custom controls that are common to the three front ends, such as our customer list control. In general, the business object does not display anything except for critical errors. The business object communicates with the database, which is SQL Server™ 2000 Windows CE Edition (SQL Server CE) or SQL Server 2000.

"The eXpress Suite Comms Module controls the uploading/downloading and processing of data files – initially we are using Intermec's communications. The transmission format is XML data files – therefore giving us the ability in the future to communicate directly to an XML Web service. The basic procedure is that some downloaded XML files are presented to a directory on the device and we then load the XML files (that include schema) and convert them into a SQL Server CE database table. The upload process is almost the opposite: XML files are built from the database and placed in a directory that the Communications module then transfers. We could have more easily used SQL Server merge replication, but we intended to use an XML Web service over wireless in our middleware in the future so this architecture made sense.

"Finally, the eXpress Route Front End controls the displaying of all information and the flow through the application. We use Windows Forms and custom Windows Forms controls extensively. There will be two more front ends, for the other two applications.

Benefits

"We undertook a very large scale project and as such faced many issues in order to get the application to a point where it was marketable. Our application is approximately 1 MB, which is very large compared to typical Pocket PC applications.

"We are expecting to now be in a position where .NET technology will allow us to get products to market very quickly and therefore we will also have a vastly increased productivity. The architecture that .NET has allowed us to create has delivered a product that will help our customers/partners to customize the product for their own needs with little or no code changes, which ultimately makes our product very appealing to a much larger market than any of our previous (non-.NET) versions.

"Visual Studio .NET and the .NET Compact Framework gave us several large benefits:

· Ease of development – the IDE is fantastic! Developing applications in Visual Studio .NET is very simple and complete – all the tools that a developer needs are included and you don’t find yourself going off to other tools to complete tasks.

· Ease of deployment – copy and paste of executables for deployment makes support and testing a lot easier. Multiple versions can sit on the same machine with no need for registration of components or any of that.

· Platform transparency – our application can run on anything from a Pocket PC right through to Windows XP with minimal changes. We can simply copy and paste the code from one platform to another. Supporting one version is so much easier than having a version for each target! Of course we can tweak the application to take advantage of greater functionality on the higher level platforms.

· Robust Base Classes – Having so many classes available to the developer, and knowing they are on all your targets, means that developing new functionality is a lot quicker than it would be if we were constantly reinventing the wheel."

Benefits to Customers

Paul Winkler, Director of Marketing: "Direct store delivery personnel need visibility to a range of customer information, such as inventory, sales history and product details, to carry out their work quickly and efficiently. eXpress Route allows a route salesperson to easily handle all elements of route distribution such as order entry, invoicing, messaging, collections, returns, inventory control, and DEX (Direct Exchange)."

Dean Foods, one of the nation's leading food and beverage companies, and the largest US distributor of dairy products, has adopted eXpress Route for its delivery fleet. Art Fino, CIO of Dean Foods: “We envision that eXpress Route will create added value for our customers while, in turn, making it easier to do business with us. As our reporting capability increases, we intend to offer key information to our business partners by delivering systems rich in functionality. We also expect to achieve benefits in our operations by enhancing the delivery process including: faster, more efficient delivery of products to the marketplace, better visibility to incremental sales opportunities, streamlined inventory management, and, a more efficient route settlement/financial close process.”

Accompany-ME

Accompany-ME’s “field-interaction” application, built using the .NET Compact Framework, boosts productivity of field sales, support, and service workers.
One of the hardest tasks facing Enterprise software developers is building software systems that can interact with the many different types of Enterprise applications found in today’s businesses. To create their mobile Enterprise application which integrates business applications such as Oracle, Siebel, SAP, Clarify, and Remedy, Accompany turned to the Microsoft® .NET Compact Framework.
“The .NET Compact Framework really enabled our development team to build a grass roots technology platform that was designed for interoperability and scalability from the ground up,” says Rob O’Farrell, Accompany-ME’s CTO. “We took advantage of the robust .NET Framework libraries and the rapid development environment of Visual Studio® .NET to spend more time building features and functionality rather than low level plumbing. XML Web services allow our core services to be consumed by any number of technologies.”
Better Than Homegrown

Initially, O’Farrell and his team of developers considered their own technology for their application, called Accompany-ME (Mobile Enterprise), but soon realized that the .NET Compact Framework would make development both faster and more interoperable. “Our application is developed as a set of core .NET services that are wrapped with Web Services for interoperability,” says O’Farrell. “One of the .NET services is a connector that enables our technology to interoperate with any ODBC and/or Web Services API.”

Productivity Without Constraints

Field Interaction Management solutions, such as Accompany-ME, extend enterprise applications to mobile devices. The mobile employee can work connected and disconnected, bringing the power of the business applications to the field without constraining the field worker.

Productive field operatives want the information they need available to them in an easy, fast and predictable manner. Accompany-ME applies role based business process governance to the handheld application by breaking down that process into logical productive steps and also lets business managers adapt the application to their specific business process needs.

Client Implementation
The Accompany-ME solution extensively utilizes Microsoft’s .NET and .NET Compact Framework technologies. “It was clear to us that Visual Studio .NET and .NET Compact Framework not only simplified the product development tasks, but also opened up a larger compatible community of applications and over 3 million skilled developers able to configure our solution,” says O’Farrell. “.NET Compact Framework and Visual Studio .NET also allowed us to more rapidly develop extended functionality in our own application.”

Accompany-ME’s mobile client environment utilizes Microsoft’s Visual Studio .NET Integrated Development Environment, the .NET Compact Framework, and a custom integrated add-in called the ME-Customizer, to create complex business processes guided by interface user screens. The various business objects store data locally via ADO.NET on the mobile client using SQL Server™ Windows® CE Edition 2.0 (SQL Server CE) and update data from and to back-office applications securely using Web Services and SOAP.

GUI screens created by Accompany-ME’s tools guide the field professional through business processes reducing training time.

The Accompany ME-Client is able to communicate using whatever infrastructure is supported on the Pocket PC device, for example: a standard USB connection, Ethernet, WiFi (802.11b), Dial-Up Cell Modem, GPRS, SMS/Text Messaging, and 3G.

A queue notifies the field professional of their prioritized activities and, Service Level Agreements, necessary activity, customer history and the specific appointment time. This guides the field operative through their day to day workload – prioritizing and notifying the operative of new and existing functions to be carried out. With the appropriate communications, queues can be dynamically updated at any time, allowing business managers to maximize productivity of field personnel and meet and exceed client service level agreements and expectations.

Real Savings
Accompany-ME is an off-the-shelf solution offering features comparable to more expensive custom solutions like those developed and used by FedEx, Sun, and UPS. Equipment costs are also reduced by deploying on readily available Pocket PC devices. “Since field personnel no longer have to carry laptops we have reduced the cost of hardware in the field,” says O’Farrell. “There are obviously other cost savings here, for instance Pocket PC devices are more robust and require less systems and network management and administration.”
“We have not found another platform -- apart from .NET -- that provides us with the flexibility and functionality we need without extensive custom code lines,” says O’Farrell. “Certainly using .NET has allowed Accompany to more rapidly bring a high quality, reliable product to market.
FlyteComm

Mobile Flight Tracking for Corporate Travel
When FlyteComm needed to create a mobile application to access their Flight Information web service, they built it using Microsoft® .NET Compact Framework. Along the way, they came up with a toolkit that third parties can use to build graphical applications incorporating flight information on a Pocket PC or other mobile device.

