PAGE

Management Interfaces in Exchange Server 2007

Microsoft Corporation

Published: April 2007

Author: Microsoft Exchange Documentation Team

Abstract

Microsoft Exchange Server 2007 offers two interfaces for your administrative tasks. The improved Exchange Management Console (formerly called Exchange System Manager) is the graphical user interface (GUI) in which you can successfully administer and manage the Exchange Server 2007 and Exchange Server 2003 computers in your organization. The Exchange Management Shell is a new Exchange-specific command-line interface. Similar to other command-line interfaces, such as the Windows Script Host (WSH), you can use the Exchange Management Shell to run a single command or a series of multiple commands for managing your Exchange Server 2007 servers and objects. This document discusses the features and functionality of both administration interfaces.

[image: image1.png]

Important:

This document is an interface-specific compilation of several Exchange 2007 Help topics and is provided as a convenience for customers who want to view the topics in print format. To read the most up-to-date Help topics, visit the Exchange Server 2007 Library.
Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Media, Windows Mobile, Windows NT, Windows PowerShell, Windows Server, Windows Vista, Active Directory, ActiveSync, Excel, Forefront, Internet Explorer, Outlook, SmartScreen and Visual Basic are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

Contents

7Management Interfaces in Exchange Server 2007

8Using the Exchange Management Console

8Common User Interface Elements in the Exchange Management Console

13Server Roles

19New Administration Functionality in the Exchange Management Console

20Prerequisites

21New Features in MMC 3.0

21MMC 3.0 Snap-ins

22How to Customize the Exchange Management Console

23How to Filter the Result Pane in the Exchange Management Console

26Using the Organization Configuration Node

26Mailbox

28Client Access

28Hub Transport

30Unified Messaging

31Using the Server Configuration Node

31Mailbox

31Client Access

32Hub Transport

32Unified Messaging

33Using the Recipient Configuration Node

33Mailbox

33Distribution Group

34Mail Contact

34Disconnected Mailbox

34Modifying Recipient Configuration

35Using the Edge Transport Node

35Anti-Spam Functionality

36Receive Connectors

36Send Connectors

36Transport Rules

37Accepted Domains

37Using the Toolbox

38Configuration Management Tools

38Disaster Recovery Tools

38Mail Flow Tools

39Performance Tools

40How to Use the Queue Viewer

41Using the Exchange Management Shell

41Opening the Exchange Management Shell

42Finding More Detailed Information About the Exchange Management Shell

43New Administration Functionality in the Exchange Management Shell

44Prerequisites

44New Features in the Exchange Management Shell

46Understanding Cmdlets

48Getting Help

48Exchange 2007 Help File

49Help Cmdlets

53Help Views

56Role, Component, and Functionality Parameters

58Tab Completion

58Scripting with the Exchange Management Shell

59Running a Script Inside the Exchange Management Shell

60Running a Script from Cmd.exe

61Getting Hints from the Exchange Management Console

62Testing Scripts

62Troubleshooting Scripts

63Working with Command Output

63How to Format Data

68How to Output Data

69How to Filter Data

72Pipelining

72Using Pipelining to Perform Multiple Actions

72Using Pipelining to Process Data from Another Cmdlet

73Using Pipelining to Report Errors

73Parameters

73Positional Parameters

74Parameter Details

75Boolean Parameters

75Switch Parameters

76Common Parameters

79Identity

80Examples of the Identity Parameter

80Syntax

81Command Conventions in the Exchange Management Shell

82Parameter Sets

83Use of Quotation Marks

85Command Operators in the Exchange Management Shell

88WhatIf, Confirm, and Validate Parameters

89WhatIf Parameter

89Confirm Parameter

91Validate Parameter

93Comparison Operators

95Aliases

95Built-in Aliases

97Creating Custom Aliases

98Removing an Alias

99Importing and Exporting Aliases

99Alias Persistence

99Alias Limitations

99User-Defined Variables

100Using Variables to Store Values

100Storing the Output of a Command in a Variable

101Storing the Output of the Dir Command in a Variable

102Shell Variables

103Common Shell Variables

104Sample Output

104Example: Viewing Information About a Receive Connector

106Example: Viewing a List of Mailboxes

108Structured Data

109The Structure of an Object

110Arrays

110Creating Arrays

110Reading Arrays

110Manipulating Arrays

111Associative Arrays

112Script Security

112Script Execution Modes

113Code-Signing Basics

114Cmdlets for Managing Code Signing

Management Interfaces in Exchange Server 2007

This document discusses the features and functionality of the two Microsoft Exchange Server 2007 administration interfaces:
· Exchange Management Console

You can use the improved Exchange Management Console (formerly Exchange System Manager) to successfully administer and manage the Exchange Server 2007 and Exchange Server 2003 computers in your organization.

For more information about the Exchange Management Console, see Using the Exchange Management Console.

· Exchange Management Shell

The Exchange Management Shell is a new Exchange-specific command-line interface. It is similar to other command-line interfaces, such as the Windows Script Host (WSH). You can use the Exchange Management Shell to run a single command or a series of multiple commands for managing your Exchange Server 2007 servers and objects.

For more information about the Exchange Management Shell, see Using the Exchange Management Shell.

[image: image2.png]

Note:

In Exchange 2007, Active Directory Users and Computers is replaced by the Exchange Management Console and the Exchange Management Shell for most management tasks. However, you can still use Active Directory Users and Computers to manage server objects.

For More Information

For more information about the Exchange Management Console, see the following topics:


New Administration Functionality in the Exchange Management Console

How to Customize the Exchange Management Console
For more information about the Exchange Management Shell, see the following topics:


New Administration Functionality in the Exchange Management Shell

Scripting with the Exchange Management Shell
Using the Exchange Management Console

The new Exchange Management Console (formerly named Exchange System Manager) is a Microsoft Management Console (MMC) 3.0-based tool that provides Exchange administrators with a graphical user interface (GUI) to manage the configuration of Microsoft Exchange Server 2007 organizations. You can also add the Exchange Management Console snap-in to custom MMC-based tools.

For more information about the improvements to the Exchange Management Console, see New Administration Functionality in the Exchange Management Console.

Common User Interface Elements in the Exchange Management Console

This section describes the user interface elements that are common across the Exchange Management Console.

Figure 1 The Exchange Management Console

[image: image3.png]Console tree Result pane Action pane
BBEnchange Manag o -lofx|
Flo iction Wew teb
|@m
3 Merosaft Exchange ErTET ctions
= Organizaton Carfiguration
b reate Fiter Client Access N
& Mailbox Gzl
& Clent Access jew ,
[t | CE-S— s .
B tecmeseaaig ServerD1 Hub Transpor, Ciert Access, Malbor, Refresh
1+ 3 Server Configuration @ veip
2 Maibox
2 Client Access el
o Hub Transport Serverol 4 obiects || serverot
i Unified Messaging Manage Hub Transport Role.
5, Reciient Configuration | | Oulook Web Access | Exchange activesyre | ofin [2| =

2 vaibox

2, Dstriution Group

] Mal Contact

&3 Disconnected Malbox
i Tookox

{Defaul

[Exchweb Defaul Web Site)
5 owa Default Web Ste)
5 Publis (Default Web Site)

K —

Default e Site
Default e Site
Default e Site

Ey Manage Maibox Role

Manage Unified Messaging

© Ensble Outook Anywhere.
Properies

Exchange (Default Web Site)

Properies
@ e

T
work pane

Console Tree

The console tree is located on the left side of the console and is organized by nodes that are based on the server roles you have installed. These server role-based nodes are described in greater detail later in this topic.

Result Pane

The result pane is located in the center of the console. This pane displays objects based on the node that is selected in the console tree. In addition, you can filter the information in the result pane. For more information, see How to Filter the Result Pane in the Exchange Management Console.

Work Pane

The work pane is located at the bottom of the result pane. This pane displays objects based on the server role that is selected in the Server Configuration node.

[image: image4.png]

Note:

The work pane is available only when you select objects under the Server Configuration node, such as Mailbox or Client Access.

Action Pane

The action pane is located on the right side of the console. This pane lists the actions based on the object that is selected in the console tree, result pane, or work pane. The action pane is an extension of the shortcut menu, which is the menu that appears when you right-click an item. However, the shortcut menu is still available. To show or hide the action pane, click the Show/Hide Action Pane arrow.

Figure 2 The Show/Hide Action Pane arrow

[image: image5.png]& comepaua i
[e
E rvcsmies)

Manage Hub Transport Role

The following table lists common action pane options.

	Action pane option
	Description

	View
	Click View in the action pane to modify how objects are displayed in the Exchange Management Console. The following options are available:


Add/Remove Columns
Click Add/Remove Columns to select which columns you want to display in the result pane and to change the order. The available columns depend on the node that you select.

The Exchange Management Console automatically saves your settings. To revert to the default column view, click Restore Defaults in the Add/Remove Columns dialog box.


Save Current Filter as Default
Click Save Current Filter as Default to make the existing filter the default filter for the servers listed in the result pane.

[image: image6.png]

Note:

 Because you cannot filter Organization Configuration objects, this option is not available for any objects that appear in the Organization Configuration node.


Visual Effects
Click Visual Effects to set the visual effects to be always on, never on, or automatic. Use the visual effects setting to configure the way that the Exchange wizards appear. If you notice your connection is slow when using wizards, you can turn off the visual effects for better performance. Use the Automatic setting to have the Exchange Management Console detect if your system should have visual effects on or off.


Customize
Click Customize to select the MMC components and snap-ins to display or hide. These settings apply to the entire MMC.

For more information, see "Customize View" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

	Refresh
	Click Refresh to refresh the objects in the result pane and the work pane.

	Help
	Click Help to read the context-sensitive Help for the node or object that is selected.

	Properties
	Click Properties to view or edit the current configuration for the object that is selected in the result pane or work pane.

[image: image7.png]

Note:

This option may not be available for all objects.

	Remove
	Click Remove to delete the selected object from the work pane.

[image: image8.png]

Note:

This option may not be available for all objects.

[image: image9.png]

Important:

When you remove a mailbox, not only the Exchange data is deleted, but the associated user account in the Active Directory directory service is deleted as well.

	Enable or Disable
	Click Enable or Disable to enable or disable the object that is selected in the result pane or work pane. Disabling an object does not delete it.

[image: image10.png]

Note:

These options may not be available for all objects.

Server Roles

Exchange 2007 introduces role-based deployment. Role-based deployment lets you deploy specific server roles that provide the messaging functionality that you want for your organization. A server role is a unit that logically groups the required features and components that are required to perform a specific function in your messaging environment. Exchange 2007 provides the following distinct server roles that align to how messaging systems are typically deployed and distributed:


Client Access


Edge Transport


Hub Transport


Mailbox


Unified Messaging

The Exchange Management Console is supported on all computers that have any supported combination of Exchange 2007 server roles installed. On computers that have any combination of Client Access, Hub Transport, Mailbox, and Unified Messaging server roles installed, the Exchange Management Console displays all servers in the organization and includes all console tree nodes. However, for computers that have the Edge Transport server role installed, the Exchange Management Console displays only the Edge Transport server role.

For more information, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):

Server Roles

New Exchange Concepts and Definitions
Client Access, Hub Transport, Mailbox, and Unified Messaging Console Trees

The following table lists the Exchange Management Console nodes that are available to users when any combination of the Client Access, Hub Transport, Mailbox, and Unified Messaging server roles are installed.

	Client Access, Hub Transport, Mailbox, and Unified Messaging Exchange Management Console nodes
	Description

	Microsoft Exchange
	Click the Microsoft Exchange node to view the Finalize Deployment and End-to-End Scenarios tabs:


Finalize Deployment Use this tab to finalize a variety of configuration options for the server roles that you installed. The tasks on this tab are required to complete your Exchange 2007 deployment. These tasks apply to features that are enabled by default, but require additional configuration. When you click the links on the Finalize Deployment tab, you will be provided detailed information about completing your Exchange 2007 deployment.


End-to-End Scenarios Use this tab to configure end-to-end solutions for your Exchange 2007 organization. The optional tasks listed on this tab are feature-specific and are organized by server role. For example, the Mailbox section shows you how to configure messaging records management (MRM) for your organization. When you click the links on this tab, you will be provided with detailed information about configuring your Exchange 2007 organization.

	Organization Configuration
	Use the Organization Configuration node to configure global data for your Exchange 2007 organization. This global data applies to all servers that have a specific server role installed. These server roles are listed under the Organization Configuration node. For example, you can manage your organization's offline address book (OAB) from the Mailbox node and e-mail address policies from the Hub Transport node.

For more information about using the Organization Configuration node, see Using the Organization Configuration Node.

	Server Configuration
	Use the Server Configuration node to configure your Exchange 2007 servers and their components (such as databases, protocols, and messaging records management).

For more information about using the Server Configuration node, see Using the Server Configuration Node.

	Recipient Configuration
	Use the Recipient Configuration node to manage the recipients in your Exchange 2007 organization. For example, you can manage your Exchange mailboxes, mail users, mail contacts, and distribution groups.

For more information about using the Recipient Configuration node, see Using the Recipient Configuration Node.

	Toolbox
	Use the Toolbox node to access additional tools that can help you manage your Exchange 2007 organization. The Toolbox contains the Queue Viewer, Microsoft Exchange Server Best Practices Analyzer Tool, the Exchange Server Mail Flow Analyzer, and several other analysis and diagnostic tools.

Edge Transport Server Console Tree

The following table lists the Exchange Management Console nodes that are available to users when the Edge Transport server role is installed.

	Edge Transport server console nodes
	Description

	Microsoft Exchange
	Click the Microsoft Exchange node to view the Finalize Deployment and End-to-End Scenarios tabs. Use these tabs to complete the Exchange 2007 installation and configuration tasks.

	Edge Transport
	Expand the Edge Transport node to manage your organization's perimeter network. The Edge Transport server handles all Internet-facing mail flow, providing protection against spam and viruses.

For more information about using the Edge Transport node, see Using the Edge Transport Node.

	Toolbox
	Use the Toolbox node to access additional tools that can help you manage your Exchange 2007 organization. The Toolbox contains the Microsoft Exchange Server Best Practices Analyzer Tool, the Exchange Server Mail Flow Analyzer, and several other analysis and diagnostic tools.

[image: image11.png]

Note:

You can use the management tools to administer your Exchange organization remotely. If the computer on which you install the Exchange management tools has a 32-bit processor and 32-bit operating system, you must install the 32-bit version of the management tools. For more information about how to install the 32-bit version management tools, see "How to Install the Exchange 2007 Management Tools" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
For more information about using the Toolbox node, see Using the Toolbox.

For More Information

For more information about Exchange 2007 server roles, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):

Server Roles

New Exchange Concepts and Definitions
For information about other Exchange management interfaces, such as the Exchange Management Shell, see "Management Interfaces" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
For more information about the console tree nodes in the Exchange Management Console, see the following topics:


Using the Organization Configuration Node

Using the Server Configuration Node

Using the Recipient Configuration Node

Using the Edge Transport Node

Using the Toolbox
New Administration Functionality in the Exchange Management Console

The new and improved Microsoft Management Console (MMC) 3.0 supports rich functionality for snap-ins that are created to take advantage of the MMC 3.0 infrastructure, such as the Exchange Management Console. The Exchange Management Console, one of two new administrative interfaces for Microsoft Exchange Server 2007, is based on MMC 3.0, and is required to install and manage Exchange 2007. For more information about the second administrative interface for Exchange 2007, the Exchange Management Shell, see New Administration Functionality in the Exchange Management Shell.

This topic describes MMC 3.0 and its features. Figure 1 illustrates the design of MMC 3.0.

Figure 1 The MMC 3.0 design

[image: image12.png]Console tree Result pane Action pane
BBEnchange Manag o -lofx|
Flo iction Wew teb
|@m
3 Merosaft Exchange ErTET ctions
= Organizaton Carfiguration
b reate Fiter Client Access N
& Mailbox Gzl
& Clent Access jew ,
[t | CE-S— s .
B tecmeseaaig ServerD1 Hub Transpor, Ciert Access, Malbor, Refresh
1+ 3 Server Configuration @ veip
2 Maibox
2 Client Access el
o Hub Transport Serverol 4 obiects || serverot
i Unified Messaging Manage Hub Transport Role.
5, Reciient Configuration | | Oulook Web Access | Exchange activesyre | ofin [2| =

2 vaibox

2, Dstriution Group

] Mal Contact

&3 Disconnected Malbox
i Tookox

{Defaul

[Exchweb Defaul Web Site)
5 owa Default Web Ste)
5 Publis (Default Web Site)

K —

Default e Site
Default e Site
Default e Site

Ey Manage Maibox Role

Manage Unified Messaging

© Ensble Outook Anywhere.
Properies

Exchange (Default Web Site)

Properies
@ e

T
work pane

Prerequisites

To update MMC to version 3.0, you must have Microsoft Windows Server 2003 Service Pack 1 (SP1) installed on the computer that will be running MMC 3.0. Additionally, you must have version 2.0.50727 of the Microsoft .NET Framework installed on the same computer. The .NET Framework 2.0.50727 is required to run managed framework snap-ins that are designed and built for MMC 3.0. For information about how to download the .NET Framework, see the Microsoft .NET Framework Developer Center.