Situation

With corporations now spending $160 billion annually on air transportation, there is a critical need for accurate and timely information before and during travel. Unpredictable departures and arrivals have created a strong business need for real-time flight intelligence. Flight delays, for example, create a ripple effect through a whole ecosystem of interdependent businesses. Whether moving cargo or people, delays are expensive. Since 2000, FlyteComm has provided intelligent travel information and services for the aviation, corporate travel, transportation, and wireless markets. The Company uses dozens of data sources and applies sophisticated proprietary algorithms to produce reality-based real-time solutions.

FlyteComm is now expanding its offerings to include an XML Web Service and a .NET Compact Framework toolkit, enabling the development of mobile applications that will put real-time flight status information in the hands of business travelers.

FlyteComm’s previous environment included Sun Solaris, C/C++, Java, BEA WebLogic Server, and Oracle databases. The company had no previous experience in mobile application development.

FlyteComm’s James Bunker says: “Microsoft .NET offers developers a simple way to incorporate web services. It is a perfect platform for incorporating flight information from FlyteComm.”

Solution

Several years ago, the FAA made radar feeds available to commercial users. These feeds track the status of all aircraft under positive control from FAA Air Traffic Control (ATC) centers throughout the United States—including both scheduled airline flights and business jets. The FAA data is used by a number of companies that bring up web-browsers to check on the whereabouts of commercial and business jet, or fractional flights flights. FlyteComm is making this data available on a .NET service; as an FAA class-2 feed. Since 9/11 the FAA has been concerned about security of information; as a result FlyteComm has modified the data in such a way that it now fully complies with the new FAA data security mandate. This information is stored in FlyteComm’s Flight Info database, hosted on an Oracle server.

FlyteComm’s Flight Info toolkit provides an XML Web Service based on the Flight Info database. The toolkit also includes a .NET Compact Framework Control, and sample application (both written in Visual C#™) for real-time graphical flight tracking. The application retrieves flight information using the web service, and uses MapPoint technology to display the position of the en-route flights on a geographical map.

Currently, FlyteComm is testing the system over an 802.11 wireless Ethernet LAN, but the company believes that it will work with any form of connectivity that provides access to the Internet (obviously, performance will degrade to some extent on slower connections). The platform for the current test application is a Pocket PC 2002 device; but ultimately the company expects to support any .NET Compact Framework hardware providing internet connectivity and the ability to execute a graphical control, including SmartPhone 2002 (aka “Stinger”) devices.
Benefits

Basing the service and sample application on .NET Compact Framework gave FlyteComm a faster time-to-market and better integration through web services. The application is written in the Visual C# development system, and uses Windows® Forms and the XML web services client. Among the advantages FlyteComm sees from using .NET Compact Framework are:

· Easy way to create applications/services without being an expert in Mobile Devices development

· Increased productivity, easy to create Web Services, Web Pages, etc.

· Easy integration with Web Services

Roman Smolgovsky, FlyteComm’s Chief System Architect, is particularly pleased with how easy it was to create both the XML Web Service and mobile applications using Visual Studio® .NET. “It offers a rich set of classes and capabilities, and easy integration with third-party software such as MapPoint®—and all in a well designed IDE. Without using .NET, we would not be able to create such a complex application in so little time. Also, creation of Web Services is much easier in .NET that in any other environment. And debugging capabilities are incredible – the Java environment does not provide any debugging at all. We would not be able to integrate so easily with services like MapPoint from Java either.”

“Windows Forms development seems to be a similar technology to that used previously in Visual Basic® and Visual C++®”, Smolgovsky continues. “However, it is significantly improved. Microsoft did a great job in eliminating complex code pieces that were non-trivial. Also, it is really great that all the drag-and-drop activities done in the designer are translating to real code (no extra binaries, etc.) in the Form code. It’s a very robust, very easy, simple solution. And .NET provides caching capabilities that we widely use in the application”

Smolgovsky adds that he’s “very impressed that projects no longer have 'magical binary files' -everything is in the text files. So, developers can use 'Drag and drop' IDE features or manually modify/write the code. I think, it is, probably, the best thing Microsoft achieved in this framework. Because Controls in Compact Framework do not have 'Drag and Drop' IDE features, I was creating a small application, used 'Drag and Drop' to create a UI similar to the one that will be in the control and then pretty much copied it to the control. Also, I did not have to use 'Design' view all the time - often I just modified the code.”

Flight Info .NET service is available today from FlyteComm. Because of the events of 9/11, this exciting service requires FlyteComm to obtain approval from the Federal Aviation Administration for new customer applications. This is a relatively simple administrative process. For more information, contact sales@flytecomm.com.
GeoVector

Welcome to New Zealand Pocket PC Application Demonstrates the Power of the .NET Compact Framework when combined with GPS and Heading Sensors
GeoVector's unique combination of heading and attitude sensors, with GPS locators and Pocket PC devices, forms the basis of a whole new class of mobile solutions. The application, Welcome to New Zealand, allows visitors to use their devices to find out about the real world objects near them. More powerful than conventional GPS systems, the GeoVector system can not only tell you what's around you; it can also tell you what you're looking at. The application not only provides tour-oriented and geographical information; it also enables mobile commerce. The application was built in Visual C#™ using Visual Studio® .NET, the .NET Compact Framework, and SQL Server™ 2000 Windows® CE Edition (SQL Server CE). It supports all forms of IP connectivity, which in New Zealand includes GSM, GPRS, CDPD, and CDMA 1xRTT mobile networks.

Situation

GeoVector Corporation is a US-based technology company that has established an advanced development lab in Auckland, New Zealand, to build pointing applications based on their technology. Earlier this year GeoVector decided to move its core software technology development from the USA to New Zealand, and in May started to establish its core technology team in Christchurch. Arron Judson is the company's Director in New Zealand.

"GeoVector’s core technology is based around the use of heading and other attitude sensors, which detect the direction in which the device is pointing. It combines them with GPS, which detects the spatial location of the device, and a geographic information database, to create a new type of mobile solution.

"While GPS alone can tell you what's around you, GeoVector can tell you what you're looking at. GeoVector turns the handheld device into what is essentially a mouse, where the real world is your desktop and you can point and click on any known geo-located object.

"GeoVector not only enhances the user experience of navigation solutions, we are also creating an opportunity for a whole new range of mobile applications based around pointing, including games. With GeoVector, I can now 'Point and Shoot' in the real world. Add cellular communications, and I have a multi-player game.

"Our initial application is for visitors to New Zealand, called Welcome To New Zealand (W2NZ). We expect to have it ready for visitors who come to New Zealand this fall for the America's Cup.

"We initially tried building a rich client on Palm OS, but it could only handle a very small database. We also built a prototype thin client on Active Perl, WML, and MySQL, with a middle-tier spatial calculation component written in Visual C++®. We then reimplemented the rich client for the Pocket PC using Embedded Visual Tools, with the back end communications via XML over HTTP, although not with SOAP.

Solution

"We have now implemented a new version of the rich client (see figure at left) using Visual Studio .NET and the .NET Compact Framework. The spatial calculations are in C#, the data is stored locally in SQL Server CE, and communications with the back office are via SQL Server merge replication over HTTP (see architecture diagram below).

"We've also implemented a new thin client using Visual Studio .NET, ASP.NET, and Mobile Controls, which generates WML, HDML, HTML, or cHTML as needed by the mobile device. The data for the thin client is stored in SQL Server 2000, and, like the rich client, the spatial calculations are in Visual C#.

"Our aim is to have the spatial calculation code common across all platforms. Consistency between the .NET Compact Framework and .NET Framework enabled us to do that. We have developed our own spatial routines for Minimum Bounding Rectangle intersections, intersections of polygonal, circular and spherical regions, flat earth (which works well enough for the short distances used in pedestrian focused application) and spherical earth geometry (for other applications where distances are greater) and avoid earth geometry (where accuracy is paramount and distances are large).

"W2NZ will run on an HP iPAQ 3970, later this year on the iPAQ 5000, and ultimately on a pointing-enabled Microsoft SmartPhone. This application will allow users to be guided around New Zealand, similar to existing Location Based navigation applications.

"The difference is that W2NZ will allow the user to point his mobile device at any known object and gather more information, a 'What’s that?' scenario. Or the user could point in a certain direction to find if any categories of objects are that way, 'Are there any restaurants down that street?'

‘Once the user locates a restaurant, movie theater or other establishment, one simple action enables GeoVector’s “Point to Call™” software to put the user through, to place a reservation either as a voice or data call.’

"Once the user has found the destination they are interested in, they can easily be guided, not with maps, but an arrow that points to the destination from their current location. The arrow will maintain a lock on the object regardless of the orientation of the Pocket PC, because the magnetic heading sensor will determine the heading of the device. Distance to the object can be calculated as the crow flies.

"This application is for pedestrians, particularly visitors and tourists to a new place. It is not designed for in Vehicle Navigation, where heading is sometimes calculated by the direction the vehicle moves, using current and last known GPS position to determine a quasi-direction. Vehicle navigation has to guide the vehicle based on a number of variables, for example one-way streets, no heavy transport, etc. We just point the way and the user can determine the easiest route.

"Our application allows the user to be standing still and pointing all around them to gather information:

· Point at Geographic Points of Interest for more information “Discovery Channel”

· Point at Hotels, Restaurants for room rates and menus.

· Point at the Movie Theatre to find out what’s on and reserve tickets.
Benefits

"We chose the .NET Compact Framework because it gives us a consistent development environment for all platforms, and because the combination of Microsoft SQL Server and SQL Server 2000 CE makes data access very easy.

"We wanted to have the same development environment (languages, IDE, and core code modules) for all of our current and future platforms (PocketPC, Smartphone, desktop browser clients and mobile browser client, and Tablet PCs). Visual Studio .NET, combined with the .NET Compact Framework and ASP.NET Mobile controls, achieves that core requirement.

"The Rich Client allowed us to store a lot of the data on the Pocket PC, improving performance and reducing reliance on communications. Also, the Rich Client gave us more flexibility with the user experience and interface.

"The thin client interface will improve once we start development using SmartPhone 2002, and the mobile devices become more data aware. The thin client will always rely on access to the remote DataSet, which may impact on performance in some areas of high mobile congestion or limited mobile infrastructure, but we see this as a minor obstacle that will only impact a small percentage of users.

"The .NET Compact Framework gives us a platform that we can use to build solutions for both environments, utilizing a single development environment and a single back-office DataSet.

"XCopy deployment on the server saves us a lot of time. Anonymous Merge database replication between Microsoft SQL Server and SQL Server CE for rich clients makes our application deployment in the field much easier to manage.

Futures

"Integration with MapPoint is on our technology roadmap and we see XML Web services being a key technology in the back office, to allow us to aggregate spatial data from numerous content providers.

"Our technology extends into other scenarios. One we plan to build is a real estate application, 'point at the area you want to live in'. This would be for field sales initially, by building a tool for the real estate agents. Long term, the consumers would subscribe to the listings databases and could look for properties themselves. We are developing other pointing applications, including a Buddy Finder based on MSN Messenger, and some pointing-enabled 'First Person Shooter' games.

"Our core technology will be developed using Visual Studio .NET, and made available to the wider development community as a series of .NET-compliant components. This will allow other .NET developers to develop applications based on our core technology and .NET."
Intrinsyc

Intrinsyc leverages .NET Compact Framework to control video cameras remotely and display video across multiple client devices
When the Department of Justice needed a way to remotely control a jail surveillance system from handheld devices, Intrinsyc turned to Microsoft’s .NET Compact Framework to build a solution for them. Intrinsyc was able to leverage the consistent development environment of Visual Studio® .NET and the Microsoft® .NET CF to deploy surveillance clients across multiple desktop and handheld devices with minimal code changes.

 “The Compact Framework allows the use, and re-use, of software across multiple platforms,” says Zoran Galovic, Intrinsyc’s Lead Field Application Engineer. “The desktop client application was developed using Microsoft .NET and C#. This code was easily converted to work on the iPAQ (Pocket PC) and our Cerf Windows® CE-based device. There was minimal effort needed to adapt the desktop application to the handhelds.”
Embedding Knowledge

Intrinsyc specializes in development with embedded devices – the little computers that are inside of cameras, cell phones, and other devices. For the Department of Justice project, They customized their own device, called the CerfCube, using the Embedded Internet Services of Windows CE .NET, to control off-the-shelf video cameras over the web. Using the GUI and Web Service components of the .NET Compact Framework, Galovic’s team was able to build their camera control interface with minimal hassles and maximum portability. “Executing the camera controls for a high-end camera is as simple as using web-based commands via http,” says Galovic. “The web services component allowed fast development of the Remote Procedure Calls used by SOAP (the Web services protocol).”

Use and Re-Use

Intrinsyc targeted handheld devices but also needed to run their application on desktop PCs as well. The .NET Compact Framework let them do both. “There was no porting at all,” says Galovic. “Since the .NET Compact Framework is a subset of the .NET Framework, we simply designed and developed applications for iPAQ and then ran them on the desktop PC. The only step we had to take was to create solution and project files for both PDAs and the desktop, and that was an easy procedure using the Visual Studio .NET and Smart Device Extension wizards.”

The development team made significant use of Windows Forms to speed development. “We use Windows Forms to display retrieved images from the camera, to control the camera, and to receive the camera's motion detection notifications,” says Galovic. “It was straightforward to develop Windows Forms in C# for desktop applications and re-use them 100 % for both PocketPCs and customized PDAs. The Form Designer looks like Visual Basic®, so, not only is it easy to design and develop Windows Form applications, but the compatibility with desktop systems helps our developers who don’t have as much embedded device experience.”
Application Sophistication

The jail surveillance system Intrinsyc co-developed is called JAILER, a prototype system that takes existing surveillance technology to a new level. The system allows interaction with cameras where surveillance is required. The interaction includes controlling the camera’s field of view and motion detection over a local network including wireless access points. The key features of the system are viewing of live video data by client computers (both handhelds and desktops), the ability of client computers to control the field of view of the camera (pan, zoom, tilt, focus, etc.), mobile use - client computers can be connected to the network by means of a wireless access point, and handling of alarms that are generated by the cameras. JAILER is designed to use low cost off-the-shelf components.
Test and Deploy

As a company that spends a lot of time developing for embedded devices, Intrinsyc needs a development environment that saves them time. The Compact Framework allowed them to re-use code across both PDA’s and desktop PCs, and it’s Visual Studio .NET Integrated Development Environment let them leverage their desktop development expertise. Finally, the high-level testing tools made testing and deployment a snap. “Most of testing was done on the desktop which is very straightforward,” says Galovic. “It was very convenient to download software to devices and do all of the testing and debugging using ActiveSync® and Visual Studio .NET with the Smart Device Extensions. “

MakeLogic

MakeLogic found that the power of the Pocket PC and .NET Compact Framework was well-suited to their MicroGraphs libraries

It wasn’t just the fast CPUs and high-resolution color screens of Pocket PC devices that attracted Makelogic Product Manager Madanu Ujjwal Kumar, it was also the ease with which he could develop using the Microsoft® .NET Compact Framework.