[image: image13.png]

Note:

If you use only snap-ins that are designed for MMC 2.0 or for earlier versions, you do not have to install the .NET Framework 2.0.50727.

[image: image14.png]

Note:

MMC 3.0 is included in Windows Server 2003 R2—the second release of the Windows Server 2003 operating system—and in Microsoft Windows Vista.

For more information about how to update Windows Server 2003 and Windows XP to MMC 3.0, see MMC 3.0 update is available for Windows Server 2003 and for Windows XP.

New Features in MMC 3.0

The following sections discuss several improvements in MMC 3.0 and information about MMC 3.0 snap-ins.

Action Pane

The action pane is located on the right side of the snap-in console. It lists the actions that are available to users, based on the items that are currently selected in the console tree or the result pane. To show or hide the action pane, click the Show/Hide Action Pane button on the toolbar.

New Add or Remove Snap-ins Dialog Box

The new Add or Remove Snap-ins dialog box makes it easy to add, organize, and remove snap-ins. You can control which extensions are available and whether to automatically enable snap-ins that you install later. You can organize snap-ins by rearranging their position in the console tree.

Improved Error Handling

MMC 3.0 notifies you of errors in snap-ins that could cause MMC to fail and provides options for responding to those errors.

MMC 3.0 Snap-ins

A snap-in is the basic component of a console. You can use snap-ins only within consoles; you cannot run them independent of a console.

When you install a component that has a snap-in associated with it, the snap-in is available to anyone who creates a console on that computer (unless restricted by a user policy).

Snap-ins and Snap-in Extensions

MMC 3.0 supports two types of snap-ins: stand-alone snap-ins and snap-in extensions. You can add a stand-alone snap-in, typically called a snap-in, to a console without adding another item first. A snap-in extension, typically called an extension, is always added to a snap-in or to another snap-in extension that is already in the console tree. When extensions are enabled for a snap-in, they operate on the objects that are controlled by the snap-in, such as a computer, printer, modem, or other device.

When you add a snap-in or extension to a console, it can appear as a new item in the console tree, or it can add shortcut menu items, additional toolbars, additional property pages, or wizards to a snap-in that is already installed in the console.

Adding Snap-ins to a Console

You can add a single snap-in or multiple snap-ins and other items to a console. Additionally, you can add multiple instances of a particular snap-in to the same console to administer different computers or to repair a damaged console. Every time that you add a new instance of a snap-in to a console, variables for the snap-in are set to default values until you configure the snap-in. For example, if you configure a specific snap-in to manage a remote computer, and then you add a second instance of the snap-in, the second instance will not automatically be configured to manage the remote computer.

Typically, you can add only snap-ins that are installed on the computer that you are using to create a new console. However, if your computer is part of a domain, you can use MMC 3.0 to download snap-ins that are not locally installed but that are available in the Active Directory directory service.

For More Information

For more information about the Exchange Management Shell, see New Administration Functionality in the Exchange Management Shell.

How to Customize the Exchange Management Console

This topic explains how to customize the Exchange Management Console. The Exchange Management Console interface is configurable in that you can show or hide items in the console window, and you can add or remove columns in the result pane and work pane.

Before You Begin

To perform this procedure, the account you use must be delegated the following:


Exchange View-Only Administrator role and local Administrators group for the target server

For more information about permissions, delegating roles, and the rights that are required to administer Exchange Server 2007, see "Permission Considerations" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
[image: image15.png]

To configure columns in the result pane or the work pane

	1.
In the Exchange Management Console, select an item in either the result pane or the work pane.

2.
In the action pane, click View, and then select Add/Remove Columns. Or on the menu bar, select View, and then select Add/Remove Columns.

3.
To add columns to your current view, select the column name in the Available columns box and click Add.

4.
To remove columns from your current view, select the column name from the Displayed columns box and click Remove.

5.
To change the position in which the columns display, select a column name from the Displayed columns box, and then click the Move Up or Move Down button.

6.
Click OK to apply your changes and close the dialog box.

[image: image16.png]

To show or hide items in the console window

	1.
In the action pane, click View, and then select Customize. Or on the menu bar, select View, and then select Customize.

2.
Select or clear the check boxes to show or hide items in the console window. Your changes will take effect immediately upon selecting or clearing the check boxes.

3.
Click OK to close the dialog box.

For More Information

For more information, see Using the Exchange Management Console.

How to Filter the Result Pane in the Exchange Management Console

This topic explains how to use the Exchange Management Console to create filters for the result pane of the Server Configuration node, Recipient Configuration node, and Edge Transport node on the console tree. You cannot create filters for the Organization Configuration node. You can use a variety of expressions to control the items that are displayed in the result pane.

[image: image17.png]

Important:

If the result pane contains hundreds or thousands of objects, we recommend that you create a default filter to allow the objects to display more quickly. For more information about how to set a default filter, see Step 6 of this procedure.

Before You Begin

To perform the following procedure, the account you use must be delegated the following:


Exchange View-Only Administrator role and local Administrators group for the target server

For more information about permissions, delegating roles, and the rights that are required to administer Microsoft Exchange Server 2007, see "Permission Considerations" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
To perform the following procedures on a computer that has the Edge Transport server role installed, you must log on by using an account that is a member of the local Administrators group on that computer.

Also, before you perform the procedure in this topic, be aware of the following:


A filter contains one or more expressions. Each expression consists of an attribute, an operator, and a value. The attributes vary depending on the items for which you are creating the filter. For example, you can filter mailboxes based on attributes such as Alias and Display Name.


The list of operators that are available is based on the attribute you select. For example, when you are filtering recipients, the Display Name attribute can have Starts With as an operator.


The list of acceptable values is also based on the attribute you select. Acceptable values are selected from a drop-down list, such as the Role attribute for servers. In addition, you can type the values for some attributes in the Value field, such as the Display Name attribute.


When you are building expressions for a filter, you cannot specify what is an AND or an OR expression. However, the default behavior of the filter is as follows:


Multiple expressions that use the same attribute will be considered an OR expression.


Expressions that use different attributes will be considered an AND expression.

The following figure illustrates a filter for the Mailbox node under Recipient Configuration. This filter displays all mailbox users for the server named Server01.

[image: image18.png]B8Exchange Manag

=l81x]

Bl Acion ew tep

I

T3 Mirosot Exchonge
5 Organzaton Config.
(4 Maibox

Ibox - Server01

[Serveror

Browse.._| X

] Clent Access
Fub Transport
15 Unified Vessagin
1+ 3 Server Configuratior
Wabox
2 Clint Access
Fub Transport
Unied Vessagin
&2, Reciient Configuat
23 Malbox
2, Disrbuton Grou
L Ml Contact
) Disconnected e
4 Toobox

[Recrient Type Dtas

EIETS

Maibox User

Hx

< dd Expression 7 Remove Fiker = haply Fiker
Diglay Narme = [Ao Feciient Type .. | Pinay SMTP A | Server
Eaddniisiator Admiraor Maibos User - Adninststar@e... Serverol
EDonHal don Maiboxlser don@cortoso... Serverdl
SiElenadss Elen Maiboxlssr slen@eortos... Serverdl
EakinRals ki Maiboxlssr kin@cortoso.. Serverdl
ELuciolalo islo Maiboxlser io@oortos... Serverdl
EaSecon ekl scot Maibolser sooti@oortos... Serverdl
ZaSpamQusianiie Spand MabosUser SpsmQ@cork... Serverol
BToghlen oy MalboxUser tory@cartoso... Server0

Maibox

3, oyt

2 Newna
wen >

Refresh

)

Help
Spam Quara... ~
Disable
Remave

Hove M,
Enable L.

Propertiss

BW™E LXO

Help

[image: image19.png]

To filter the result pane in the Exchange Management Console

	1.
Start the Exchange Management Console.

2.
In the result pane, click Create Filter to start defining your filter.

3.
Using the drop-down list boxes, create the first filter expression.

4.
To create a filter with more than one expression, click Add Expression. Additional expressions make the filter more restrictive, which allows you to focus more on the list of items. You can add up to 10 expressions.

[image: image20.png]

Note:

You can modify any expression as you are creating it. You can also remove any expression from your filter definition by clicking [image: image21.png]

.

5.
To view only the items that match the criteria defined by the expressions you created, click Apply Filter.

6.
To remove all expressions and close the filter, click Remove Filter. The result pane will then display the full list of items in the Exchange organization.

7.
To save the filter as the default filter, click View on the menu bar, and then click Save Current Filter as Default.

For More Information

For more information, see Using the Exchange Management Console.

Using the Organization Configuration Node

Use the Organization Configuration node to configure administrative access roles for users or groups. The result pane displays a list of identities that are configured as Exchange administrators, including the administrative role and scope assigned to them. In Microsoft Exchange Server 2007, these roles are called Administrator roles and include the following:


Exchange Server Administrators


Exchange Organization Administrators group


Exchange Recipient Administrators group


Exchange View-Only Administrators group

The scope is displayed only for the Exchange Server Administrators role. If the role is Exchange Server Administrators, the scope is the Exchange servers to which that role applies. If the role is Exchange Organization Administrators, Exchange Recipient Administrators, or Exchange View-Only Administrators, the scope is the entire organization.

If you add the Exchange Server Administrators role to a user, that user inherits the permissions that are permitted by the Exchange Server Administrators role and the Exchange View-Only Administrators role.

For more information about the Exchange 2007 permissions model, see "Permission Considerations" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
The Organization Configuration node contains the following sub-nodes:


Mailbox


Client Access


Hub Transport


Unified Messaging

Mailbox

The Mailbox node allows you to manage Mailbox server role settings that apply to your entire Exchange 2007 organization. You can maintain existing or create new address lists, managed custom folders, messaging records management (MRM) mailbox policies, and offline address books (OABs).

Address Lists

Use the Address Lists tab to create and manage address lists for your organization. Address lists are a subset of recipients in your organization based on properties of the recipients. You can create new address lists by using the Exchange Management Console by selecting the New Address List wizard from the action pane. To edit an existing group, select the group in the result pane, and then click Edit in the action pane. The Edit Address List wizard will appear and walk you through the editing of the group.

Managed Default Folders

Managed default folders are folders that, by default, are located in users' mailboxes in Microsoft Office Outlook 2007. You do not have to create managed default folders. Examples of managed default folders are the Sent Items folder and the Inbox. You can see a list of all managed default folders in the Exchange Management Console. For more information about managed default folders, see "Deploying Messaging Records Management" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
Managed Custom Folders

Managed custom folders are managed folders that you create for messaging records management.

Managed custom folders are placed in users' mailboxes according to your specifications by the managed folder mailbox assistant, whenever it runs. Users can also add managed custom folders to their own mailboxes with Web services when you configure a Web page for that purpose for your organization. Managed custom folders are typically given names that reflect their intended role in users' mailboxes. For example, a managed custom folder for personal e-mail might be given the name Non-Work Related.

For more information about managed custom folders, see "Managing Messaging Records Management" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
Managed Folder Mailbox Policies

Managed folder mailbox policies are used to create logical groupings of managed folders. When a managed folder mailbox policy is applied to users' mailboxes, all the managed folders that are linked to the policy are deployed in a single operation. For more information, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):

How to Create a Managed Folder Mailbox Policy

How to Apply a Managed Folder Mailbox Policy to User Mailboxes
Offline Address Book

The offline address book (OAB) provides offline access to directory information from the global address list (GAL) and from other address lists. Outlook users choose which OABs they want to download. Users who work offline connect to Exchange servers and download OABs to obtain information about other users in their organization. For more information, see "Organization Configuration > Mailbox > Offline Address Books" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Client Access

The Client Access node contains the Exchange ActiveSync Mailbox Policies tab. Use this tab to create Exchange ActiveSync mailbox policies to apply a common set of policies or security settings to a collection of users. After you deploy Exchange ActiveSync in your Exchange 2007 organization, you can create new Exchange ActiveSync mailbox policies or modify existing policies. For more information, see "Understanding Exchange ActiveSync Mailbox Policies" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Hub Transport

The Hub Transport node allows you to view and maintain the features of the Hub Transport server role. The Hub Transport server role is deployed inside your organization's Active Directory directory service. It handles all internal mail flow, applies organizational message routing policies, and is responsible for delivering messages to a recipient's mailbox. For more information, see "Hub Transport Server Role: Overview" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Remote Domain

Remote domains let you control mail flow with more precision, specify message formatting and policy, and specify acceptable character sets. After you create a remote domain, you can specify more advanced formatting, policy, and character set configurations for messages that you exchange with the remote domain. For more information, see "Managing Remote Domains" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Accepted Domain

An accepted domain is any Simple Mail Transfer Protocol (SMTP) namespace for which an Exchange organization sends and receives e-mail messages. Accepted domains include those domains for which the Exchange organization is authoritative. An Exchange organization is authoritative when it handles mail delivery for recipients in the accepted domain. Accepted domains also include domains for which the Exchange organization receives mail and then relays to an e-mail server that is outside the Active Directory forest for delivery to the recipient. For more information, see "Managing Accepted Domains" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Transport Rules

The transport rules that you configure on one Hub Transport server are applied through Active Directory to all other Hub Transport servers in the Exchange 2007 organization. The transport rules that you configure on an Edge Transport server are applied only to e-mail messages that pass through that specific Edge Transport server. For more information, see "Overview of Transport Rules" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Journaling

The Journaling agent is a compliance-focused agent that you can configure to journal e-mail messages that are sent or received in the Exchange 2007 organization. A journal rule can be applied to all e-mail, or scoped to apply to just internal or external e-mail. For more information, see "Overview of Journaling" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Send Connectors

A Send connector controls outgoing connections from the organization. Send connectors are not scoped to a single computer. In Active Directory or in Active Directory Application Mode (ADAM), a Send connector is created as an object in a connector's container. More than one source server can be set on a connector. The source servers are the Hub Transport servers that are associated with that connector for sending messages. You can also select an Edge Subscription file as a source server entry. If there is a Send connector that is configured to send mail to an external domain, when any Hub Transport server in the organization routes mail to that domain, the messages will be delivered to a source server for that connector for relay to the destination domain. For more information, see "Send Connectors" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).
Edge Subscription

Edge Subscription files allow for replication of configuration data from Active Directory to the local ADAM instance on the Edge Transport server. If you are installing more than one Edge Transport server, each server requires a separate Edge Subscription file. For more information, see "Managing Edge Subscriptions" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Unified Messaging

Use this node to manage Unified Messaging (UM) server role settings that apply to your entire Exchange 2007 organization. You can maintain existing or create new UM dial plans, UM IP gateways, UM mailbox policies, and UM auto attendants. For more information, see "Unified Messaging" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

UM Dial Plan

The UM dial plan is an Active Directory container object that logically represents sets or groupings of Private Branch eXchanges (PBXs) that share common user extension numbers. In practical terms, users' extensions that are hosted on PBXs share a common extension number. Users can dial each others telephone extensions without appending a special number to the extension or dialing a full telephone number. A UM dial plan is a logical representation of a telephony dial plan. For more information, see "Managing Unified Messaging Dial Plans" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

UM IP Gateway

The UM IP gateway is a container object that logically represents a physical IP/VoIP gateway hardware device. Before the IP/VoIP gateway can be used to process UM calls, the IP/VoIP gateway must be represented by an object in Active Directory. For more information, see "Managing Unified Messaging IP Gateways" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

UM Mailbox Policies

UM Active Directory mailbox policies are required when you enable users for Exchange 2007 UM. They are useful for applying and standardizing UM configuration settings for UM-enabled users. You create UM mailbox policies to apply a common set of policies or security settings to a collection of UM-enabled mailboxes. You use UM mailbox policies to set UM settings for UM-enabled users, such as personal identification number (PIN) policies, dialing restrictions, and other general UM mailbox policy properties. For more information, see "Managing Unified Messaging Mailbox Policies" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

UM Auto Attendant

The Unified Messaging Auto Attendant tab enables you to create one or more UM auto attendants depending on the needs of your organization. UM auto attendants can be used to create a voice menu system for an organization that lets external and internal callers navigate the UM auto attendant menu system to locate and place or transfer calls to company users or departments in an organization. For more information, see "Managing Unified Messaging Auto Attendants" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Using the Server Configuration Node

Use the Server Configuration node to view a list of all the servers in your Exchange organization and perform server role-specific tasks. In Exchange 2007, you can view the role, version, edition, product ID, cluster status, last modified time, and site for each server in the results pane. For more information about how to view these columns in the results pane, see How to Customize the Exchange Management Console.

The nodes that appear under Server Configuration show only the Exchange servers that have a particular server role installed. The Server Configuration node contains the following sub-nodes:


Mailbox


Client Access


Hub Transport


Unified Messaging

Mailbox

Use the Mailbox node under Server Configuration to display a list of all servers in the organization that have the Mailbox server role installed and to perform actions specific to that server role. The Database Management tab in the work pane lists all the storage groups and databases that exist on the selected server. A mailbox database is an Exchange database that contains user mailboxes. For more information, see "Server Configuration > Mailbox > Mailbox Database" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Client Access

Use the Client Access server node to view and maintain the settings for Microsoft Outlook Web Access, Exchange ActiveSync, and the offline address book (OAB).