And as a company that develops APIs, development tools, and applications for the various mobile platforms available today, Makelogic is in a good position to know what works and what doesn’t.

For their MicroGraphs charting libraries, that take full advantage of the high-resolution color screens and stylus-based interactivity on today’s mobile devices, Madanu found the Pocket PC and Microsoft’s .NET Compact Framework to be a winning combination. Initially targeting PalmOS devices using Java, Madanu and his development team found that transitioning from Java to Visual C#™ was “very gentle and easy”.
A Complete Package

“We were java developers earlier and so J2ME was our immediate choice to bring out a wireless product into the market. Then we tried out other platforms too,” notes Madanu. “The various tools like editors, emulators, debuggers, build tools, etc, are not all available from one single place for the other approaches, and therefore installing the individual components and configuring them to work with one another was a time consuming job. Later we were introduced to Visual C#. For my team Microsoft tools, the Visual Studio® .NET and .NET Compact Framework, were definitely easier to work with.” In fact, only fourteen days were required to upgrade an application from J2ME to the .NET Compact Framework.

Superior Development Tools
Once Madanu and his team moved over to Visual C# and the .NET Compact Framework, they were able to take advantage of NET’s leading-edge development features.

“We found the Pocket PC 2002 Emulator in Visual Studio .NET easier to work with compared to the other emulators and IDEs,” said Madanu. In fact, MakeLogic had no actual PocketPC devices during development. MakeLogic used just the Pocket PC 2002 Emulator to build their application in record time.

“We also found that the performance of Visual Studio .NET was far better than other IDEs– with their corresponding emulators plugged in.”

Madanu also noted that Visual Studio .NET’s integrated debugging support was “one of the best tools I ever used.”

Finally, the .NET Compact Framework supports floating point operations – valuable for data crunching applications such as MicroGraphs.
Data Mapping Made Simple

MicroGraphs on the PocketPC platform solves an important problem. Almost all industries have data to manage, and they all need to analyze data and show it to others in a quickly readable format. Graphs are the best solution. And when they are shown on a PDA with a color display it’s both helpful and effective.
MicroGraphs is a Windows® Control Library developed using the Smart Device Extensions of the .NET Compact Framework. It displays data in graphical form on a Pocket PC 2002 device. MicroGraphs supports Bar Graphs, Line Graphs and Pie Graphs. These components are designed so that they are totally customizable. They allow changing the color and display of various features like the Title, X-Label, Y-Label, background, color, etc., which are only a few of the 40 odd features they support. They also permit displaying more than one set of data at the same time. This helps in comparing the performances of various parameters depending on the factors that affect them.

PDAs come with a stylus. All the graphs of this library support intelligent stylus events. Tapping on a particular bar in the bar graph or a node in a Line Graph would show its value. All the graphs support many more stylus events which help toggling the display of Title, X-Label, Y-Label and the axes.

The Bottom Line
By developing MicroGraphs using .NET Compact Framework, Madanu and his team have made it easy for other developers to use their components and show the data from various sources like databases, files, internet or other apps, in graphical format.

Overall, the development experience was superior to other approaches. “It was easier to code in Visual Studio .NET using IntelliSense® technology and the other auto completion features of the IDE when compared to the other editors available in the market today,” says Madanu. “Also, the .NET Compact Framework being a subset of the .NET Framework, team’s expertise can be used in developing desktop apps too”.
Vertigo Software

Application gives users full control of their PowerPoint Presentation from their Pocket PC handheld

Can Office applications really scale to handheld devices? Vertigo proved it’s possible to quickly deploy Office functionality on powerful Pocket PC devices. Their application lets people control PowerPoint® presentations from a Pocket PC handheld. Taking only one developer two months to develop using the .NET Compact Framework, the application lets users view, annotate, and adjust live PowerPoint presentations, as well as track speaker time, display speaker notes, and preview slides before they are displayed.

“This app was the result of my own PowerPoint experience,” says Scott Stanfield, Founder and CEO. “An old agenda slide had accidentally been inserted in my deck. I was embarrassed when the slide appeared during the presentation, but I realized later that a remote control application, running untethered from the laptop, would have let me catch the wrong slide, and jump over it without the audience knowing.”

The Right Tool For The Task

Vertigo was able to leverage their existing development expertise with the .NET Framework to rapidly prototype and build the remote control application.

“We would not have attempted to build this product if not for the .NET Compact Framework,” says Stanfield. “Our development staff is already trained in the .NET Framework and Visual Studio® .NET. The jump to build .NET Compact Framework applications is much easier than, say, going to eMbedded Visual Basic® or eMbedded Visual C++®. So there’s a lot more existing expertise that we can take advantage of to get the applications done more quickly.”
High Technology, Low Cost

Vertigo was also able to save a lot of money by making use of the robust device emulators provided by the .NET Compact Framework. The development and testing cycle was augmented by testing and debugging on an emulator and then downloading to the real device when it was ready to go live. “That meant we didn’t have to buy a handheld for everyone on our team,” says Stanfield.

Further, the .NET Compact Framework made quick work of the wireless networking and user interface aspects of the application. Wireless networking was necessary to communicate between the Pocket PC handheld and the laptop. “802.11 and Bluetooth are the ones we’re using,” says Stanfield. “We didn’t have any problems with the network stack and that was something we were concerned about. “

The .NET Compact Framework also made quick work of the user interface mechanisms associated with the Pocket PC handheld. “What kind of amazed me in the process is that we kept exploring how we could make this experience better for the mobile user. Every time we came up with an idea, we were able to easily integrate the user interface idioms (stylus, the joystick pad, etc.) and make a better user experience. Ultimately, we give the presenter complete control without letting the audience see what they’re doing.”

Application Architecture

Vertigo’s application is elegantly simple, but adds significant power for presenters of PowerPoint presentations. “We’ve automated PowerPoint,” says Stanfield. “We have a little piece of code running on the presentation laptop that tells PowerPoint what to do, and a managed code client running on a Pocket PC handheld, that’s basically the user interface.”

Speakers controlling their presentation with a Pocket PC handheld, instead of the usual laptop, have greater control and mobility. You can walk around a room, keeping your thumb on the joystick button to go forward and backward, as well as view your speaker notes, your speech timer, and preview slides before the audience sees them.

Development Simplicity

“The combination of several factors allowed us to build this application relatively easily,” says Stanfield. “We could make feature changes very quickly – in a couple of hours, we could turn around some big feature changes and get them downloaded to my Pocket PC. We didn’t expect that level of productivity with a handheld using the .NET Compact Framework. And remember, we’re using threads and sockets as well as an image class -- we’re taking advantage of a lot of different areas of the .NET Framework. It probably would have taken us 2-3 times longer if we had taken other routes.
Summary

Summary
As developers look to the future, they see a landscape full of opportunities in the world of smart devices. By leveraging existing skills, developers will mobilize the enterprise through intelligent software and responsive user experiences.
Continued hardware innovation will inspire the prospect of new business solutions to old enterprise challenges.
As companies continue to connect, opportunities to integrate across systems, data, and the world of XML Web services will provide new benefit and expand new boundaries for smart client development.