Outlook Web Access

When you install the Client Access server role on a computer that is running Microsoft Exchange Server 2007, you enable Outlook Web Access by default. Outlook Web Access lets you access your Exchange 2007 mailbox from any Web browser. Four default virtual directories are created to enable Web access to content on Exchange servers. For more information, see "Overview of Outlook Web Access" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Exchange ActiveSync

Exchange ActiveSync enables mobile device users to access their e-mail messages, calendar, contacts, and tasks, and to continue to be able to access this information while they work offline. Use the Exchange ActiveSync tab to configure authentication for increased security. For more information, see "Managing Exchange ActiveSync" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Offline Address Book Distribution

Use the Offline Address Book Distribution tab to configure how your offline address book is distributed to Microsoft Outlook clients. You can configure the distribution points as a public folder in Outlook, or as a Web site where clients can download the offline address book.

Hub Transport

Use the Hub Transport node under Server Configuration to display a list of all servers in the organization that have the Hub Transport server role installed and to perform actions specific to that server role. For more information, see "Hub Transport Server Role: Overview" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Receive Connectors

Use the Receive Connectors tab to display SMTP Receive connectors, which are the gateway through which messages are received by an Exchange 2007 transport server. By default, the Receive connectors that are required for mail flow from the Internet and between the Hub Transport server and the Edge Transport server are created when those roles are installed. For more information, see "Receive Connectors" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Unified Messaging

Use the Unified Messaging Server node to configure voice messaging, fax, and e-mail messaging into one store that users can access from a telephone and a computer. Exchange 2007 Unified Messaging integrates Microsoft Exchange with telephony networks and brings the Unified Messaging features to the core of Microsoft Exchange. For more information, see "Unified Messaging Server Role: Overview" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

To focus on a set of servers that have specific attributes, you can use a variety of expressions to filter the server list that appears in the result pane. For more information about filters, see How to Filter the Result Pane in the Exchange Management Console.

For more information, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):

Using the Exchange Management Console

Managing Unified Messaging

Server Roles
Using the Recipient Configuration Node

Use the Recipient Configuration node for a variety of recipient management tasks. Specifically, you can view the recipients in your Microsoft Exchange Server 2007 organization, create new recipients, and manage existing mailboxes, mail contacts, mail users, and distribution groups.

The Recipient Configuration node contains the following sub-nodes:


Mailbox


Distribution Group


Mail Contact


Disconnected Mailbox

Mailbox

Use the Mailbox node to manage mailbox users and resource mailboxes. Resource mailboxes include room and equipment mailboxes. You can create new mailboxes and remove, disable, or move existing mailboxes. You can also configure mailbox properties, enable and disable Unified Messaging (UM), and manage mobile devices. For more information, see "Managing User Mailboxes" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Distribution Group

Use the Distribution Group node to manage mail-enabled distribution groups (which include security groups) and dynamic distribution groups. You can create new distribution groups, and remove, disable, or configure existing distribution groups. For more information, see "Managing Distribution Groups" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Mail Contact

Use the Mail Contact node to manage mail contacts. You can create new mail contacts, and delete or configure existing mail contacts. For more information, see "Managing Mail Contacts and Mail Users" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Disconnected Mailbox

Use the Disconnected Mailbox node to view and connect disabled mailboxes. Disconnected mailboxes are retained based on the configured mailbox database limits. You will see only the mailboxes that have been disconnected within the retention period that is specified for the mailbox database. For more information, see "Recipient Configuration > Disconnected Mailbox" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Modifying Recipient Configuration

In addition to using the Recipient Configuration node to manage recipient tasks, you can modify the scope by which you view recipients and modify the maximum number of participants that you want to view in the recipient list.

Modify Recipient Scope

You can set the scope to include all recipients in the forest or limit it to all recipients in a specific organizational unit (OU). The recipient scope allows the administrators to focus on all recipients that are in a specific location in the Active Directory directory service. Selecting a more limited recipient scope also reduces the number of recipients that are returned, and consequently improves the performance of the Exchange Management Console. Click Modify Recipient Scope to open the Recipient Scope dialog box. You can use this dialog box to change the scope for the recipients.

For more information about modifying the recipient scope, see "Recipient Configuration > Recipient Scope" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Modify the Maximum Number of Participants to View

By default, a maximum of 1,000 recipients is displayed. Increasing this value can be beneficial in very large environments. However, increasing the value also increases the time it takes to display the results. Depending on the size of the organization, it may have a performance impact on the domain controller to which you are connected. For more information about modifying the number of recipients, see "Recipient Configuration > Maximum Number of Recipients to Display" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

For More Information

For more information, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):

Server Roles

Using the Exchange Management Console
Using the Edge Transport Node

Use the Edge Transport configuration node to view and maintain the features of the Edge Transport server role. In Microsoft Exchange Server 2007, the Edge Transport server role is deployed in your organization's perimeter network as a stand-alone server. Designed to minimize the attack surface, the Edge Transport server handles all Internet-facing mail flow. This provides Simple Mail Transfer Protocol (SMTP) relay and smart host services for the Exchange 2007 organization. Additional layers of message protection and security are provided by a series of agents that run on the Edge Transport server and act on messages as they are processed by the message transport components. These agents support the features that provide protection against viruses and spam, apply transport rules to control message flow, and provide message security.

Anti-Spam Functionality

Use the Anti-spam tab to manage anti-spam and antivirus features that can help reduce the volume of spam, viruses, and malicious software, which is also referred to as malware, that enter your organization. By eliminating the bulk of the spam at the computer that has the Edge Transport server role installed, you save processing resources and bandwidth when the messages are scanned for viruses and other malware further along the mail flow path. The Anti-spam tab contains the following items to help configure your system against spam and malware:


Content filtering


IP Allow list


IP Allow List providers


IP Block list


IP Block List providers


Recipient filtering


Sender filtering


Sender ID


Sender reputation

For more information, see "Anti-Spam and Antivirus Functionality" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Receive Connectors

Use the Receive Connectors tab to configure your Receive connectors. Receive connectors are the gateway through which messages are received by an Exchange 2007 transport server. By default, the Receive connectors that are required for mail flow from the Internet and between the Hub Transport server and the Edge Transport server are created when those roles are installed. For more information, see "Receive Connectors" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Send Connectors

A Send connector controls outgoing connections from the organization. Send connectors are not scoped to a single computer. In the Active Directory directory service or in the Active Directory Application Mode directory service (ADAM), a Send connector is created as an object in a connector's container. More than one source server can be set on a connector. The source servers are the Hub Transport servers that are associated with that connector for sending messages.

You can also select an Edge Subscription as a source server entry. If there is a Send connector that is configured to send mail to an external domain, when any Hub Transport server in the organization routes mail to that domain, the messages are delivered to a source server for that connector for relay to the destination domain. For more information, see "Send Connectors" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Transport Rules

The transport rules that you configure on one Hub Transport server are applied through Active Directory to all other Hub Transport servers in the Exchange 2007 organization. The transport rules that you configure on an Edge Transport server are applied only to e-mail messages that pass through that specific Edge Transport server. For more information, see "Overview of Transport Rules" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Accepted Domains

An accepted domain is any SMTP namespace for which an Exchange organization sends and receives e-mail messages. Accepted domains include those domains for which the Exchange organization is authoritative. An Exchange organization is authoritative when it handles mail delivery for recipients in the accepted domain. Accepted domains also include domains for which the Exchange organization receives mail and then relays to an e-mail server that is outside the Active Directory forest for delivery to the recipient. For more information, see "Managing Accepted Domains" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

For More Information

For more information about the Edge Transport server role, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):


Edge Transport Server Role: Overview

Edge Transport

Deploying Server Roles

Managing Transport Servers

Configuring DNS Settings for Exchange 2007 Servers
Using the Toolbox

The Toolbox is a collection of tools that are installed with Microsoft Exchange Server 2007. The Toolbox provides a central location for diagnostic, troubleshooting, and recovery activities using various Exchange tools. The tools available in the Toolbox work center are divided into two categories:


Dedicated Microsoft Management Console (MMC) 3.0 Some tools, such as the Queue Viewer, are self-hosted in an MMC console. The Exchange Management Console does not have to be running to use the MMC tools.


Independent tools Independent tools, such as the Microsoft Exchange Server Best Practices Analyzer Tool, are not integrated with the Exchange Management Console and function as completely separate executable files when run from the Toolbox. These tools have their own Help file content. For more information about how to use the tools, refer to the individual tool Help file.

Configuration Management Tools

The Exchange Server Best Practices Analyzer automatically examines an Exchange Server deployment and determines whether the configuration is in line with Microsoft best practices. We recommend running the Exchange Server Best Practices Analyzer after you install a new Exchange server, upgrade an existing Exchange server, or make configuration changes.

For more information, see Microsoft Exchange Analyzers.

Disaster Recovery Tools

The following disaster recovery tools are available through the Exchange 2007 Toolbox:


Database Recovery Management tool


Database Troubleshooter

The Database Recovery Management and Database Troubleshooter tools utilize the same engine as the Microsoft Exchange Troubleshooting Assistant (ExTRA) to programmatically execute a set of troubleshooting steps to identify the database issues, and attempt to recover data. The Database Recovery Management tool and the Database Troubleshooter put a graphical user interface (GUI) on top of many of the command-line tools used to troubleshoot Exchange databases. The wizards draw knowledge and understanding from Microsoft Product Support Services, the Exchange product team, and best practices from the industry. You can use the wizards to recover from a database disaster, work with a recovery storage group, or recover a mailbox from a backup.

For more information, see "Database Recovery Management and Database Troubleshooter Tools" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Mail Flow Tools

The Toolbox contains the following analysis, mail flow, and diagnostic tools:


Mail Flow Troubleshooter


Message Tracking tool


Queue Viewer

Mail Flow Troubleshooter assists Exchange Server administrators in troubleshooting common mail flow problems. You will diagnose a problem by selecting the symptoms observed. Based on the symptoms, the tool walks you through the correct troubleshooting path. It shows an analysis of possible root causes and provides suggestions for corrective actions.

Message tracking is a detailed log of all message activity as messages are transferred to and from an Exchange 2007 server that has the Hub Transport server role, the Mailbox server role, or the Edge Transport server role installed. Exchange servers that have the Client Access server role or Unified Messaging server role do not have message tracking logs. Message tracking logs can be used for message forensics, mail flow analysis, reporting, and troubleshooting.

Exchange Queue Viewer allows you to monitor mail flow and inspect queues and messages. You can also perform actions to the queuing databases such as suspending or resuming a queue, or removing messages. For more information, see "Using the Queue Viewer to Manage Queues" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Performance Tools

The Toolbox contains the following performance tools:


Performance Monitor


Performance Troubleshooter

Performance Monitor is a tool you can configure to collect information about the performance of your messaging system. Specifically, you can use it to monitor, create graphs, and log performance metrics for core system functions. You can also use Performance Monitor to monitor Exchange-specific parameters, such as the number of inbound or outbound messages per hour or the number of directory lookups performed by Exchange. Performance Monitor is commonly used to view key parameters while troubleshooting performance problems. It is also used to gather baseline performance data to perform historical trend analysis and measure the impact of changes to your Exchange environment.

Performance Troubleshooter helps you to locate and identify performance-related issues that could affect an Exchange server. You will diagnose a problem by selecting the symptoms observed. Based on the symptoms, the tool walks you through the correct troubleshooting path. Performance Troubleshooter identifies possible bottlenecks and suggests corrective actions.

For more information about how to use the performance tools, refer to the System Monitor Help with the tool.

For More Information

For more information, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):


Using the Exchange Management Console

Using the Queue Viewer to Manage Queues
For more information, see Microsoft Exchange Analyzers.

How to Use the Queue Viewer

This topic explains how to use the Exchange Management Console to open the Exchange Queue Viewer. Use the Queue Viewer to monitor mail flow and to perform intrusive actions against the queuing database that is located on a computer that has the Microsoft Exchange Server 2007 Hub Transport server role or the Edge Transport server role installed.

Before You Begin

To use the Queue Viewer to view queues and messages, the account you use must be delegated the following:


Exchange View-Only Administrator role

To use the Queue Viewer to perform actions that modify the status of queues and messages on a computer that has the Hub Transport server role installed, the account you use must be delegated the following:


Exchange Organization Administrator role

To use the Queue Viewer on a computer that has the Edge Transport server role installed, you must log on by using an account that is a member of the local Administrators group on that computer.

For more information about permissions, delegating roles, and the rights that are required to administer Exchange Server 2007, see "Permission Considerations" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

[image: image22.png]

To use the Exchange Management Console to open the Queue Viewer

	1.
Open the Exchange Management Console.

2.
Click Toolbox, click Exchange Queue Viewer, and then in the Actions pane, click Open tool.

For More Information

For more information, see the following topics in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320):


Managing Queues

Using the Queue Viewer to Manage Queues Using the Queue Viewer to Manage Queues
Using the Exchange Management Shell

The Exchange Management Shell, built on Microsoft Windows PowerShell technology formerly codenamed “Monad", provides a powerful command-line interface and associated command-line plug-ins for Exchange Server that enable automation of administrative tasks. With the Exchange Management Shell, administrators can manage every aspect of Microsoft Exchange 2007. They can enable new e-mail accounts and configure SMTP connectors, store database properties, transport agents, and more. The Exchange Management Shell can perform every task that can be performed by Exchange Management Console in addition to tasks that cannot be performed in Exchange Management Console. In fact, when a task is performed in the Exchange Management Console, the same command is made available to the Exchange Management Shell and called to process the request.

The Exchange Management Shell also provides a robust and flexible scripting platform that can reduce the complexity of current Microsoft Visual Basic scripts. Tasks that previously required many lines in Visual Basic scripts can now be done by using as little as one line of code in the Exchange Management Shell.

The Exchange Management Shell provides this flexibility because it does not use text as the basis for interaction with the system, but uses an object model that is based on the Microsoft .NET platform. This object model enables the Exchange Management Shell cmdlets to apply the output from one command to subsequent commands when they are run.

Opening the Exchange Management Shell

You can open the Exchange Management Shell by using either of the following procedures. Each procedure loads the Exchange Management Shell snap-in into the Windows PowerShell. If you don't load the Exchange Management Shell snap-in before you run an Exchange Management Shell cmdlet, you will receive an error.

[image: image23.png]

To open the Exchange Management Shell from the Programs menu

	1.
Click Start, click Programs, and then click Microsoft Exchange Server 2007.

2.
Click Exchange Management Shell.

[image: image24.png]

To add the Exchange Management Shell snap-in from Windows PowerShell

	1.
Click Start, click Programs, and then click Windows PowerShell 1.0.

2.
Click Windows PowerShell.

3.
Type the following command:

Add-PSSnapin Microsoft.Exchange.Management.PowerShell.Admin

Finding More Detailed Information About the Exchange Management Shell

The following topics provide specific details about the Exchange Management Shell:


Getting Help

Understanding Cmdlets

Parameters

Identity

Syntax

Pipelining

WhatIf, Confirm, and Validate Parameters

Working with Command Output

Comparison Operators

Aliases

User-Defined Variables

Shell Variables

Sample Output

Structured Data

Arrays

Script Security

Scripting with the Exchange Management Shell

Exchange Management Shell Tips of the Day
For More Information

For information about individual Exchange Management Shell cmdlets, see "Exchange Management Shell" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

For more information about how to use the Exchange Management Shell cmdlets to manage your Exchange Server 2007 organization, see "Operations" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

For a list of frequently used Exchange Management Shell command examples that are organized by administrative functions, such as recipient management and transport configuration, see Exchange Management Shell Quick Reference.

New Administration Functionality in the Exchange Management Shell

The Exchange Management Shell, built on Microsoft Windows PowerShell technology, provides administrators a powerful command-line interface that they can use to administer Microsoft Exchange Server 2007. With the Exchange Management Shell, administrators can manage every aspect of Exchange 2007. They can enable new e-mail accounts and configure Simple Mail Transfer Protocol (SMTP) connectors, store database properties, transport agents, and more. The Exchange Management Shell can perform every task that can be performed by Exchange Management Console in addition to tasks that can't be performed in the Exchange Management Console. In fact, when a task is performed in the Exchange Management Console, the same command is made available to the Exchange Management Shell and is called to process the request. For more information about the new Exchange Management Console, see New Administration Functionality in the Exchange Management Console.

Figure 1 illustrates the design and layout of the Exchange Management Shell.

Figure 1 The Exchange Management Shell

[image: image25.png]Jeff_Phillips
Moving messages.

R
:\>Get-MailboxDatahase -Status Research ! Format-Tahle

MountAtStartup

True

Name, Mountx
Mounted

True

i Get-Mailhox

ServerNane

Jessica_firnold win2803ns
Jeff_Phillips win2883ns

ProhihitSendQuo
ta

unlinited
unlinited

! Get-Mailbox ! Move-Mailbox -TargetDatabase

Formatte

Prerequisites

The Exchange Management Shell is a snap-in that relies on Windows PowerShell. Therefore, Windows PowerShell must be installed on the computer that will be running the Exchange Management Shell. To install Windows PowerShell, you must install the Microsoft .NET 2.0 Framework on the computer that will run Windows PowerShell. For information about how to download the .NET Framework, see the Microsoft .NET Framework Developer Center.

New Features in the Exchange Management Shell

The Exchange Management Shell provides a robust and flexible scripting platform that can reduce the complexity of current Microsoft Visual Basic scripts. What previously took hundreds of lines in Visual Basic scripts now be done by using as little as one line of code in the Exchange Management Shell.

The Exchange Management Shell provides this flexibility because it doesn't use text as the basis for interaction with the system. It uses an object model that is based on the Microsoft .NET platform. This object model enables the shell commands to apply the output from one command to subsequent commands when they are run.

The following are key features of the Exchange Management Shell:


Command-line interface The command-line interface lets you quickly and easily access and modify Exchange 2007 features and their values. It also gives you the flexibility to easily perform tasks in bulk that would have taken many lines of code or hours of work to apply changes through Exchange System Manager.


Piping of data between commands Pipelining makes you even more productive when you administer Exchange 2007 through the Exchange Management Shell. Pipelining helps you use output from one command as input in other commands. This lets you easily perform bulk operations based on criteria applied to filtering commands that then supply the objects to be modified to commands down the "pipe". This feature is a primary reason why the Exchange Management Shell makes it possible to reduce dozens of lines of code to a single chain of commands.


Structured data support Because all output from all the commands in the Exchange Management Shell is an object, all output from the commands can be acted on and processed by other commands by using little or no manipulation. Commands in a particular feature set accept output from other commands in that same feature set, without manipulation.


Extensive support for scripting When you want to perform complex processes, automate functions for Help Desk account management, monitor performance, or enable other automated administrative tasks, the Exchange Management Shell provides a powerful object model environment based on the .NET platform.


Safe Scripting To enable a smooth transition from a test environment to production or just to verify that your commands work correctly before you apply them to actual data, the Exchange Management Shell lets you test your commands to make sure they do what you want. You can verify the changes to be made, confirm that you want to continue, and verify that the process will succeed from end to end.


Access Cmd.exe commands The Exchange Management Shell provides transparent access to the commands that are available through the command prompt (Cmd.exe). You can even take the output of Cmd.exe commands and perform actions based on that output, or integrate that output into the data that you provide to another command.


Trusted scripts To improve security, the Exchange Management Shell requires that all scripts are digitally signed before they are allowed to run. This requirement prevents malicious parties from inserting a harmful script in the Exchange Management Shell. Only scripts that you specifically trust are allowed to run. This precaution helps protect you and your organization.


Profile customization While the default installation of the Exchange Management Shell gives you a fully featured and easy-to-use interface, you may want to add shortcuts to the commands that you frequently use. You might also want to adjust the interface to suit your tasks. You can edit your personal Exchange Management Shell profile. This lets you control how your interface is configured and what commands automatically run when the Exchange Management Shell starts. Profile customization lets you assign scripts to aliases that you frequently use in the daily administration of your Exchange 2007 organization.


Extensible shell support If you don't like the way that data is displayed or if, for example, you can't remember which collections use the Count property and which collections use the Length property, you can easily make adjustments. The Exchange Management Shell uses XML to let you modify many aspects of its behavior. Developers can create new commands to integrate with the built-in Exchange Management Shell commands. This extensibility gives you more control over your Exchange 2007 organization and helps you streamline business processes.

For More Information

For more information about how to use the Exchange Management Shell, see Using the Exchange Management Shell.

For a list of frequently used Exchange Management Shell command examples that are organized by administrative functions, such as recipient management and transport configuration, see Exchange Management Shell Quick Reference.

Understanding Cmdlets

A cmdlet, pronounced "command-let", is the smallest unit of functionality in the Microsoft Exchange Management Shell. Cmdlets resemble built-in commands in other shells, for example, the dir command found in cmd.exe. Like these familiar commands, cmdlets can be called directly from the command line in the Exchange Management Shell and run under the context of the shell, not as a separate process.

Cmdlets are usually designed around repetitive administrative tasks, and, in the Exchange Management Shell, more than 360 cmdlets are provided for Exchange-specific management tasks. These are available in addition to the non-Exchange system administrative cmdlets included in the basic Microsoft Windows PowerShell shell design.

[image: image26.png]

Important:

To access Exchange Management Shell cmdlets, you must load the Exchange Management Shell from the Microsoft Exchange Server 2007 program menu.

All cmdlets in the Exchange Management Shell are presented in verb-noun pairs. The verb-noun pair is always separated by a hyphen (-) without spaces, and the cmdlet nouns are always singular. Verbs refer to the action that the cmdlet takes. Nouns refer to the object on which the cmdlet takes action. For example, in the Get-SystemMessage cmdlet, the verb is Get, and the noun is SystemMessage. All Exchange Management Shell cmdlets that manage a particular feature share the same noun. Table 1 provides examples of some of the verbs available in the Exchange Management Shell.

[image: image27.png]

Note:

By default, if the verb is omitted, the Exchange Management Shell assumes the Get verb. For example, when you call Mailbox, you retrieve the same results as when you call Get-Mailbox.

Table 1 Examples of verbs in the Exchange Management Shell

	Verb
	Description

	Disable
	Disable cmdlets set the Enabled status of the specified Exchange 2007 object to $False. This prevents the object from processing data even though the object exists.

	Enable
	Enable cmdlets set the Enabled status of the specified Exchange 2007 object to $True. This enables the object to process data.

	Get
	Get cmdlets retrieve information about a particular Exchange 2007 object.

[image: image28.png]

Note:

Most Get cmdlets only return summary information when you run them. To tell the Get cmdlet to return verbose information when you run a command, pipe the command to the Format-List cmdlet. For more information about the Format-List command, see Working with Command Output. For more information about pipelining, see Pipelining.

	Install
	Install cmdlets install a new object or feature on an Exchange 2007 server.

	Move
	Move cmdlets relocate the specified Exchange 2007 object from one container or server to another.

	New
	New cmdlets create new Exchange 2007 object.

	Remove
	Remove cmdlets delete the specified Exchange 2007 object.

	Set
	Set cmdlets modify the properties of an existing Exchange 2007 object.

	Test
	Test cmdlets test specific Exchange 2007 components and provide log files that you can examine.

	Uninstall
	Uninstall cmdlets remove an object or feature from an Exchange 2007 server.

The following list of cmdlets is an example of a complete cmdlet set. This cmdlet set is used to manage the delivery status notification (DSN) message and mailbox quota message features of Exchange 2007:


Get-SystemMessage

New-SystemMessage

Remove-SystemMessage

Set-SystemMessage
Getting Help

In Microsoft Exchange Server 2007, the Exchange Management Shell provides many help resources to help you use it to its fullest potential. This topic describes the following help resources and functionality:


Exchange 2007 Help file The Exchange 2007 Help file contains all the cmdlet help topics in a role-based and task-based hierarchy. The cmdlet help topics also link to procedural topics that tell you how to perform specific tasks.


Help cmdlets The Exchange Management Shell has several help cmdlets that enable you to find the appropriate information to accomplish your task.


Help views Help in the Exchange Management Shell contains extensive information about the cmdlets that are available to you. Help views enable you to access the information that you need about a cmdlet.


Cmdlet roles, components, and functionality Cmdlets can be listed by their role, component, or the functionality they manage. This lets you to find the appropriate cmdlet for the role, component, or functionality that you want to manage.


Tab completion You can use tab completion on cmdlet names and parameter names to reduce the amount of typing you must do on the command line.

Exchange 2007 Help File

The Exchange 2007 Help file contains the same cmdlet help information that is available on each cmdlet in the Exchange Management Shell. However, in the Exchange 2007 Help file, the help for all the cmdlets is organized by server role and administration task to help you easily find specific cmdlets that are associated with the task that you want to perform. Also, cmdlet topics in the Exchange 2007 Help file are linked to topics that introduce you to the features that they manage, show you how to use the cmdlets to manage that feature, and provide specific details about the feature or common scenarios.

For more information about the cmdlet help topics available in the Exchange 2007 Help file, see "Exchange Management Shell" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

For more information about how to use Exchange Management Shell cmdlets to perform specific tasks, see "Operations" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Help Cmdlets

The following tables provide examples of how to use the Get-Help, Get-Command, and Get-ExCommand cmdlets to access the help information that is available for each cmdlet in the Exchange Management Shell.

Table 1 provides examples of how the Get-Help cmdlet is used.

Table 1 Examples of how to use the Get-Help command

	Command
	Description

	Get-Help
	When you use the Get-Help cmdlet by itself, it gives you basic instructions on how to use the Exchange Management Shell help system.

	Get-Help <cmdlet>
	When you give the Get-Help cmdlet a shell cmdlet as an argument, it displays the help information for that cmdlet. For example, to retrieve the help information for the Get-SystemMessage cmdlet, use the following command:

Get-Help Get-SystemMessage

	Get-Help <*cmdlet*>
	When you give the Get-Help cmdlet a shell cmdlet as an argument, together with a wildcard character, the Get-Help cmdlet returns a list of all cmdlets that match the text that you provided. You can use several methods to retrieve a list of shell cmdlets. These methods include the following:


Get-Help *Rules This command returns all cmdlets that end with the word Rules.


Get-Help Get*Rules This command returns all cmdlets that start with the word Get and end with the word Rules.


Get-Help Get-Export* This command returns all cmdlets that start with the phrase Get-Export.

By using wildcard characters in this manner, you can easily view a list of all cmdlets that are available for a certain feature. For example, by using the Get-Help *-TransportAgent command, you can view a list of all the cmdlet verbs available for transport agents.

	Get-Help About_*
	The Get-Help About_* command provides a list of all general Exchange Management Shell help topics to help you better understand and use the Exchange Management Shell. If you want to learn more about a topic in the list that is displayed, run the Get-Help About_<feature> command. For example, if you want to learn more about the Where statement, run Get-Help About_Where.

	Get-Help <cmdlet> -Detailed
	See the Help Views section later in this topic.

	Get-Help <cmdlet> -Full
	See the Help Views section later in this topic.

	Get-Help <cmdlet> -Examples
	See the Help Views section later in this topic.

	Get-Help <cmdlet> -Parameter <parameter name>
	See the Help Views section later in this topic.

	Get-Help -Role *<server role>*
	See the Role, Component, and Functionality Parameters section later in this topic.

	Get-Help -Component *<component feature>*
	See the Role, Component, and Functionality Parameters section later in this topic.

	Get-Help -Functionality *<Global | User | Server>*
	See the Role, Component, and Functionality Parameters section later in this topic.

Table 2 provides examples of how the Get-Command cmdlet is used.

Table 2 Examples of how to use the Get-Command command

	Cmdlet
	Description

	Get-Command
	The Get-Command cmdlet provides a list of all the cmdlets that are available to the shell. Like the Get-Help cmdlet, the Get-Command cmdlet allows for wildcard character expansion. You can use this cmdlet with the Format-List and Format-Table cmdlets to provide a more readable display. For example, use Get-Command | Format-List to display the cmdlet help in a list format.

	Get-Command <Cmdlet>
	The Get-Command <Cmdlet> command provides detailed information about the specified cmdlet's parameters and other components. You can use this command together with the Format-List cmdlet and Format-Table cmdlet to provide a more readable display. For example, use Get-Command Get-SystemMessage | Format-List to display the cmdlet help in a list format.

	Get-Command -Noun <CmdletNoun>
	TheGet-Command -Noun <CmdletNoun> command lists all the cmdlets that exist with the specified noun. This command is useful when you want to view a list of all cmdlets that are associated with a particular feature. For example, the Get-Help -Noun SystemMessage command returns all the cmdlets that are available for the SystemMessage feature. You can use this command together with the Format-List cmdlet and Format-Table cmdlet to provide a more readable display. For example, use Get-SystemMessage -Noun Get | Format-List to display the command help in a list format.

	Get-Command -Verb <CmdletVerb>
	The Get-Command -Verb <CmdletVerb> command lists all the cmdlets that exist with the specified verb. This command is useful when you want to view a list of all cmdlets that are associated with a particular action. For example, the Get-Help -Verb Enable command returns all cmdlets available that perform the enable action. You can use this command together with the Format-List cmdlet and Format-Table cmdlet to provide a more readable display. For example, use Get-Command -Verb SystemMessage | Format-List to display the command help in a list format.

	Get-ExCommand
	The Get-ExCommand cmdlet behaves identically to the Get-Command cmdlet, but returns only cmdlets that are available to manage Exchange 2007.

	Get-PSCommand
	The Get-PSCommand cmdlet behaves identically to the Get-Command cmdlet, but excludes cmdlets that are used to manage Exchange 2007.

Table 3 provides examples of how to use miscellaneous help commands.

Table 3 Examples of how to use miscellaneous help commands

	Cmdlet
	Description

	QuickRef
	The QuickRef command opens a printable HTML chart that lists the most frequently used Exchange Management Shell cmdlets.

To view the most up-to-date version of this chart, see Exchange Management Shell Quick Reference.

	<Cmdlet> -?
	Use the <Cmdlet> -? command together with any cmdlet to find the same help information that is available when you use the Get-Help cmdlet. For example, type Get-SystemMessage -? to display detailed help for the Get-SystemMessage cmdlet.

	Get-Tip
	The Get-Tip cmdlet generates a new Exchange Management Shell Tip of the Day.

	Get-ExBlog
	The Get-ExBlog cmdlet opens Microsoft Internet Explorer to display the Exchange Team blog.

Help Views

When a cmdlet is specified as a parameter of the Get-Help cmdlet, the help information for the specified cmdlet is displayed. In some cases, the information that is returned can be extensive, and you may only want to see specific information. Help views enable you to view specific information about a cmdlet without having to sort through information that you may not need.

The Exchange Management Shell gives you four views that present exactly the information that you want. You can also retrieve a specific parameter or set of similar parameters. Table 4 shows the sections that are displayed in each view.

Table 4 Exchange Management Shell help views

	Help view
	Default
	Detailed
	Full
	Examples

	Synopsis
	X
	X
	X
	X

	Syntax
	X
	X
	X
	

	Detailed description
	X
	X
	X
	

	Parameters without metadata
	
	X
	
	

	Parameters with metadata
	
	
	X
	

	Input type
	
	
	X
	

	Return type
	
	
	X
	

	Errors
	
	
	X
	

	Notes
	
	
	X
	

	Examples
	
	X
	X
	X

	Related links
	X
	
	X
	

	Remarks
	X
	X
	
	

Table 5 describes each view and provides an example of a command that calls each view.

Table 5 Examples of Exchange Management Shell help views

	Help view
	Example
	Description

	Default
	Get-Help Set-Mailbox
	The default view is displayed when you use the command Get-Help <cmdlet>.

	Detailed
	Get-Help Set-Mailbox -Detailed
	The Detailed view is displayed when you use the command Get-Help <cmdlet> -Detailed. The parameters that are returned in the Parameters section do not include parameter metadata.

For more information about parameters, see Parameters.

	Full
	Get-Help Set-Mailbox - Full
	The Full view is displayed when you use the command Get-Help <cmdlet> -Full. The parameters that are returned in the Parameters section include the following parameter metadata:


Required?

Position?

Default value

Accept pipeline input?

Accept wildcard characters?
For more information about parameters, see Parameters.

	Examples
	Get-Help Set-Mailbox -Examples
	The Examples view is displayed when you use the command Get-Help <cmdlet> -Examples.

In addition to these four help views, the Exchange Management Shell also lets you access the description and metadata on a specific parameter or set of similar parameters. You can specify the parameter together with the Get-Help <cmdlet> command. The following example shows how you can display the description of the ForwardingAddress parameter on the Set-Mailbox cmdlet:

Get-Help Set-Mailbox -Parameter ForwardingAddress

You can also display a set of similar parameters that exist on a specific cmdlet if you specify the partial name of a parameter together with a wildcard character (*). The following example shows how you can display all the parameters on the Set-Mailbox cmdlet that contain the word "Quota":

Get-Help Set-Mailbox -Parameter *Quota*

[image: image29.png]

Note:

When you use the Parameter parameter with the Get-Help cmdlet to retrieve help for a cmdlet that has only one parameter, the Get-Help cmdlet doesn't return any results, even if you use the wildcard character (*). This is a known issue in Microsoft Windows PowerShell.

Role, Component, and Functionality Parameters

When you call the Get-Help cmdlet without specifying a specific cmdlet, you receive a listing of all cmdlets available in the Exchange Management Shell. However, you may want to view a list of cmdlets that manage a specific server role or component feature or that affect objects across a certain scope of functionality. The Get-Help cmdlet lets you do this with three parameters: Role, Component, and Functionality.

When you use the Get-Help cmdlet with the Role, Component, or Functionality parameters, you must enclose the values that you specify with these parameters in wildcard characters (*). The following are examples of how to call Get-Help with each parameter:

Get-Help -Role *Mailbox*

Get-Help -Component *Recipient*

Get-Help -Functionality *Server*

The following tables list all the values that can be used with the Role, Component, and Functionality parameters on the Get-Help cmdlet. Table 6 lists the values that can be used with the Role parameter.