With the right tool—Visual Studio .NET—and the right development platform—the .NET Compact Framework—developers can begin using their existing skills and practices to build their next generation applications with mobility as a main ingredient. By staying true to core design goals, the Microsoft .NET mobile development platform will enable developers to deliver on the goal to “empower people through great software anytime, anyplace, and on any device”.
Appendices

Appendix A: .NET Compact Framework Features At a Glance

	Developer Productivity

	Write Less Code
	The .NET Compact Framework uses a component-based design that enables developers to focus on writing business logic instead of spending time solving plumbing issues like memory management and language interoperability.

	Work with a Familiar Development Environment
	The .NET Compact Framework is fully integrated into Visual Studio .NET allowing developers to take full advantage of the skills they’ve developed writing desktop and sever applications.

	Take Advantage of Industry Leading Tools
	The .NET Compact Framework’s deep integration with Visual Studio .NET allows smart device developers to take advantage of the preferred development environment of millions of seasoned developers. In addition to the many existing features of Visual Studio .NET, the .NET Compact Framework adds an integrated device emulator and support for device and emulator debugging further improving smart device developer productivity.

	Device Independence
	The .NET Compact Framework uses a standard file format across all platforms improving development time and reducing time to market by eliminating the need to compile and test different versions of a program for each targeted device. .NET Compact Framework applications implicitly support all devices running Pocket PC 2000, Pocket PC 2002, Pocket PC Phone Edition and Windows CE 4.1 and above.

	CPU Independence
	The .NET Compact Framework performs Just-In-Time compilation of Microsoft Intermediate Language, providing the transformation to native code at runtime to many supported CPU formats, including x86, SHx, MIPS, and ARM architectures. This results in binary portability across different processor types without any additional effort on behalf of the developer.

	Share Components Across Platforms
	The .NET Compact Framework is a compatible subset of the .NET Framework providing consistent programming languages, class libraries and even binary file formats across device, desktop and server applications. Properly designed business objects can be delivered across all targeted platforms reducing development time and simplifying system deployment and administration.

	Agility to Solve Today’s Business Challenges

	Integrated XML Web service Support
	The .NET Compact Framework provides extensive tool and class library support for XML Web services including support for sophisticated features including authentication, SOAP headers and asynchronous execution. With the .NET Compact Framework organizations can capitalize on their existing XML Web service investment to rapidly deploy smart device applications with a minimum of cost.

	End-To-End Solution
	The .NET Compact Framework’s compatibility with the .NET Framework combined with integrated XML Web service support enable developers to develop smart device applications without the need to learn additional platforms or integration tools. Developers familiar with the .NET Framework can take advantage of their existing Visual Studio .NET programming language and class library skills to become immediately productive. Using XML Web services, applications developed with the .NET Compact Framework can easily integrate with any backed system without the need for additional integration software or specialized platform skills.

	Compatibility with Existing Software
	The .NET Compact Framework’s Platform Invoke facility enables .NET Compact Framework applications to take advantage of existing DLLs and COM components allowing developers to leverage existing software investments.

	Access Device Specific Features
	.NET Compact Framework applications can take full advantage of device special purpose hardware such as global positioning systems and barcode scanners. Developers can enjoy the convenience and productivity of the .NET Compact Framework without loosing the ability to directly access device hardware.

	Rich User Interface Development with Windows Forms
	The .NET Compact Framework Windows Forms classes provide a component-based, extensible user interface development library empowering developers to create rich responsive user interfaces. With Windows Forms, smart device applications can take full advantage of device capabilities to provide the best user experience possible.

	Access Databases Easily with ADO.NET
	The ADO.NET classes provide high-performance data management solutions optimized for the loosely-connected nature of smart device applications. Smart device applications can access central data stores using both XML Web services and proprietary connections. Once retrieved, data can be locally managed and modified. Local management solutions include both the in-memory cache of the DataSet as well as the full featured relational capabilities of SQL Server CE. Locally managed data can be easily synchronized with enterprise servers using both simple one-way updates as well as full synchronization of data between smart devices and enterprise servers. Data synchronization can be done using both wired and wireless connections and can access servers through private networks and the public internet and can even coordinate with servers located behind firewalls.

	Support for Industry Standards
	Smart device applications must often interoperate with a wide variety of platforms. To maximize interoperability the .NET Compact Framework supports industry standards for XML Web services and infrared wireless communication. In addition, Microsoft is working to standardize the C# programming language and the subset of the .NET Compact Framework known as the Common Language Infrastructure. The .NET Compact Framework also supports open communications standards, such as TCP/IP, UDP, HTTP, SSL, and IrDA.

	Improved Operations

	Simplify Application Deployment

	.NET Compact Framework components are deployed without needing any special environment or registry configurations. .NET Compact Framework assemblies include complete metadata identifying all contained types and compile-time dependencies allowing .NET Compact Framework components to be deployed by simply copying the component to the target device.

	More Reliable Application Execution
	The .NET Compact Framework improves application reliability through a combination of services including automated memory management and reclamation, component dependency tracking, plumbing-free component integration and extensive class libraries enabling developers to take advantage of thousands of lines of tested code.

	Improved Application Performance
	.NET Compact Framework applications execute as native code providing substantially improved performance over other managed environments such as eMbedded Visual Basic, which are built on interpreted architectures. The .NET Compact Framework’s Just-In-Time compiled architecture provides application performance approaching that of native code.

Appendix B: Frequently Asked Questions
What is .NET?

Simply put, .NET is Microsoft's strategy for delivering integrated software experiences through connected clients, servers, and services. For complete information, please visit the .NET site at http://www.microsoft.com/net.
This site outlines the key points of .NET:

· Microsoft .NET development platform
Includes the Microsoft .NET infrastructure and tools to build and operate a new generation of services; the .NET user experience to enable rich clients, .NET building block services; and .NET device software to enable a new generation of smart Internet devices.

· Microsoft .NET products and services
Include Microsoft Windows .NET (with a core integrated set of building block services), MSN .NET, personal subscription services, Microsoft Office .NET, Microsoft Visual Studio .NET, and Microsoft bCentral™ for .NET.

· Third-party .NET services
A vast range of partners and developers will have the opportunity to produce corporate and vertical services built on the .NET platform.

What is the .NET Compact Framework?

The Microsoft .NET Compact Framework is a subset of the .NET Framework that is designed to run on resource-constrained devices, providing support for managed code and XML Web services. The .NET Compact Framework greatly reduces the development and operations cost of applications and services that run on smart devices such as smart phones and personal digital assistants (PDAs).
What development tools do I use to write .NET Compact Framework applications?

.NET Compact Framework applications are written using Visual Studio .NET, the same development environment used to build .NET applications for the desktop and server. Smart device development does not require any special configuration or setup. Visual Studio .NET includes a device emulator that provides true device emulation enabling developers to debug .NET Compact Framework applications directly from their desktop. The Visual Studio .NET debugger fully supports both device and emulation debugging providing the same features that are available for desktop applications.
What is the benefit of using the .NET Compact Framework versus other smart device development environments?
The .NET Compact Framework, in conjunction with Visual Studio .NET, provides the most complete smart device development environment available. It provides superior development tools including a full featured device emulator and integrated device debugger. The .NET Compact Framework provides a consistent development model and sophisticated class library, greatly improving developer productivity by allowing them to focus on business solutions with minimal effort on plumbing and interoperability. It also includes integrated XML Web service support and provides a disconnected data management solution.
What languages are currently supported by the .NET Compact Framework?