Table 6 Valid values for Get-Help -Role

	Role
	Value
	Alternative value

	Mailbox
	Mailbox
	MB

	Hub Transport
	Hub
	HT

	Client Access
	ClientAccess
	CA

	Unified Messaging
	UnifiedMessaging
	UM

	Edge Transport
	Edge
	ET

	Organization Administrator
	OrgAdmin
	OA

	Server Administrator
	SrvAdmin
	SV

	Recipient Administrator
	RcptAdmin
	RA

	Windows Administrator
	WinAdmin
	WA

	Read Only
	ReadOnly
	RO

Table 7 lists the values that can be used with the Component parameter.

Table 7 Valid values for Get-Help -Component

	Value
	Value

	Addressing
	Mailflow

	Agent
	ManagedFolder

	Antispam
	Mobility

	AutoDiscover
	OAB

	Calendaring
	Outlook

	Certificate
	OWA

	Classification
	Permission

	Client
	Pop

	Cluster
	PublicFolder

	Compliance
	Queuing

	Delegate
	Recipient

	Diagnostic
	Routing

	Domain
	Rule

	Extensibility
	Search

	FreeBusy
	Server

	GAL
	Statistics

	Group
	Storage

	HighAvailability
	UM

	Imap
	VirtualDirectory

	Mailbox
	

Table 8 lists the values that can be used with the Functionality parameter.

Table 8 Valid values for Get-Help -Functionality

	Value

	Global

	Server

	User

Tab Completion

Tab completion enables you to reduce the typing you must do when you use the Exchange Management Shell. When you type a partial cmdlet name, press the TAB key, and the Exchange Management Shell will complete the cmdlet name if a matching cmdlet is found. If multiple matching cmdlet names are found, each cmdlet name will cycle through as you press the TAB key. When you use tab completion with cmdlet names, you must supply at least the verb and the hyphen (-). The following examples show how you can use tab completion when you enter a cmdlet name:

Get-Transport<Tab>

Enable-<Tab>

As you press the TAB key in the first example, the Exchange Management Shell cycles through all the cmdlet names that start with Get-Transport. In the second example, the Exchange Management Shell cycles through all cmdlets with the verb Enable.

As with cmdlet names, you can also use tab completion when you want the Exchange Management Shell to complete the partial parameter name that you have entered. When you use tab completion with parameter names, you must specify the full cmdlet name either by typing it in directly or by using tab completion. The following examples show how you can use tab completion when you enter a parameter name:

Set-Mailbox -Email<Tab>

New-TransportRule -Cond<Tab>

As you press the TAB key in the first example, the Exchange Management Shell cycles through all the parameter names that start with Email on the Set-Mailbox cmdlet. In the second example, when you press the TAB key, the Exchange Management Shell completes the Condition parameter on the New-TransportRule cmdlet.

Scripting with the Exchange Management Shell

For most general tasks, running cmdlets one at a time or together through pipelines is sufficient. However, sometimes you may want to automate tasks. The Exchange Management Shell supports a very rich scripting language, based on the Microsoft .NET Framework, which resembles the scripting language in other shells. The Exchange Management Shell lets you create scripts, from the very simple to the very complex. Language constructs for looping, conditional, flow-control, and variable assignment are all supported.

Every organization has tasks that are in some way unique to that organization. With a library of script files to perform these tasks, administrators can save time and run these scripts on any computer that has the Exchange Management Shell installed.

For more information about how to use scripts, see Scripting with Windows PowerShell. Because the Exchange Management Shell is built on Microsoft Windows PowerShell technology, the scripting guidance for Windows PowerShell applies to the Exchange Management Shell.

Running a Script Inside the Exchange Management Shell

Those familiar with the Cmd.exe environment know how to run command shell scripts. These are nothing more that text files that have the .bat file name extension. Like batch files, you can create the Exchange Management Shell script files by using a text editor, such as Notepad. The Exchange Management Shell script files use the .ps1 file name extension.

The Exchange Management Shell uses a root directory for script files when they are called. By default, the root directory is the <root drive>:\Program Files\Microsoft\Exchange Server\bin directory. You can also verify the current PSHome directory on any computer that is running the Exchange Management Shell by running $PSHome from the command line. Both of these directories are in the PATH environment variable.

If a script file is saved to the root directory, you can call it by using the script name. If the script file is located somewhere other than the current location, the path and script name must be used. If the script file is located in the current location, the script name must be prefixed by .\.

The following examples show the command syntax requirements for calling three different scripts. These examples all use the Get-Date cmdlet, from three different locations.

[PS] C:\>Get-Date-Script-A.ps1

Friday, January 20, 2006 3:13:01 PM

The script file Get-Date-Script-A.ps1 is located in the directory that is specified by $PSHhome and requires only the script name to run.

[PS] C:\>c:\workingfolder\Get-Date-Script-B.ps1

Friday, January 20, 2006 3:13:25 PM

The script file Get-Date-Script-B.ps1 is located in the C:\workingfolder directory so the full path must be supplied to run.

[PS] C:\>.\Get-Date-Script-C.ps1

Friday, January 20, 2006 3:13:40 PM

The script file Get-Date-Script-C.ps1 is located in the current location, C:\. Therefore, it must be prefixed with .\ to run.

[PS] C:\>Get-Date-Script-C.ps1

'Get-Date-Script-C.ps1' is not recognized as a Cmdlet, function, operable program, or script file.

At line:1 char:21

+ Get-Date-Script-C.ps1 <<<<

In the last example, when this same script, Get-Date-Script-C.ps1, is called without the prefix .\, the expected results are shown.

As a best practice, always give script files a descriptive name and include comments in the script to describe its purpose and to identify each point of interest. Some information about the author should also be included in case someone who is running the script has questions about its use. Use the pound symbol (#) to start comment lines inside the script body.

Running a Script from Cmd.exe

If you want to run a script on a scheduled basis by the Windows Task Scheduler service, you can call the Exchange Management Shell and include the script that you want to run as a parameter. Because the Exchange Management Shell is a snap-in of the Windows PowerShell, you must also load the Exchange Management Shell snap-in when you run the command in order to run any Exchange -related cmdlets. The following syntax is required to load the Exchange Management Shell snap-in and run your script from the Cmd.exe command:

PowerShell.exe -PSConsoleFile "C:\Program Files\Microsoft\Exchange Server\Bin\ExShell.Mcf1" -Command ". '<Path to Your Script>'"

For example, to run the script RetrieveMailboxes.ps1 from C:\My Scripts, use the following command:

PowerShell.exe -PSConsoleFile "C:\Program Files\Microsoft\Exchange Server\Bin\ExShell.Mcf1" -Command ". 'C:\My Scripts\RetrieveMailboxes.ps1'"

For additional options to use when you call the Exchange Management Shell from the Cmd.exe environment, type PowerShell.exe /?
Getting Hints from the Exchange Management Console

In Microsoft Exchange Server 2007, you can use the Exchange Management Console to view detailed information about specific Exchange Management Shell commands that are used to perform certain tasks. When you run a wizard in the Exchange Management Console, the wizard takes the information that you entered and creates an Exchange Management Shell command that is then run by the computer. You can copy and paste this command directly into the Exchange Management Shell or copy it into a text editor where you can modify it. If you examine how the Exchange Management Console creates commands, you can obtain a better understanding of how to construct or modify those commands to suit your future needs.

For example, if you create a new mailbox for a person named Frank Lee, the following information is displayed on the Completion page of the New Mailbox wizard:

Figure 1 New Mailbox wizard completion page

[image: image30.png]New

B Inroduction
B User Tope
B3 Maibos Information
3 Maibox Setings
B NewMaibox
B3 Completion

s

Mailbox

Completion

The wizard completed successtuly. To close this wizard clck Frish
Elapsed time: 000010

Summary: 1 items. 1 succeeded, 0 faied.

frank V] S

Management Shell command completect

NewMaibor Name-Frark Lee' las fark -Diganizationallnit ‘cortoso comiUsers'
Database: Ch=Maibox Database.CN<Fist Storage

Group Ch=IrfomalionStare, CN=/IN2003MS Ch=Gervers CN-Exchange
Admiristiative Group (FYDIBOHF235PDLT) Chi=hdrinistatve Groups. CN<First
Organization CN=Microsot

Exchange Cli=Services, CN=Configuration DC=contoso DC=cor

UseiPincipalame: frank@contoso com - sméccouriName: ark' FistName: Frank'
Iritels:" LastNameL e’ Password:System Secuty SecueSting
ReselPasswordnNedLogor:false

Elapsed Time: 030010

Select CUl+C to copy the contents of this page.

Bk ol

The information that is displayed on the Completion page gives you an idea of the information that you must have to make sure a similar command that you run in the Exchange Management Shell is completed successfully. On the Completion page, press CTRL+C to copy this information to the Clipboard. Then you can use a text editor to examine the command to determine what must be changed to add more mailboxes. You can also customize the command so that it can be used as part of a script that consumes a comma-separated-values (CSV) file or another input source to automate creating many mailboxes.

Testing Scripts

When you create new scripts, you should always test them in a lab environment before you apply them in your production environment. As you test your scripts in your lab, and as you deploy them in your production environment, you can use the WhatIf parameter that is available on many cmdlets included in the Exchange Management Shell to verify that your script performs as expected. The WhatIf parameter instructs the command to which it is applied to run, but only to display which objects would be affected by running the command and what changes would be made to those objects, without actually changing any of those objects.

For more information about the WhatIf parameter, see WhatIf, Confirm, and Validate Parameters.

Troubleshooting Scripts

Scripts may not work as expected for many reasons. It can be difficult to determine where the problem is and what is going wrong. The Exchange Management Shell can help you locate general syntax errors by reporting the line and character at the point of failure. When the syntax of a script is correct but its behavior is unexpected, it can be much more difficult to diagnose the problem. The Exchange Management Shell includes simple debugging functionality to troubleshoot script files by examining each step that the script makes as it executes. This functionality is called tracing.

To enable tracing and examine each command step in a script, use the Set-PSDebug cmdlet with the Trace parameter set to a value of 1. To examine each step and each variable assignment as they are made, set the Trace parameter to a value of 2. To turn tracing off, set the value of the Trace parameter to 0 (zero).

To examine each command in a script line by line, use the Set-PSDebug cmdlet with the Step parameter. At each step, you will be prompted to continue the operation. The following choices are available in Step mode:

[Y] Yes (continue to the next step)

[A] Yes to All (continue to the end of the script)

[N] No (stop this step)

[L] No to All (stop all remaining steps)

[S] Suspend (suspend at this point and drop to a prompt)

Suspend lets you exit to a prompt where you can run any command, for example, to check or set values on an object before the script can access it. When you are ready to resume script execution, type Exit and control immediately returns to the point at which the script was suspended.

Working with Command Output

The Exchange Management Shell offers several methods that you can use to format command output. This topic discusses the following subjects:


How to format data Control how the data that you see is formatted by using the Format-List, Format-Table, and Format-Wide cmdlets.


How to output data Determine whether data is output to the Exchange Management Shell console window or to a file by using the Out-Host and Out-File cmdlets. Included in this topic is a sample script to output data to Microsoft Internet Explorer.


How to filter data Filter data by using either of the following filtering methods:


Server-side filtering, available on certain cmdlets


Client-side filtering, available on all cmdlets by piping the results of a command to the Where-Object cmdlet

To use the functionality that is described in this topic, you must be familiar with the following concepts:


Pipelining

Shell Variables

Comparison Operators
How to Format Data

If you call formatting cmdlets at the end of the pipeline, you can override the default formatting to control what data is displayed and how that data appears. The formatting cmdlets are Format-List, Format-Table, and Format-Wide. Each has its own distinct output style that differs from the other formatting cmdlets.

Format-List

The Format-List cmdlet takes input from the pipeline and outputs a vertical columned list of all the specified properties of each object. You can specify which properties you want to display by using the Property parameter. If the Format-List cmdlet is called without any parameters specified, all properties are output. The Format-List cmdlet wraps lines instead of truncating them. One of the best uses for the Format-List cmdlet is to override the default output of a cmdlet so that you can retrieve additional or more focused information.

For example, when you call the Get-Mailbox cmdlet, you only see a limited amount of information in table format. If you pipe the output of the Get-Mailbox cmdlet to the Format-List cmdlet and add parameters for the additional or more focused information that you want to view, you can retrieve the output that you want.

You can also specify a wildcard character "*" with a partial property name. If you include a wildcard character, you can match multiple properties without having to type each property name individually. For example, Get-Mailbox | Format-List -Property Email* returns all properties that begin with Email.

The following examples show the different ways that you can view the same data returned by the Get-Mailbox cmdlet.

Get-MailBox TestUser1

Name Alias Server StorageQuota

---- ----- ------ ------------

TestUser1 TestUser1 e12 unlimited

In this first example, the Get-Mailbox cmdlet is called without specific formatting so the default output is in table format and contains a predetermined set of properties.

Get-Mailbox TestUser1 | Format-List -Property Name,Alias,EmailAddresses

Name : TestUser1

Alias : TestUser1

EmailAddresses : {SMTP:TestUser1@contoso.com, X400:c=US;a= ;p=Contoso;o=Exchange;s=TestUser1;}

Get-Mailbox TestUser1 | Format-List -Property Name, Alias, Email*

In the second example, the output of the Get-Mailbox cmdlet is piped to the Format-List cmdlet, together with specific properties. As you can see, the format and content of the output is significantly different.

Name : Test User

Alias : TestUser1

EmailAddresses : {SMTP:TestUser1@contoso.com, X400:c=US;a= ;p=First

 Organization;o=Exchange;s=User;g=Test;}

EmailAddressPolicyEnabled : True

In the last example, the output of the Get-Mailbox cmdlet is piped to the Format-List cmdlet as in the second example. However, in the last example, a wildcard character is used to match all properties that start with Email.

If more than one object is passed to the Format-List cmdlet, all specified properties for an object are displayed and grouped by object. The display order depends on the default parameter for the cmdlet. This is most frequently the Name parameter or the Identity parameter. For example, when the Get-Childitem cmdlet is called, the default display order is file names in alphabetical order. To change this behavior, you must call the Format-List cmdlet, together with the GroupBy parameter, and the name of a property value by which you want to group the output. For example, the following command lists all files in a directory and groups these files by extension.

Get-Childitem | Format-List Name,Length -GroupBy Extension

 Extension: .xml

Name : Config_01.xml

Length : 5627

Name : Config_02.xml

Length : 3901

 Extension: .bmp

Name : Image_01.bmp

Length : 746550

Name : Image_02.bmp

Length : 746550

 Extension: .txt

Name : Text_01.txt

Length : 16822

Name : Text_02.txt

Length : 9835

In this example, the Format-List cmdlet has grouped the items by the Extension property that is specified by the GroupBy parameter. You can use the GroupBy parameter with any valid property for the objects in the pipeline stream.

Format-Table

The Format-Table cmdlet lets you display items in a table format with label headers and columns of property data. By default, many cmdlets, such as the Get-Process and Get-Service cmdlets, use the table format for output. Parameters for the Format-Table cmdlet include the Properties and GroupBy parameters. These work exactly as they do with Format-List cmdlet.

The Format-Table cmdlet also uses the Wrap parameter. This enables long lines of property information to display completely instead of truncating at the end of a line. To see how the Wrap parameter is used to display returned information, compare the output of the Get-Command command in the following two examples.

In the first example, when the Get-Command cmdlet is used to display command information about the Get-Process cmdlet, the information for the Definition property is truncated.

Get-Command Get-Process | Format-Table Name,Definition

Name Definition

---- ----------

get-process get-process [[-ProcessName] String[]...

In the second example, the Wrap parameter is added to the command to force the complete contents of the Definition property to display.

Get-Command Get-Process | Format-Table Name,Definition -Wrap

Name Definition

---- ----------

get-process get-process [[-ProcessName] String[]] [

 -Verbose] [-Debug] [-ErrorAction Action

 Preference] [-ErrorVariable String] [-O

 utVariable String] [-OutBuffer Int32]

 get-process -Id Int32[] [-Verbose] [-De

 bug] [-ErrorAction ActionPreference] [-

 ErrorVariable String] [-OutVariable Str

 ing] [-OutBuffer Int32]

 get-process -Input Process[] [-Verbose]

 [-Debug] [-ErrorAction ActionPreferenc

 e] [-ErrorVariable String] [-OutVariabl

 e String] [-OutBuffer Int32]

As with the Format-List cmdlet, you can also specify a wildcard character "*" with a partial property name. By including a wildcard character, you can match multiple properties without typing each property name individually.

Format-Wide

The Format-Wide cmdlet provides a much simpler output control than the other format cmdlets. By default, the Format-Wide cmdlet tries to display as many columns of property values as possible on a line of output. By adding parameters, you can control the number of columns and how the output space is used.