The .NET Compact Framework currently supports C# and Visual Basic .NET. These are the same full featured versions of the languages used for the .NET Framework. Support for other languages may be added in the future, including support from 3rd party vendors.
How do I get the .NET Compact Framework?

Upon release, the .NET Compact Framework will be available as a redistributable on the Microsoft download site. It will also be available to MSDN subscribers and included with Visual Studio .NET 2003. Future versions of Pocket PC, including Pocket PC Phone Edition, as well as Smartphone and Windows CE .NET, will ship with the .NET Compact Framework as a component of the device operating system.
Do I need experience building smart device applications to use the .NET Compact Framework?

No, the .NET Compact Framework enables developers to take full advantage of their existing .NET skills. The C# and Visual Basic .NET programming languages are the same as those used for the desktop and the class libraries are a compatible subset of those in the .NET Framework. Visual Studio .NET fully integrates with the .NET Compact Framework enabling developers to continue using the same tools and environment. Developers familiar with the .NET Framework will find themselves able to immediately begin developing with the .NET Compact Framework.
Can I call Win32 DLLs from the .NET Compact Framework?

Yes, the .NET Compact Framework provides a facility called Platform Invoke (P/Invoke) that enables programs to access functions within Win32 DLLs.
Can I access Pocket Outlook from the .NET Compact Framework?

Yes, through the Pocket Outlook Object Model (POOM) classes. POOM is a series of functions that map the Pocket Outlook COM objects and interfaces into the .NET Compact Framework. They also serve as an excellent example of to access COM components from the .NET Compact Framework. The POOM classes can be downloaded from http://www.gotdotnet.com/team/netcf/samples/POOM/POOM.zip.

Can I call COM components from the .NET Compact Framework?

Although the .NET Compact Framework does not provide direct support for calling COM components they can be easily accessed through the use of static DLL entry points and Platform Invoke. An example of accessing COM components from the .NET Compact Framework can be found at http://www.gotdotnet.com/team/netcf/samples/POOM/POOM.zip. This example shows how to access Pocket Outlook using the .NET Compact Framework.
Can I access serial ports and device expansion packs?

Yes, .NET Compact Framework applications can access all features of the host device through the Platform Invoke facility.
Where can I learn more about Microsoft Visual Studio .NET and how to build applications with it?
You can get more information from http://msdn.microsoft.com/vstudio. Additionally, MSDN will be carrying a number of articles and white papers on .NET. Finally there are the newsgroups on MSNEWS.MICROSOFT.COM.
Appendix C: .NET Compact Framework Differences From the Desktop
	Feature
	Difference

	Domain-neutral assembly code
	The .NET Compact Framework does not support loading assemblies into a domain-neutral code area. Domain-neutral assembly loading only applies when a single application creates multiple application domains that access common assemblies, an uncommon scenario for smart devices.

	Non-zero based arrays
	The .NET Compact Framework requires that arrays have a lower bound of zero.

	Multi-Module assemblies
	The .NET Compact Framework requires that all assemblies be single-module assemblies. All assemblies built with Visual Studio.NET for both .NET Compact Framework and the .NET Framework are single-module assemblies.

	Global Assembly Cache Registration
	The .NET Compact Framework installs assemblies into the Global Assembly Cache using a special configuration file (*.gac) instead of the gacutil.exe utility. This mechanism simplifies the installation of .NET Compact Framework applications by avoiding the need to execute a registration program during the installation process. A cegacutil.exe is provided for those situations where direct management of the Global Assembly Cache is required.

	Configuration files
	The .NET Compact Framework does not currently support *.config files. Instead, common assembly configuration issues are handled by the updated Global Assembly Cache and Version matching policies.

	Side-by-side deployment
	The .NET Framework supports side-by-side deployment, which allows separate applications may reference different versions of the same assembly simultaneously. This is not yet supported by the .NET Compact Framework.

	Assembly version matching
	The .NET Compact Framework fully supports versioned assemblies. To simplify application maintenance, the .NET Compact Framework only requires that the version Major, Minor, and Build numbers match to consider an assembly version number valid. The version Revision number is allowed to evolve allowing assembly updates to be distributed without the need to recompile dependent assemblies.

	Platform Invoke Data Marshalling
	The .NET Compact Framework provides full support for accessing native DLLs using Platform Invoke. The data marshalling layer has been simplified for efficiency requiring that floating point values, structures and classes be passed by reference. Additionally, reference types embedded within classes and structures must be manually marshaled.

	COM Interoperability
	The .NET Compact Framework does not directly support calling COM components, but COM components can be accessed through a simple “shim” DLL using Platform Invoke. The Pocket Outlook Object Model (POOM) DLL has been provided to simplify access to Pocket Outlook. COM callbacks are not supported but a “shim” can be easily developed using the MessageWindow class. There is no support for calling ActiveX controls.

	ADO.NET
	The .NET Compact Framework adds support for a SQL CE ADO.NET provider. The OleDb provider is not currently supported.

	Typed DataSets
	The .NET Compact Framework supports the DataSet class and is compatible with DataSet instances created by the .NET Framework with the exception of .NET Framework typed DataSets. Typed DataSets are not supported.

	Asynchronous Delegates
	Asynchronous delegates are not currently supported by the .NET Compact Framework. As a result delegates do not implement the BeginInvoke and EndInvoke methods.

	Application Deployment
	Most .NET Compact Framework applications are deployed as CAB files. To simplify CAB file development, Visual Studio has an integrated CAB Manager that automatically generates a CAB file containing all dependent assemblies and if desired, the .NET Compact Framework itself. The CAB Manager is customizable.

	Encoding
	The .NET Compact Framework supports the Unicode, UTF8, UTF7 and ASCII character encodings on all devices but only supports codepage character encodings if the underlying operating system of the device provides support.

	Windows Forms
	The .NET Compact Framework provides a compatible subset of the Windows Forms classes provided by the .NET Framework. This subset is designed to work effectively with smart devices.

	Memory Consumption
	The .NET Compact Framework is designed and optimized for use in memory constrained devices.

	Infrared Support
	The .NET Compact Framework adds a family of Infrared Data Association compliant classes to support data exchange using the device infrared data port.

	Globalization
	The .NET Compact Framework supports culture and language specific string and calendar comparisons. Due to resource constraints, the .NET Compact Framework relies on the device platform to handle localization issues rather then directly manage these issues as the .NET Framework does.

	Exception Strings
	To save space, the .NET Compact Framework stores system exception strings in a separate DLL, System.SR.dll. If available, the runtime dynamically loads this DLL when an exception is thrown to display an exception-specific error message. If not available a generic message is returned.

It is recommended that during development, that System.SR.dll be included in your application project to assist in debugging but then removed to save space at deployment.

	Performance Profiling
	The .NET Framework performance APIs and Perfmon.exe utility are not supported by the .NET Compact Framework. .NET Compact Framework appropriate performance utilities are currently under development.

	Class Libraries
	The .NET Compact Framework is a compatible subset of the classes provided by the .NET Framework and is designed to work efficiently on resource constrained devices.

	Serialization
	The .NET Compact Framework supports object serialization for XML Web services but does not support serialization through the SoapFormatter and BinaryFormatter classes.

	Windows Forms Timer Class
	Use the Enabled property to start and stop timer instances when in the .NET Compact Framework rather then the Start and Stop methods provided by the .NET Framework.