In the most basic usage, calling the Format-Wide cmdlet without any parameters arranges the output in as many columns as will fit the page. For example, if you run the Get-Childitem cmdlet and pipe its output to the Format-Wide cmdlet, you will see the following display of information:

Get-ChildItem | Format-Wide

 Directory: FileSystem::C:\WorkingFolder

Config_01.xml Config_02.xml

Config_03.xml Config_04.xml

Config_05.xml Config_06.xml

Config_07.xml Config_08.xml

Config_09.xml Image_01.bmp

Image_02.bmp Image_03.bmp

Image_04.bmp Image_05.bmp

Image_06.bmp Text_01.txt

Text_02.txt Text_03.txt

Text_04.txt Text_05.txt

Text_06.txt Text_07.txt

Text_08.txt Text_09.txt

Text_10.txt Text_11.txt

Text_12.txt

Generally, calling the Get-Childitem cmdlet without any parameters displays the names of all files in the directory in a table of properties. In this example, by piping the output of the Get-Childitem cmdlet to the Format-Wide cmdlet, the output was displayed in two columns of names. Notice that only one property type can be displayed at a time, specified by a property name that follows the Format-Wide cmdlet. If you add the Autosize parameter, the output is changed from two columns to as many as can fit the screen width.

Get-ChildItem | Format-Wide -AutoSize

 Directory: FileSystem::C:\WorkingFolder

Config_01.xml Config_02.xml Config_03.xml Config_04.xml Config_05.xml

Config_06.xml Config_07.xml Config_08.xml Config_09.xml Image_01.bmp

Image_02.bmp Image_03.bmp Image_04.bmp Image_05.bmp Image_06.bmp

Text_01.txt Text_02.txt Text_03.txt Text_04.txt Text_05.txt

Text_06.txt Text_07.txt Text_08.txt Text_09.txt Text_10.txt

Text_11.txt Text_12.txt

In this example, the table is arranged in five columns, instead of two columns. The Column parameter offers more control by letting you specify the maximum number of columns to display information as follows:

Get-ChildItem | Format-Wide -Columns 4

 Directory: FileSystem::C:\WorkingFolder

Config_01.xml Config_02.xml Config_03.xml Config_04.xml

Config_05.xml Config_06.xml Config_07.xml Config_08.xml

Config_09.xml Image_01.bmp Image_02.bmp Image_03.bmp

Image_04.bmp Image_05.bmp Image_06.bmp Text_01.txt

Text_02.txt Text_03.txt Text_04.txt Text_05.txt

Text_06.txt Text_07.txt Text_08.txt Text_09.txt

Text_10.txt Text_11.txt Text_12.txt

In this example, the number of columns is forced to four by using the Column parameter.

How to Output Data

Out-Host and Out-File

The Out-Host cmdlet is an unseen default cmdlet at the end of the pipeline. After all formatting is applied, the Out-Host cmdlet sends the final output to the console window for display. You don't have to explicitly call the Out-Host cmdlet, because it is the default output. You can override sending the output to the console window by calling the Out-Host cmdlet as the last cmdlet in the command. The Out-File cmdlet then writes the output to the file that you specify in the command as in the following example:

Get-ChildItem | Format-Wide -Columns 4 | Out-File c:\OutputFile.txt

In this example, the Out-Host cmdlet writes the information that is displayed in the Get-ChildItem | Format-Wide -Columns 4 command to a file that is named OutputFile.txt. You can also redirect pipeline output to a file by using the redirection operator, which is the right-angle bracket (>). To append pipeline output of a command to an existing file without replacing the original file, use the double right-angle brackets (>>), as in the following example:

Get-ChildItem | Format-Wide -Columns 4 >> C:\OutputFile.txt

In this example, the output from the Get-Childitem cmdlet is piped to the Format-Wide cmdlet for formatting and then is written to the end of the OutputFile.txt file. Notice that if the OutputFile.txt file did not exist, use of the double right-angle brackets (>>) would create the file.

For more information about pipelines, see Pipelining.

For more information about the syntax used in the previous examples, see Syntax.

Viewing Data in Internet Explorer

Because of the flexibility and ease of scripting in the Exchange Management Shell, you can take the data that is returned by commands and format and output them in almost limitless ways.

The following example shows how you can use a simple script to output the data that is returned by a command and display it in Internet Explorer. This script takes the objects that are passed through the pipeline, opens an Internet Explorer window, and then displays the data in Internet Explorer:

$Ie = New-Object -Com InternetExplorer.Application

$Ie.Navigate("about:blank")

While ($Ie.Busy) { Sleep 1 }

$Ie.Visible = $True

$Ie.Document.Write("$Input")

If the previous line doesn't work on your system, uncomment the line below.

$Ie.Document.IHtmlDocument2_Write("$Input")

$Ie

To use this script, save it to the C:\Program Files\Microsoft\Exchange Server\Scripts directory on the computer where the script will be run. Name the file Out-Ie.ps1. After you save the file, you can then use the script as a regular cmdlet.

The Out-Ie script assumes that the data it receives is valid HTML. To convert the data that you want to view into HTML, you must pipe the results of your command to the ConvertTo-Html cmdlet. You can then pipe the results of that command to the Out-Ie script. The following example shows how to view a directory listing in an Internet Explorer window:

Get-ChildItem | Select Name,Length | ConvertTo-Html | Out-Ie

How to Filter Data

The Exchange Management Shell gives you access to a large quantity of information about your servers, mailboxes, Active Directory directory service, and other objects in your organization. Although access to this information helps you better understand your environment, this large quantity of information can easily overwhelm you. The Exchange Management Shell lets you control this information and return only the data that you want to see by using filtering. The following two types of filtering are available:


Server-side filtering Server-side filtering takes the filter that you specify on the command line and submits it to the Exchange server that you query. That server processes the query and returns only the data that matches the filter that you specified.

Server-side filtering is performed only on objects where tens or hundreds of thousands of results could be returned. Therefore, only the recipient management cmdlets, such as the Get-Mailbox cmdlet, and queue management cmdlets, such as the Get-Queue cmdlet, support server-side filtering. These cmdlets support the Filter parameter. This takes the filter expression that you specify and submits it to the server for processing.


Client-side filtering Client-side filtering is performed on the objects in the local console window in which you are currently working. When you use client-side filtering, the cmdlet retrieves all the objects that match the task that you are performing to the local console window. The Exchange Management Shell then takes all the returned results, applies the client-side filter to those results, and returns to you only the results that match your filter. All cmdlets support client-side filtering. This is invoked by piping the results of a command to the Where-Object cmdlet.

Server-Side Filtering

The implementation of server-side filtering is specific to the cmdlet on which it is supported. Server-side filtering is enabled only on specific properties on the objects that are returned.

For more information about how to manage recipients by using server-side filtering, see "Creating Filters in Recipient Commands" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

For more information about how to manage queues by using server-side filtering, see "Filtering Queues" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

Client-Side Filtering

Client-side filtering can be used with any cmdlet. This includes those that also support server-side filtering. As described earlier in this topic, client-side filtering accepts all the data that is returned by a previous command in the pipeline, and in turn, returns only the results that match the filter that you specify. The Where-Object cmdlet performs this filtering. It can be shortened to Where.

As data passes through the pipeline, the Where cmdlet receives the data from the previous object and then filters the data before passing it on to the next object. The filtering is based on a script block that is defined in the Where command. The script block filters data based on the object’s properties and values.

The Clear-Host cmdlet is used to clear the console window. In this example, you can find all the defined aliases for the Clear-Host cmdlet if you run the following command:

Get-Alias | Where {$_.Definition -eq "Clear-Host"}

CommandType Name Definition

----------- ---- ----------

Alias clear clear-host

Alias cls clear-host

The Get-Alias cmdlet and the Where command work together to return the list of aliases that are defined for the Clear-Host cmdlet and no other cmdlets. Table 1 outlines each element of the Where command that is used in the example.

Table 1 Elements of the Where command

	Element
	Description

	{ }
	Braces enclose the script block that defines the filter.

	$_
	This special variable automatically initiates and binds to the objects in the pipeline.

	Definition
	The Definition property is the property of the current pipeline objects that stores the name of the alias definition. When Definition is used with the $_ variable, a period comes before the property name.

	-eq
	This comparison operator for “equal to” is used to specify that the results must exactly match the property value that is supplied in the expression.

	“Clear-Host”
	In this example, “Clear-Host” is the value for which the command is parsing.

In the example, the objects that are returned by the Get-Alias cmdlet represent all the defined aliases on the system. Even though you don't see them from the command line, the aliases are collected and passed to the Where cmdlet through the pipeline. The Where cmdlet uses the information in the script block to apply a filter to the alias objects.

The special variable $_represents the objects that are being passed. The $_variable is automatically initiated by the shell and is bound to the current pipeline object. For more information about this special variable, see Shell Variables.

Using standard "dot" notation (object.property), the Definition property is added to define the exact property of the object to evaluate. The -eq comparison operator then compares the value of this property to “Clear-Host”. Only the objects that have the Definition property that match this criterion are passed to the console window for output. For more information about comparison operators, see Comparison Operators.

Pipelining

Pipelining in the Exchange Management Shell is the act of one cmdlet using the output of another cmdlet when it performs an operation. Pipelining is accomplished by using the pipe "|" symbol. All verbs in the same noun-cmdlet set can use piped information from another command. Some noun-cmdlet sets also let you pass data through the pipeline to another noun cmdlet set.

Using Pipelining to Perform Multiple Actions

The use of pipelining to string together the actions of two or more cmdlets gives the Exchange Management Shell the power of composition, which lets you take smaller components and convert them into something more powerful. For example, you can use one cmdlet to gather data, pass that data to a second cmdlet to filter the data to a subset, and then pass that data to a third cmdlet to act on the subset only.

For example, the following command uses pipelining to move all the mailboxes on Server1 to the Executives database on Server2 by using the Move-Mailbox cmdlet, based on output that is piped from the Get-Mailbox cmdlet:

Get-Mailbox -Server Server1 | Move-Mailbox -TargetDatabase Server2\Executives

Using Pipelining to Process Data from Another Cmdlet

You can also use pipelining to process data that is output by a cmdlet. For example, for a list of all processes where the HandleCount property of the process is larger than 400, you can run the following command:

Get-Process | Where { $_.HandleCount -gt 400 } | Format-List

In this example, the Get-Process cmdlet passes objects to the Where-Object cmdlet. The Where-Object cmdlet picks out the objects that have a property called HandleCount with a value larger than 400.

In this example, the HandleCount property is preceded by the $_ variable. This variable is created automatically by the Exchange Management Shell to store the current pipeline object. The Where-Object cmdlet then sends these objects to the Format-List cmdlet to be displayed.

The use of structured objects, instead of text, is one of the most exciting capabilities of the Exchange Management Shell. The use of structured objects forms the basis of a powerful compositional model of administration.

For more information about structured objects, see Structured Data.

Using Pipelining to Report Errors

To report errors, you can use the error pipeline. The error pipeline lets you report errors while a command runs. This means that you don't have to wait until the command has finished running or to put the error information in the standard result pipeline. The Write-Error cmdlet writes its arguments to the error pipeline.

For more information about pipelining, run the following command in the Exchange Management Shell:

Get-Help About_Pipeline

Parameters

Most cmdlets rely on parameters. Parameters are elements that provide information to the cmdlet, either identifying an object and its attributes to act upon, or controlling how the cmdlet performs its task. The name of the parameter is preceded by a hyphen (-) and followed by the value of the parameter as follows:

Verb-Noun -ParameterName <ParameterValue>

In this simple example, the hyphen in front of the parameter name tells the Exchange Management Shell that the word that immediately follows the hyphen is a parameter that is passed to the cmdlet and that the next separate word after the parameter is the value of the parameter.

Positional Parameters

A positional parameter is a parameter that lets you specify the parameter's value without specifying the parameter's name. A parameter is a positional parameter if the Parameter Position attribute is an integer. This integer indicates the position on the command line where the cmdlet can find the parameter's value.

Most cmdlets only have one positional parameter, Identity. Identity is always in position 1 if it is available on a cmdlet. If a parameter is not a positional parameter, it is considered to be a named parameter. You must specify the parameter name and parameter value for named parameters.

The following two commands perform the same task: returning configuration information for a Receive connector that is named "Contoso".

Get-ReceiveConnector -Identity "Contoso"

Get-ReceiveConnector "Contoso"

Parameter Details

Included in the Parameters section of the information that is retrieved by the Get-Help cmdlet are details, also called metadata, on each parameter. The following example is from the Get-Service cmdlet.

PARAMETERS

 -ServiceName System.String[]

 Parameter required? false

 Parameter position? 1

 Default value *

 Accept pipeline input? true

 Accept wildcard characters? True

This example from the Get-Service cmdlet includes some very specific details about the value types that can be passed for the ServiceName parameter. Not all cmdlets include such details. However, most cmdlets do include some settings for each parameter as described in Table 1.

Table 1 Parameter settings

	Setting
	Description

	Required?
	This setting indicates whether the cmdlet will run if you do not supply the parameter. When Required? is set to True, the Exchange Management Shell prompts you for the value if the parameter is not supplied on the command line.

	Position?
	This setting indicates whether you must put the parameter name in front of the parameter value. When Position? is set to Named, the parameter name is required.

When Position? is set to an integer, the name is not required, only the value.

	Default value
	This setting indicates the default value for this parameter if no other value is provided.

	Accept pipeline input?
	This setting indicates whether the parameter can receive its value as an input through a pipeline from another cmdlet.

	Accept wildcard characters?
	This setting indicates whether the parameter’s value can contain wildcard characters and can be matched to multiple objects.

Boolean Parameters

Boolean parameters are used in the Exchange Management Shell to determine whether a feature or option is enabled, $True, or disabled, $False. The value that you assign to a Boolean parameter is stored in the configuration of the object that you are modifying. When you supply a value to a Boolean parameter, you must use the values $True or 1, or $False or 0. The dollar sign ($) must be included with $True and $False. You may notice that some commands insert a colon (:) between the Boolean parameter name and Boolean value. On Boolean parameters, this colon is optional. The following example disables the Receive connector "Contoso.com":

Set-ReceiveConnector "Contoso.com" -Enabled $False

Switch Parameters

Switch parameters are used in the Exchange Management Shell to set a state for the immediate execution of a command. This state is not saved between commands. Switch parameters resemble Boolean parameters but serve different purposes and require different syntax. Switch parameters do not require a value. By default, if you specify a switch parameter on a command line without a value, the parameter evaluates to $True. Switch parameters, like Boolean parameters, accept only $True or 1, or $False or 0. The dollar sign ($) must be included with $True and $False. Unlike Boolean parameters, you must include a colon (:) between the switch parameter name and switch value. The first of the following examples instructs the Exchange Management Shell to display a confirmation prompt before it lets EdgeSync synchronization start. The second example instructs the Exchange Management Shell not to display a confirmation prompt before deleting the Receive connector "Contoso.com":

Start-EdgeSynchronization -Confirm

Remove-ReceiveConnector "Contoso.com" -Confirm:$False

Common Parameters

Common parameters are parameters that are automatically added to all commands by the Exchange Management Shell. These parameters perform functions that can be used with, or used by, the commands that they are run against. Table 2 lists all the common parameters that are available in the Exchange Management Shell. Three additional parameters, WhatIf, Confirm, and Validate, may also be added to cmdlets. For more information about these additional parameters, see WhatIf, Confirm, and Validate Parameters.

Table 2 Common parameters in the Exchange Management Shell

	Parameter name
	Required
	Type
	Description

	Verbose
	Optional
	System.Boolean
	This parameter instructs the command to provide detailed information about the operation.

[image: image31.png]

Notes:


Most Get cmdlets only return summary information when you run them. To tell the Get cmdlet to return verbose information when you run a command, pipe the command to the Format-List cmdlet.


For more information about pipelining, see Pipelining. For more information about command output, see Working with Command Output.

	Debug
	Optional
	System.Boolean
	This parameter instructs the command to provide programmer-level detail about the operation.

	ErrorAction
	Optional
	System.Enum
	This parameter controls the behavior of the command when an error occurs. Values are as follows:


NotifyContinue, which is the default value


NotifyStop

SilentContinue

SilentStop

Inquire, which asks the user what to do

	ErrorVariable
	Optional
	System.String
	This parameter specifies the name of the variable that the command uses to store errors that are encountered during processing. This variable is populated in addition to $ERROR.

	OutVariable
	Optional
	System.String
	This parameter specifies the name of the variable that the command uses for objects that are output from this command. This is equivalent to piping the command to Set-Variable <name> -Passthru:$true

Identity

The Identity parameter is a special parameter that you can use with most cmdlets. The Identity parameter gives you access to the unique identifiers that refer to a particular object in Microsoft Exchange Server 2007. This lets you perform actions on a specific Exchange 2007 object.

The primary unique identifier of an object is always a GUID. A GUID is a 128-bit identifier, such as 63d64005-42c5-4f8f-b310-14f6cb125bf3. This GUID never repeats and is therefore always unique. However, you don't want to type such GUIDs regularly. Therefore the Identity parameter typically also consists of the values of other parameters, or combined set of values from multiple parameters on a single object. These are also guaranteed to be unique across that set of objects. You can specify the values of these other parameters, such as Name and DistriguishedName, or they can be system-generated. The additional parameters that are used, if any, and how they are populated, depend on the object you refer to.

The Identity parameter is also considered a positional parameter. The first argument on a cmdlet is assumed to be the Identity parameter when no parameter label is specified. This reduces the number of keystrokes when you type commands.

For more information about positional parameters, see Parameters.

The following example shows the use of the Identity parameter by using the Receive connector's unique Name parameter value. This example also shows how you can omit the Identity parameter name because Identity is a positional parameter.

Get-ReceiveConnector -Identity "From the Internet"

Get-ReceiveConnector "From the Internet"

Like all objects in Exchange 2007, this Receive connector can also be referred to by its unique GUID. For example, if the Receive connector named "From the Internet" is also assigned the GUID 63d64005-42c5-4f8f-b310-14f6cb125bf3, you can also retrieve the Receive connector by using the following command:

Get-ReceiveConnector 63d64005-42c5-4f8f-b310-14f6cb125bf3

Examples of the Identity Parameter

The examples in this section refer to the delivery status notification (DSN) messages that can be configured in an Exchange 2007 organization. The first example shows how to retrieve DSN 5.4.1 by using the Get-SystemMessage cmdlet. In the Get-SystemMessage cmdlet, the Identity parameter consists of several pieces of data that are configured on each DSN message object. These pieces of data include the language that the DSN is written in, whether the DSN is internal or external in scope, and the DSN message code as in the following example:

Get-SystemMessage en\internal\5.4.1

You can also retrieve this DSN message by using its GUID as in the following example, because all objects in Exchange 2007 have a GUID:

Get-SystemMessage 82ca7bde-1c2d-4aa1-97e1-f298a6f10222

For more information about the makeup of the Identity parameter when it is used with the SystemMessage cmdlets, see "DSN Message Identity" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

The examples described in this topic illustrate how the Identity parameter can accept different unique values to refer to specific objects in the Exchange 2007 organization. These examples also illustrate how the Identity parameter label can be omitted to reduce the number of keystrokes when you type commands.

Syntax

This topic explains how to read the Exchange Management Shell parameter sets and examples in the Exchange Help documentation and how to format a command so that the Exchange Management Shell can process the command. In the Exchange Management Shell, parameter sets are displayed in the Usage section of a cmdlet help topic. In the Microsoft Exchange Server 2007 Help file, parameter sets are displayed in the Syntax section of the cmdlet help topic.

For more information about cmdlet help, see Getting Help.

Command Conventions in the Exchange Management Shell

The Exchange Management Shell follows several command conventions that help you understand what information is required or optional when you run a command and how you must present the parameters and their values. See the Parameter Sets section later in this topic for examples of how parameter sets are presented in the Exchange Management Shell Help and Exchange 2007 Help file.

Table 1 lists these command conventions.

Table 1 Exchange Management Shell command conventions

	Symbol
	Description

	-
	A hyphen indicates that the next word on the command line is a parameter. The most common parameter is Identity. For more information about parameters, see Parameters.

	< >
	Angle brackets are used to enclose parameter values. These values can be choices or names. For example, in -Parameter1 <1 | 2 | 3>, the numbers represent specific value choices. In -Parameter2 <ServerName>, ServerName represents the actual value.

	[]
	Square brackets are used to enclose an optional parameter and its value. A parameter and its value that are not enclosed in square brackets are required.

	|
	When the pipe symbol is used in a parameter value list, such as -Parameter1 <1 | 2 | 3>, it indicates a choice between available values. This convention applies to System.Enum parameters and System.Boolean parameters.

These command conventions help you understand how a command should be constructed. You don't type these conventions when you enter the command on the command line.

Parameter Sets

In the Exchange Help documentation, all cmdlets display their associated parameters in parameter sets. Parameter sets are groupings of parameters that can be used with each other. Parameters that exist in one parameter set, but not in another parameter set, are mutually exclusive. They can't be used together.

Although all cmdlets have parameter sets, many only have one set of parameters. This means that all the parameters on that cmdlet can be used with each other. Other cmdlets may have several parameter sets. The following example displays the parameter sets that are available on the New-SystemMessage cmdlet:

New-SystemMessage -DsnCode <EnhancedStatusCode> -Internal <$true | $false>

-Language <CultureInfo> -Text <String> [-DomainController <String>] [-Templ

ateInstance <MshObject>]

New-SystemMessage -Language <CultureInfo> -QuotaMessageType <WarningMailbox

UnlimitedSize | WarningPublicFolderUnlimitedSize | WarningMailbox | Warning

PublicFolder | ProhibitSendMailbox | ProhibitPostPublicFolder | ProhibitSen

dReceiveMailBox> -Text <String> [-DomainController <String>] [-TemplateInst

ance <MshObject>]

The New-SystemMessage cmdlet has two parameter sets. The first parameter set contains the DsnCode parameter and Internal parameter, and the second parameter set contains the QuotaMessageType parameter. This means that the DsnCode parameter and Internal parameter can be used with each other. But they can't be used with the QuotaMessageType parameter. The remaining parameters, Language, Text, DomainController, and TemplateInstance, are listed in both parameter sets. This means that they can be used with the DsnCode parameter and Internal parameter and with the QuotaMessageType parameter.

Parameter sets can indicate that a single cmdlet may have multiple uses. For example, you can use the New-SystemMessage cmdlet to configure customized delivery status notification (DSN) messages or configure customized mailbox quota limit messages. However, cmdlets typically have multiple parameter sets because one parameter may perform a function that is incompatible with another parameter. For example, the following example displays the parameter sets for the New-AddressList cmdlet:

New-AddressList -Name <String> [-Company <MultiValuedProperty>] [-Container

 <AddressListIdParameter>] [-Department <MultiValuedProperty>] [-DisplayNam

e <String>] [-DomainController <String>] [-IncludedRecipients <Nullable>] [

-StateOrProvince <MultiValuedProperty>] [-TemplateInstance <MshObject>]

New-AddressList -Name <String> [-Container <AddressListIdParameter>] [-Disp

layName <String>] [-DomainController <String>] [-RecipientFilter <String>]

[-TemplateInstance <MshObject>]

In the New-AddressList cmdlet, the first parameter set lists parameters that let you create a new address list based on values supplied to the Company, Department, IncludedRecipients, and StateOrProvice parameters. However, you can also create a new address list by using a custom filter that is specified with the RecipientFilter parameter. When you create a new address list, a custom filter that was specified by using the RecipientFilter parameter overrides anything that was configured by using the parameters that exist in the first parameter set. Therefore, the RecipientFilter parameter is put in its own parameter set. Exchange 2007 doesn't let you specify both parameters on the same command line. As with the New-SystemMessage cmdlet, the remaining parameters that exist in both parameters sets in the New-AddressList cmdlet can be used in any combination.

Use of Quotation Marks

Double quotation marks (") are most commonly used to enclose a value that has spaces when you pass that value to a parameter. For example, if you want to pass Contoso Receive Connector to the Name parameter of the Set-ReceiveConnector cmdlet, you must enclose Contoso Receive Connector in quotation marks as in the following example:

Set-ReceiveConnector -Name "Contoso Receive Connector"

If you don't enclose the string in quotation marks, the Exchange Management Shell tries to interpret each word in the string as a new argument on the command line and displays an error.

In the Exchange Management Shell, double quotation marks and single quotation marks (') have different meanings. When you enclose a string in double quotation marks, the Exchange Management Shell replaces any variables with a matching value. For example, assume the value ServerName is assigned to the variable $Server. Then, assume the following command is entered on the command line:

"$Server Example"

The following output is displayed:

ServerName Example

The variable $Server is replaced by the value ServerName in the output.

When you enclose a string in single quotation marks, the Exchange Management Shell doesn't try to replace variables with a matching value. Assume the variable $Server is still assigned the value ServerName. Then assume the following command is entered on the command line:

'$Server-Example'

The following output is displayed:

$Server-Example

The variable $Server has not been replaced with a value because the Exchange Management Shell doesn't interpret variables that are included in text that is enclosed in single quotation marks.

For more information about variables, see User-Defined Variables and Shell Variables.

You may also want to display some characters, such as the dollar sign ($), double or single quotation marks, or back quotation mark (`). These characters have special meanings when you use them in the Exchange Management Shell. To instruct the Exchange Management Shell not to interpret these characters and to display them when they are included in a string that is enclosed with double quotation marks, you must use the back quotation mark escape character (`). For example, type the following text on the command line:

"The price is `$23."

The following output is displayed:

The price is $23.

Because we used the back quotation escape character with the dollar sign ($), the Exchange Management Shell doesn't interpret the $ as the beginning of a variable.

If you enclose a string in single quotation marks, you don't have to escape any character unless you want to display a single quotation mark in a string. If you want to display a single quotation mark in a string that is enclosed in single quotation marks, you must use two single quotation marks (''). For example, type the following on the command line:

'Don''t confuse two single quotation marks with a double quotation mark!'

The following output is displayed:

Don't confuse two single quotation marks with a double quotation mark!

Command Operators in the Exchange Management Shell

Use the operators in Table 2 when you type commands in the Exchange Management Shell. Some of the operators may match some of the previously mentioned command conventions. But they don't have the same meaning when they are typed on the command line. Table 2 shows the valid operators that you can use in a command.

Table 2 Exchange Management Shell command operators

	Operator
	Description

	=
	The equal sign is used as an assignment character. The value on the right side of the equal sign is assigned to the variable on the left side of the equal sign. The following characters are also assignment characters:


+= Add the value on the right side of the equal sign to the current value that is contained in the variable on the left side of the equal sign.


-= Subtract the value on the right side of the equal sign from the current value that is contained in the variable on the left side of the equal sign.


*= Multiply the current value of the variable on the left side of the equal sign by the value that is specified on the right side of the equal sign.


/= Divide the current value of the variable on the left side of the equal sign by the value that is specified on the right side of the equal sign.


%= Modify the current value of the variable on the left side of the equal sign by the value that is specified on the right side of the equal sign.

	:
	A colon can be used to separate a parameter's name and the parameter's value, as in the following example: -Enabled:$True. The use of a colon is optional with all parameter types except switch parameters. For more information about switch parameters, see Parameters.

	!
	The exclamation point is a logical NOT operator. When it is used with the equal (=) sign, the combined pair means "not equal to."

	[]
	Brackets are used to specify the index value of an array position. For example, $Red[9] refers to the tenth index position in the array, $Red. It refers to the tenth index position because array indexes start at zero (0).

Brackets can also be used to assign a type to a variable, as in the following example: $A=[XML] "<Test><A>value</Test>". The following types are valid: Array, Bool, Byte, Char, Char[], Decimal, Double, Float, Int, Int[], Long, Long[], RegEx, Single, ScriptBlock, String, Type, and XML.

	{ }
	Braces are used to include an expression in a command, as in the following example: Get-Process | Where { $_.HandleCount -gt 400 }

	|
	The pipe symbol is used when one cmdlet pipes a result to another cmdlet. For example, the following command pipes the results from the Get-Mailbox cmdlet to the Move-Mailbox cmdlet: Get-Mailbox -Server SRV1 | Move-Mailbox -TargetDatabase SRV2

	>
	The right-angle bracket is used to send the output of a command to a file, as in the following example: Get-TransportRulePredicate > c:\out.txt. The destination file is overwritten.

	>>
	Double right-angle brackets are used to append the output of a command to a file, if the file exists. If the file does not exist, a new file is created. The following is an example of how to use double right-angle brackets: Get-TransportRulePredicate >>c:\out.txt

	" "
	Quotation marks are used to enclose a string that contains spaces.

	$
	A dollar sign indicates a variable. For example, $Blue = 10 assigns the value 10 to the variable $Blue.

	@
	The @ symbol references an associative array. For more information, see Arrays.

	$()
	A dollar sign ($) with parentheses indicates command substitution. You can use command substitution when you want to use the output of one command as an argument in another command, as in the following example: Get-ChildItem $(Read-Host –Prompt "Enter FileName: ")

	..
	Double-periods indicate a value range. For example, if an array contains several indexes, you can specify the following command to return the values of all indexes between the second and fifth indexes, as in the following example: $Blue[2..5]

	+
	The + operator adds two values together. For example, 6 + 6 equals 12.

	-
	The - operator subtracts one value from another value. For example, 12 - 6 equals 6.

The - operator can also be used to represent a negative number, such as -6. For example, -6 * 6 equals -36.

	*
	A wildcard character has several meanings. You can use wildcard characters to match strings, to multiply numeric values, or, if strings and numeric values are used together, to repeat the string value the number of times that is specified by the numeric value, as in the following example: "Test" * 3 equals TestTestTest.

	/
	The / operator divides one value by another. For example, 6 / 6 equals 1.

	%
	The % operator returns the remainder from a division operator. For example, 6 % 4 equals 2.

WhatIf, Confirm, and Validate Parameters

The Exchange Management Shell is a very powerful and flexible management interface. You can manage your infrastructure interactively by using the command line. You can create and run scripts that automate frequently used or complex tasks. As you learn how to use the Exchange Management Shell itself, scripting, or both, you may want to view the results of a command before the command affects data. Also, you may want to acknowledge that a command is about to run. This functionality is especially important as you transition from your test environment into your production environment and as you roll out new scripts or commands.

Both experienced administrators and script writers, and administrators who are new to Exchange and scripting, can benefit from using the WhatIf, Confirm, and Validate parameters. These parameters are available in the Exchange Management Shell. These parameters let you control how your commands run and indicate exactly what a command will do before it affects data. The WhatIf, Confirm, and Validate parameters are especially useful when you use them with commands that modify objects that are returned by using a filter or by using a Get command in a pipeline. This topic describes each parameter.

[image: image32.png]

Important:

If you want to use the WhatIf, Confirm, and Validate parameters with commands in a script, you must add the appropriate parameter to each command in the script, and not on the command line that calls the script.

[image: image33.png]

Note:

The WhatIf, Confirm, and Validate parameters are called switch parameters. For more information about switch parameter, see Parameters.

WhatIf Parameter

The WhatIf parameter instructs the command to which it is applied to run but only to display the objects that would be affected by running the command and what changes would be made to those objects. The domain does not actually change any of those objects. When you use the WhatIf parameter, you can see whether the changes that would be made to those objects match your expectations, without the worry of modifying those objects.

When you run a command together with the WhatIf parameter, you put the WhatIf parameter at the end of the command, as in the following example:

New-AcceptedDomain -Name "Contoso Domain" -DomainName "contoso.com" -WhatIf

When you run this example command, the following text is returned by the Exchange Management Shell:

What if: Creating Accepted Domain "Contoso Domain" with Domain Name "contoso.com".

To display a list of cmdlets that accept the WhatIf parameter, type the following command in the Exchange Management Shell:

Get-ExCommand | Where { $_.Definition -Like "*WhatIf*" }

Confirm Parameter

The Confirm parameter instructs the command to which it is applied to stop processing before any changes are made. The command then prompts you to acknowledge each action before it continues. When you use the Confirm parameter, you can step through changes to objects to make sure that changes are made only to the specific objects that you want to change. This functionality is useful when you apply changes to many objects and want precise control over the operation of the Exchange Management Shell. A confirmation prompt is displayed for each object before the Exchange Management Shell modifies the object.

By default, the Exchange Management Shell automatically applies the Confirm parameter to cmdlets that have the following verbs:


Remove

Move

Stop

Clear

Suspend

Uninstall

Dismount

Disable
When a cmdlet runs that has any of these verbs, the Exchange Management Shell automatically stops the command and waits for your acknowledgement before it continues to process.

When you manually apply the Confirm parameter to a command, include the Confirm parameter at the end of the command, as in the following example:

Get-JournalRule | Enable-JournalRule -Confirm

When you run this example command, the following confirmation prompt is returned by the Exchange Management Shell:

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"):

The confirmation prompt gives you the following choices:


[Y] Yes Type Y to instruct the command to continue the operation. The next operation will present another confirmation prompt. [Y] Yes is the default choice.


[A] Yes to All Type A to instruct the command to continue the operation and all subsequent operations. You will not receive additional confirmation prompts for the duration of this command.


[N] No Type N to instruct the command to skip this operation and continue with the next operation. The next operation will present another confirmation prompt.


[L] No to All Type L to instruct the command to skip this operation and all subsequent operations.


[S] Suspend Type S to pause the current pipeline and return to the command line. Type Exit to resume the pipeline.


[?] Help Type ? to display confirmation prompt help on the command line.

If you want to override the default behavior of the Exchange Management Shell and suppress the confirmation prompt for cmdlets on which it is automatically applied, you can include the Confirm parameter with a value of $False, as in the following example:

Get-JournalRule | Disable-JournalRule -Confirm:$False

In this case, no confirmation prompt is displayed.

[image: image34.png]

Caution:

The default value of the Confirm parameter is $True. The default behavior of the Exchange Management Shell is to automatically display a confirmation prompt. If you suppress this default behavior of the Exchange Management Shell, you instruct the command to suppress all confirmation prompts for the duration of that command. The command will process all objects that meet the criteria for the command without confirmation.

To display a list of cmdlets that accept the Confirm parameter, type the following command in the Exchange Management Shell:

Get-ExCommand | Where { $_.Definition -Like "*Confirm*" }

Validate Parameter

The Validate parameter instructs the command to which it is applied to evaluate all the conditions and requirements that are needed to perform the operation before you apply any changes. The Validate parameter is available on cmdlets that may take a long time to run, have several dependencies on multiple systems, or affect critical data, such as mailboxes.