	XML
	The .NET Compact Framework supports the XML Document Object Model (DOM) and the streaming APIs XmlTextReader & XmlTextWriter but does not support XML Schema Validation, XPath queries or XSLT. Validation, queries and transformations are resource intensive operations and are better handled prior to moving data to devices.

	Regular Expressions
	Applications using the regular expression classes in the .NET Compact Framework must add a reference to System.Text.RegularExpressions.dll.

The regular expression classes provided by the .NET Compact Framework are source-code compatible with the classes provided by the .NET Framework but not binary compatible. .NET Compact Framework assemblies that use the regular expression classes must be recompiled if moved to the .NET Framework.

	MessageWindow and Message classes
	The .NET Compact Framework adds the MessageWindow and Message classes, which allow applications to send and receive Windows messages. These are added to simplify the development of interoperability solutions requiring access to the Windows message loop.

	Windows Forms control messages
	To maximize user interface performance, Windows Forms controls in the .NET Compact Framework expose only a small subset of the Windows messages received and do not expose their window handle. If access to Windows messages is required, use either the MessageWindow class or derive your custom control directly from the Control class.

	InputPanel class
	The InputPanel class has been added to give device developers access to the device software-based input panel (SIP) allowing applications to manage and respond to events raised by the SIP.

Appendix D: Glossary

	Term
	Definition

	.NET Framework
	The .NET Framework is a platform for building the next generation of distributed XML Web services and applications. It exposes a language-independent yet consistent programming model across all tiers of an application, while providing seamless interoperability with and easy migration from existing technologies. The .NET Framework consists of three things: the common language runtime, unified classes, and ASP.NET.

	.NET Compact Framework
	The Microsoft .NET Compact Framework is a subset of the .NET Framework that is designed to run on resource-constrained devices, providing support for managed code and for XML Web services. The .NET Compact Framework greatly reduces the development cost of writing applications and services that run on smart devices such as smart phones and personal digital assistants (PDAs).

	Assembly
	The unit of deployment and versioning in the .NET Framework. It establishes the namespace for resolving requests and determines which resources are exposed externally and which are accessible from within the assembly. An assembly includes an assembly manifest, which describes the contents of the assembly

	C#
	The first component-oriented language in the C/C++ family. Submitted to ECMA for standardization.

	Casually-Connected
	A networking environment characterized by limited access to network resources and frequent periods where no network connectivity exists.

	Common Language Runtime (CLR)
	The type, metadata, and execution systems provided by the .NET Framework. The CLR supplies managed code and data with services such as cross-language integration, code access security, object lifetime management, and debugging and profiling support. By targeting the CLR, compilers and other tools can offer these services to developers.

	ECMA
	A European standards body created in 1961. Internationally accredited ECMA has fast-track approval for ISO and is the forum for successful standards such as ECMAScript.

	Garbage Collection
	The process of transitively tracing through all pointers to actively used objects to locate all objects that can be referenced and then arranging to reuse any heap memory that was not found during this trace. The CLR’s garbage collector also arranges to compact the memory that is in use to reduce the working space needed for the heap.

	HTTP
	Hyper Text Transfer Protocol is a standard Internet protocol for transfer of information between servers and between clients and servers.

	Infrared Data Association (IrDa)
	The Infrared Data Association is an International Organization that creates and promotes interoperable, low cost infrared data interconnection standards that support a walk-up, point-to-point user model. The Infrared Data Association standards support a broad range of appliances, computing and communications devices.

	Intermediate Language (IL)
	Intermediate Language (IL). A language used as the output of a number of compilers and as the input to a JIT compiler. IL defines an abstract, stack-based execution architecture. The CLR may include several JIT compilers for converting IL to native code.

	JIT
	Just-in-Time. A phrase that describes an action that is taken only when it becomes necessary, such as just-in-time compilation or just-in-time object activation. By convention, the term JIT alone is used to refer to a JIT compiler.

	Just-In-Time Compilation
	A process where application components are converted from managed code to native code during application execution, substantially improving program execution speed.

	Loosely Coupled Architecture
	A distributed application in which you can change the implementation of one tier without affecting any of the other tiers. Contrast tightly coupled architecture.

	Managed Code
	Managed code supplies the metadata necessary for the CLR to provide services, such as memory management, cross-language integration, code access security, type safety, and automatic lifetime control of objects. All code based on IL executes as managed code.

	Manifest
	Metadata describing which modules and resource files are part of a particular assembly, which types are exported, and which other assemblies are referenced. It also specifies which security permissions are required to run, what additional permissions are optionally requested, and what permissions the assembly refuses.

	Metadata
	Data (or information) about data. In the CLR, metadata is used to describe assemblies and types. It is stored with them in the executable files, and is used by compilers, tools, and the runtime to provide a wide range of services. Metadata is essential for runtime type information and dynamic method invocation. Many systems use metadata—for example, Type Libraries in COM provide metadata

	Native Code
	Code that has been compiled to processor-specific machine code.

	SOAP
	Simple Object Access Protocol, WC3 standard. A lightweight protocol for exchange of information in a decentralized, distributed environment. It is an XML-based protocol that consists of three parts: an envelope that defines a framework for describing what is in a message and how to process it, a set of encoding rules for expressing instances of application-defined datatypes, and a convention for representing remote procedure calls and responses.

	Unified Classes
	The .NET Framework’s unified, object-oriented, hierarchical, and extensible set of class libraries (APIs) that developers can use from the languages they are already familiar with.

	Unmanaged Code
	Code that was created without knowledge for the conventions and requirements of the .NET Framework. Unmanaged code executes in the .NET Framework environment with minimal services (for example, no garbage collection, limited debugging , no declarative security). Unmanaged code does not have self-describing metadata.

	Web Forms
	ASP.NET Web Forms are used to create programmable Web pages. They can present information, using any markup language, to the user in any browser and use code on the server to implement application logic.

	Web Service Discovery Language (WSDL)
	An XML grammar that developers and development tools use to represent the capabilities of an XML Web service.

	Web Service Interoperability Organization (WS-I)
	WS-I is an open, industry organization chartered to promote Web services interoperability across platforms, operating systems, and programming languages. The organization works across the industry and standards organizations to respond to customer needs by providing guidance, best practices, and resources for developing Web services solutions.

	Windows CE .NET
	A lightweight version of the Windows operating system designed to operate efficiently on resource constrained devices.

	Windows Forms
	The Windows Forms framework encapsulates native Win32 APIs and exposes secure, managed classes for creating Win32 client-side applications. The Windows Forms class library provides many controls, such as buttons, check boxes, drop-down lists, combo boxes, data grid, and others, that encapsulate user-interface and other client-side functionality.

	World Wide Web Consortium (W3C)
	The W3C is an industry standards body charged with defining standards promoting the evolution of the World Wide Web while insuring compatibility.

	XML
	Extensible Markup Language. World Wide Web Consortium standard for the format of structured documents and data on the Web.

	XML Infoset
	A Word Wide Web Consortium standard defining rules for structure and content of XML documents.

	XML Web Service
	An XML Web service is an application that exposes its functionality programmatically over the Internet or intranets using standard Internet protocols and standards, such as HTTP and XML.

Appendix E: System Requirements
Visual Studio .NET
System requirements vary for different combinations of components within Microsoft Visual Studio .NET. To install Visual Studio .NET Professional, Visual Studio .NET Enterprise Developer, or Visual Studio .NET Enterprise Architect, Microsoft recommends:

· PC with a Pentium II 450 MHz minimum processor

· Microsoft Windows 2000 Professional or later operating system

· Minimum RAM requirements:

· Windows Server 2003: 160 megabytes (MB) of RAM

· Windows XP Professional: 160 MB of RAM

· Windows XP Home Edition: 96 MB of RAM

· Windows 2000 Professional: 96 MB of RAM

· Windows 2000 Server: 192 MB of RAM

· 900 MB of available space required on system drive, 3.3 gigabytes (GB) of available space required on installation drive

· Additional 1.9 GB of available space required for optional MSDN Library documentation
· CD-ROM or DVD-ROM drive

· Super VGA (1024 x 768) or higher-resolution display with 256 colors
· Microsoft Mouse or compatible pointing device

For more information:

The latest information on Visual Studio .NET and the .NET Compact Framework can be found on the Microsoft Web site at http://msdn.microsoft.com/vstudio/device

“Writing code in the Visual Studio .NET editor is a pleasure"

Fast Facts

The Company: MakeLogic (� HYPERLINK "http://www.makelogic.com" ��http://www.makelogic.com�) is a wireless/mobile software solutions company that creates software development tools to help connect people with their everyday information via mobile devices.

The Application: MicroGraphs is a Windows Control Library developed using the .NET Compact Framework and Visual Studio .NET. It helps display data in graphical form on a Pocket PC 2002 device.

Number of Developers Required to Build The Application in J2ME: 8

Number of Weeks to Build Application in J2ME: 5

Number of Developers Required to Upgrade to .NET Compact Framework: 8 (4 developed and others tested)

Number of Days to Upgrade to .NET Compact Framework: 14 days (this includes time needed to learn Visual C#)

“The Compact Framework allows faster development of the GUI and integration of SOAP….”

Fast Facts

The Company: Northrop Grumman Newport News (� HYPERLINK "http://www.northgrum.com" ��http://www.northgrum.com�) builds and maintains the most sophisticated ships in the world – nuclear powered aircraft carriers and submarines.

The Application: The Crane Inspection application provides work/task assignments for Crane Inspectors. It includes all the documents necessary to perform the inspection, time-charging information, tasks, and notes from previous inspections.

Number of Developers Required to Build The Application: 1

Number of Months to Build Application: 2

� EMBED Visio.Drawing.6 ���

Unleash the Power of .NET

Unleash the Power of .NET

Unleash the Power of .NET

Unleash the Power of .NET

Fast Facts

The Company: Intrinsyc Software (� HYPERLINK "http://www.intrinsyc.com" ��http://www.intrinsyc.com�) provides development and reference platforms, application integration software and tools, and product development services to help companies create, network and manage a wide range of consumer and industrial products.

The Application: Intrinsyc’s application controls and manages a security surveillance system. With it, PDA’s can display video streams, get alarms, get alerts and notifications, and control video cameras.

Number of Developers Required to Build The Application: 10

Number of Months to Build Application: 3

"The remote debugging facility where the application on the Pocket PC could be remote-controlled from the desktop (development) machine was extremely useful and very time saving, particularly as the Pocket PC runs on a wireless (802.11b) LAN connection and could be installed in a Tesco.com delivery van parked nearby for testing"

Angela Walker

IT Developer

Tesco.com

"We're revising our application on a three-week cycle with feedback from the trial. We listen to the issues that the drivers find from using the application and design solutions to them very fast thanks to the rapid application changes that can be made using Visual Studio .NET and the .NET Compact Framework."

Nick Lansley

IT New Technologies Manager

Tesco.com

“…we had tried to build a similar product using various Java toolkits. However, these tools couldn’t provide the functionality that we needed at the time and it required that developers spend a lot of time learning the development tool, instead of focusing on the business process.”

Fast Facts

The Company: GeoVector Corporation (� HYPERLINK "http://www.geovector.com/" ��http://www.geovector.com/�) is a US- based technology company that has established an advanced development lab in Auckland, New Zealand, to build pointing applications based on its technology.

The Application: GeoVector has built a handheld, connected smart client that can display information to a user based on her preferences, location, and point of view.

Number of Developers Required to Build The Application: 4

Number of Months to Build Application: 2

“Other development tools could not provide the benefit of leveraging our existing .NET expertise…."

“Without using .NET, we would not be able to create such a complex application in so little time”

Roman Smolgovsky

Chief System Architect

FlyteComm

Fast Facts

The Company: Tesco (� HYPERLINK "http://www.tesco.com/" ��http://www.tesco.com/�)

The Application: Delivery Automation

Number of Developers Required to Build The Application: 1

Number of Months to Build Application: 2

Fast Facts

The Company: FlyteComm (� HYPERLINK "http://www.flytecomm.com/" ��http://www.flytecomm.com/�) provides intelligent travel information and services designed to meet the needs of the aviation, corporate travel, transportation, and wireless markets.

The Application: FlyteComm receives radar tracking information from the Federal Aviation Administration (FAA), combines it with data from Microsoft MapPoint and makes it available to mobile users through an XML Web Service.

Number of Developers Required to Build The Application: 1

Number of Months to Build Application: Less than 1

Fast Facts

The Company: Vertigo Software, Inc. (� HYPERLINK "http://www.vertigosoftware.com" ��http://www.vertigosoftware.com�) specializes in .NET application development, Mobile Enterprise Solutions, performance and scalability consulting, B2B and EAI solutions with BizTalk® Server 2002, and user-interface design.

The Application: Vertigo’s application lets people control their PowerPoint presentation from the Pocket PC. It can navigate slides, view thumbnails and annotate slides.

Number of Developers Required to Build The Application: 1

Number of Months to Build Application: 8

“We could make feature changes very quickly – in a couple of hours…."

"….NET has allowed Accompany to more rapidly bring a high quality, reliable, product to market…"

Fast Facts

The Company: Accompany-ME Technology (� HYPERLINK "http://www.accompany-me.com/" ��http://www.accompany-me.com/�) is a software company that designs, manufactures and sells ‘field interaction’ business applications for Fortune 1000 Telecoms, Utilities, Tech Manufacturing, Distribution, and Oil and Gas organizations.

The Application: Accompany-ME is a Mobile Enterprise Application that integrates business applications such as; Oracle, Siebel, SAP, Clarify, and Remedy together into a homogenized field-interaction application that governs business process & workflow on small form factor Pocket PC & Windows CE-based devices.

Number of Developers Required to Build The Application: 8

Number of Months to Build Application: 10

Fast Facts

The Company: Numeric Computer Systems, Inc. ("NCS", � HYPERLINK "http://ncscuite.com/" ��http://ncscuite.com/�) is a premier provider of supply chain execution solutions that support the Order to Cash process. In addition to their back-office solutions, NCS had three applications in the field.

The Application: eXpress Route

Number of Developers Required to Build The Application: 6

Number of Months to Build Application: 10

“We were able to port some of our C# code from the desktop to the mobile application, which helped our productivity. Our developers were already familiar with the C# language and Windows Forms. It was easy and natural for them to learn the .NET Compact Framework.”

Kirk Pothos

Software Development Manager

Xerox Global Services

Fast Facts

The Company: Xerox (� HYPERLINK "http://www.xerox.com/" ��http://www.xerox.com/�)

The Application: Field Service Asset Management

Number of Developers Required to Build The Application: 3

Number of Months to Build Application: 2

4
 Visual Studio .NET Beta 2 Reviewers Guide

_1092673352.vsd