When you apply the Validate parameter to a command, the command runs through the whole process. The command performs each action as it would without the Validate parameter. But the command doesn't change any objects. When the command completes its process, it displays a summary with the results of the validation. If the validation indicates that the command was successful, you can run the command again without the Validate parameter.

When you run a command together with the Validate parameter, you put the Validate parameter at the end of the command, as in the following example:

Get-Mailbox "Kim Akers" | Move-Mailbox -TargetDatabase "Executive Database" -Validate

When you run this example command, the following text is returned by the Exchange Management Shell:

Identity : contoso.com/Users/Kim Akers

DistinguishedName : CN=Kim Akers,CN=Users,DC=contoso,DC=com

DisplayName : Kim Akers

Alias : kim

LegacyExchangeDN : /o=First Organization/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Recipients/cn=kim

PrimarySmtpAddress : kim@contoso.com

SourceServer : Win2003MS.contoso.com

SourceDatabase : WIN2003MS\First Storage Group\Mailbox Database

SourceGlobalCatalog : Win2003MS.contoso.com

TargetGlobalCatalog : Win2003MS.contoso.com

TargetDomainController : Win2003MS.contoso.com

TargetMailbox :

TargetServer : Win2003MS.contoso.com

TargetDatabase : WIN2003MS\Second Storage Group\Executive Database

MailboxSize : 0KB

IsResourceMailbox : False

SIDUsedInMatch :

SMTPProxies :

SourceManager :

SourceDirectReports :

SourcePublicDelegates :

SourcePublicDelegatesBL :

MatchedTargetNTAccountDN :

IsMatchedNTAccountMailboxEnabled :

MatchedContactsDNList :

TargetNTAccountDNToCreate :

TargetManager :

TargetDirectReports :

TargetPublicDelegates :

TargetPublicDelegatesBL :

Options : Default

SourceForestCredential :

TargetForestCredential :

TargetFolder :

RsgMailboxGuid :

RsgMailboxLegacyExchangeDN :

RsgMailboxDisplayName :

RsgDatabaseGuid :

MoveType : IntraOrg

MoveStage : Validation

StartTime : 7/17/2006 4:39:13 PM

EndTime : 7/17/2006 4:39:14 PM

StatusCode : 0

StatusMessage : This mailbox can be moved to the target database.

To display a list of cmdlets that accept the Validate parameter, type the following command in the Exchange Management Shell:

Get-ExCommand | Where { $_.Definition -Like "*Validate*" }

Comparison Operators

The Exchange Management Shell has a rich set of operators that enables comparisons of one object with another object or one object with a set of objects.

For more information about comparison operators, run the following command in the Exchange Management Shell:

Get-Help About_Comparison_Operators

Table 1 lists the comparison operators that are available in the Exchange Management Shell. Some comparison operators are case-sensitive. Other comparison operators are not case-sensitive. If a comparison operator is case-sensitive, the case that is used in the strings that are being compared must match. For example, the string "Test" does not match "test" when you use a comparison operator that is case-sensitive.

Table 1 Comparison operators that are available in the Exchange Management Shell

	Operator
	Definition

	-eq
	Equals (not case-sensitive)

	-ieq
	Equals (not case-sensitive)

	-ceq
	Equals (case-sensitive)

	-ne
	Not equal (not case-sensitive)

	-ine
	Not equal (not case-sensitive)

	-cne
	Not equal (case-sensitive)

	-lt
	Less than (not case-sensitive)

	-ilt
	Less than (not case-sensitive)

	-clt
	Less than (case-sensitive)

	-gt
	Greater than (not case-sensitive)

	-igt
	Greater than (not case-sensitive)

	-cgt
	Greater than (case-sensitive)

	-le
	Less than or equal to (not case-sensitive)

	-ile
	Less than or equal to (not case-sensitive)

	-cle
	Less than or equal to (case-sensitive)

	-ge
	Greater than or equal to (not case-sensitive)

	-ige
	Greater than or equal to (not case-sensitive)

	-cge
	Greater than or equal to (case-sensitive)

	-contains
	The elements in the left operand that is equal to the right operand (not case-sensitive)

	-icontains
	The elements in the left operand that is equal to the right operand (not case-sensitive)

	-ccontains
	The elements in the left operand that is equal to the right operand (case-sensitive)

	-notcontains
	The elements in the left operand that is equal to the right operand (not case-sensitive)

	-inotcontains
	The elements in the left operand that is equal to the right operand (not case-sensitive)

	-cnotcontains
	The elements in the left operand that is equal to the right operand (case-sensitive)

	-band
	Bitwise And

	-bor
	Bitwise Or

	-bnot
	Bitwise NOT

	-and
	Logical and

	-or
	Logical or

	-not
	Logical not

	-match
	Compare strings by using regular expressions (not case-sensitive)

	-notmatch
	Compare strings by using regular expressions (not case-sensitive)

	-imatch
	Compare strings by using regular expressions (not case-sensitive)

	-inotmatch
	Compare strings by using regular expressions (not case-sensitive)

	-cmatch
	Compare strings by using regular expressions (case-sensitive)

	-cnotmatch
	Compare strings by using regular expressions (case-sensitive)

	-like
	Compare strings by using wildcard rules

	-notlike
	Compare strings by using wildcard rules

	-ilike
	Compare strings by using wildcard rules (not case-sensitive)

	-inotlike
	Compare strings by using wildcard rules (not case-sensitive)

	-clike
	Compare strings by using wildcard rules (case-sensitive)

	-cnotlike
	Compare strings by using wildcard rules (case-sensitive)

Aliases

In Microsoft Exchange Server 2007, you can assign an Exchange Management Shell cmdlet or Cmd.exe command to an administrator-defined and easy-to-remember alias. Such aliases can be useful when you frequently use certain cmdlets and want to reduce the typing that you must do.

When an alias is called from the command line, the rules that apply to the cmdlet that is represented by the alias are enforced exactly as when the cmdlet is called. You must supply any required parameters and their values exactly as if you had called the cmdlet name.

Built-in Aliases

Many cmdlets that are used regularly have default, or built-in, aliases assigned to them. These built-in aliases help reduce the typing that you have to do when you administer Exchange 2007 by using the Exchange Management Shell.

For example, the Get-ChildItem cmdlet resembles the MS-DOS Dir command. Because you are familiar with the Dir command, you might want to use the Dir alias when you use the Exchange Management Shell instead of typing Get-ChildItem every time that you want to view the contents of a directory. The output from the Get-ChildItem cmdlet and the Dir alias is the same and can be used interchangeably.

Table 1 shows the built-in aliases and their full names.

Table1 Built-in aliases

	Alias
	Command
	Alias
	Command
	Alias
	Command

	Ac
	Add-Content
	Iex
	Invoke-Expression
	Write
	Write-Output

	Asnp
	Add-PSSnapin
	Ihy
	Invoke-History
	Cat
	Get-Content

	Clc
	Clear-Content
	Ii
	Invoke-Item
	Cd
	Set-Location

	Cli
	Clear-Item
	Ipal
	Import-Alias
	Clear
	Clear-Host

	Clp
	Clear-ItemProperty
	Ipcsv
	Import-Csv
	Cp
	Copy-Item

	Clv
	Clear-Variable
	Mi
	Move-Item
	H
	Get-History

	Cpi
	Copy-Item
	Mp
	Move-ItemProperty
	History
	Get-History

	Cpp
	Copy-ItemProperty
	Nal
	New-Alias
	Kill
	Stop-Process

	Cvpa
	Convert-Path
	Ndr
	New-PSDrive
	Lp
	Out-Printer

	Diff
	Compare-Object
	Ni
	New-Item
	Ls
	Get-ChildItem

	Epal
	Export-Alias
	Nv
	New-Variable
	Mount
	New-PSDrive

	Epcsv
	Export-Csv
	Oh
	Out-Host
	Mv
	Move-Item

	Fc
	Format-Custom
	Rdr
	Remove-PSDrive
	Popd
	Pop-Location

	Fl
	Format-List
	Ri
	Remove-Item
	Ps
	Get-Process

	Foreach
	ForEach-Object
	Rni
	Rename-Item
	Pushd
	Push-Location

	%
	ForEach-Object
	Rnp
	Rename-ItemProperty
	Pwd
	Get-Location

	Ft
	Format-Table
	Rp
	Remove-ItemProperty
	R
	Invoke-History

	Fw
	Format-Wide
	Rsnp
	Remove-PSSnapin
	Rm
	Remove-Item

	Gal
	Get-Alias
	Rv
	Remove-Variable
	Rmdir
	Remove-Item

	Gc
	Get-Content
	Rvpa
	Resolve-Path
	Echo
	Write-Output

	Gci
	Get-ChildItem
	Sal
	Set-Alias
	Cls
	Clear-Host

	Gcm
	Get-Command
	Sasv
	Start-Service
	Chdir
	Set-Location

	Gdr
	Get-PSDrive
	Sc
	Set-Content
	Copy
	Copy-Item

	Ghy
	Get-History
	Select
	Select-Object
	Del
	Remove-Item

	Gi
	Get-Item
	Si
	Set-Item
	Dir
	Get-ChildItem

	Gl
	Get-Location
	Sl
	Set-Location
	Erase
	Remove-Item

	Gm
	Get-Member
	Sleep
	Start-Sleep
	Move
	Move-Item

	Gp
	Get-ItemProperty
	Sort
	Sort-Object
	Rd
	Remove-Item

	Gps
	Get-Process
	Sp
	Set-ItemProperty
	Ren
	Rename-Item

	Group
	Group-Object
	Spps
	Stop-Process
	Set
	Set-Variable

	Gsv
	Get-Service
	Spsv
	Stop-Service
	Type
	Get-Content

	Gsnp
	Get-PSSnapin
	Sv
	Set-Variable
	List
	Format-List

	Gu
	Get-Unique
	Tee
	Tee-Object
	Table
	Format-Table

	Gv
	Get-Variable
	Where
	Where-Object
	Man
	ExHelp

	Gwmi
	Get-WmiObject
	?
	Where-Object
	Help
	ExHelp

For more information about aliases, run the following command in the Exchange Management Shell:

Get-Help About_Alias

Creating Custom Aliases

In addition to the default, or built-in, aliases, you can define and use custom aliases instead of the names of cmdlets that you frequently use. You can use the Set-Alias cmdlet to associate cmdlets to familiar command names that have the equivalent functionality in Cmd.exe. You can assign multiple aliases to a single command. But each alias can only be assigned to a single command. For example, you can have three aliases Alias1, Alias2, and Alias3 that are assigned to the Move-Mailbox cmdlet. You could then use any of the three aliases to run the Move-Mailbox cmdlet. However, each alias that you create can only be assigned to the Move-Mailbox cmdlet. You can't, for example, assign Alias1 to both the Move-Mailbox cmdlet and the Get-Mailbox cmdlet.

To create a new alias-cmdlet pairing, run the Set-Alias cmdlet and supply the name of the alias, together with the name of the cmdlet that you want to call when the alias is entered.

Table 2 shows several examples of how to create a new alias.

Table 2 Examples of custom aliases

	Alias description
	Alias command

	Retrieve the contents of a file.
	Set-Alias Type Get-Content

	Retrieve the listing of a directory.
	Set-Alias Dir Get-ChildItem

	Remove a file.
	Set-Alias Erase Remove-Item

	Set pad as an alias for Microsoft WordPad.
	Set-Alias Pad "${env:programfiles}\Windows NT\Accessories\wordpad.exe"

	Display the list of all defined aliases.
	Set-Alias Aliases Get-Alias

Removing an Alias

To remove an alias, delete the alias from the alias drive. For example, an administrator creates the Ls alias by using the following command:

Set-Alias Ls Get-ChildItem

Later the administrator decides that the Ls alias is no longer needed and uses the following command to remove the Ls alias:

Remove-Item Alias Ls

Importing and Exporting Aliases

The Export-Alias cmdlet writes the current alias list to a file in comma-separated values (CSV) format. You can include the name of the file and its path in the command line. If the path doesn't exist, the cmdlet will create the path for you. You can create the file by using the .txt or .doc extensions.

The Import-Alias cmdlet reads a text file that has CSV values and brings the list into the Exchange Management Shell as an object. By using the Export-Alias cmdlet and Import-Alias cmdlet, you can export a list of aliases from the Exchange Management Shell on one computer and import them to the Exchange Management Shell on another computer. Because existing predefined aliases exist on both computers, all alias name conflicts will be ignored and not imported.

Alias Persistence

Aliases that are created from the command line by using the Set-Alias cmdlet during an Exchange Management Shell session can be used when the session is active. After the session is closed, the alias definition is lost. To make a user-defined alias persistent and available every time that a new Exchange Management Shell session is opened, you must add the alias definition to the Exchange Management Shell Microsoft.PowerShell_Profile.ps1 file that is located in the My Documents\PSConfiguration subfolder of your user profile directory.

Alias Limitations

Although aliases can be defined for cmdlets and used instead of cmdlet names, you can't include parameters in the definition of the aliases that you define. You must provide parameters as needed when the alias is called, exactly as you would if you called the cmdlet.

User-Defined Variables

A variable is a location to store information. Unlike in many programming environments, in the Exchange Management Shell, you don't have to declare a variable before you use it.

You designate a variable by prepending a string with a dollar sign ($). You must enclose the string in braces ({ }) if the string contains spaces or other special characters. By using the array reference notation ([]), you can address the elements of an array or hash table variable.

For more information about arrays, see Arrays.

Using Variables to Store Values

Variables are very useful if you want to store a value. You can assign values to variables by using an assignment operator. For more information about operators, see Syntax.

For example, to assign a value of 8 to the variable $Example, use the following command:

$Example = 8

This command assigns the integer 8 to the variable $Example. You can then call the $Example variable later in another command to recall the value. The values that are specified in a variable are treated exactly as if the value that it contains was typed in the location that the variable is specified. For example, the following two commands are equivalent if $Example2 is assigned the value "Hello":

Write-Host $Example2

Write-Host "Hello"

Storing the Output of a Command in a Variable

You can also store the output of commands in a variable for later use. When you assign a command to a variable, the command is evaluated at the time that command is run. The output of that command is assigned to the variable. For example, if you run $CurrentDate = Get-Date on the command line and then call $CurrentDate repeatedly over several seconds, the value that is reported is the same every time that the variable is called.

When you assign the output of a command to a variable, you can also access the properties and methods of the underlying object. For example, to view the properties and methods that are available when you assign Get-Date to $CurrentDate, you can use the $CurrentDate | Get-Member command. When you use the $CurrentDate | Get-Member command, the following properties are returned in a list:

Date Property System.DateTime Date {get;}

Day Property System.Int32 Day {get;}

DayOfWeek Property System.DayOfWeek DayOfWeek {get;}

DayOfYear Property System.Int32 DayOfYear {get;}

Hour Property System.Int32 Hour {get;}

Kind Property System.DateTimeKind Kind {get;}

Millisecond Property System.Int32 Millisecond {get;}

Minute Property System.Int32 Minute {get;}

Month Property System.Int32 Month {get;}

Second Property System.Int32 Second {get;}

Ticks Property System.Int64 Ticks {get;}

TimeOfDay Property System.TimeSpan TimeOfDay {get;}

Year Property System.Int32 Year {get;}

DateTime ScriptProperty System.Object DateTime {get=if ($this.Di...

You can then call any of these properties by typing the variable, a period (.), and then the property that you want to view. For example, to view the year that is stored on a variable, use the following command:

$CurrentDate.Year

By accessing the properties of a variable, you can easily manipulate and use each piece of information that is stored in the variable without the use of text parsing.

Storing the Output of the Dir Command in a Variable

You can also store the output of the Dir command in a variable. Because the Dir command returns multiple rows when it runs, each row that is returned is stored in a variable as a new array element. You can then access each file object that is stored in the newly created array. For more information about arrays, see Arrays.

The following command assigns the output of the Dir command to the $DirOutput variable:

$DirOutput = Dir

You can then select a specific file object by specifying the array index that you want to view as follows:

$DirOutput[1].Name

Or you can create a simple loop that cycles through the whole array and displays the name and file size of each file that is stored in the array as follows:

0..$DirOutput.Length | ForEach { $DirOutput[$_].Name + " is " + $DirOutput[$_].Length + " bytes long." }

The following list examines this example:


The 0..$DirOutput.Length command instructs the Exchange Management Shell to output an integer from 0 to the maximum length of the array that is stored in the $DirOutput variable.


The output of the 0..$DirOutput.Length command is piped to the ForEach command that loops through each element of the array until it reaches the end of the array. The ForEach command runs the commands that are enclosed in the braces " { } ".


The $_ variable stores the current object that is in the pipeline. In this case, the object in the pipeline is an integer that is produced by the 0..$DirOutput.Length command as it counts from 0 to the maximum length of the array. This variable is used in the $DirOutput[$_].Name command and $DirOutput[$_].Length command to select the array element to access.


For more information about the $_ variable, see Shell Variables.


The plus " + " signs concatenate the output of the $DirOutput[$_].Name command and $DirOutput[$_].Length command, together with the strings supplied, to create output similar to the following:

abv_dg.dll is 416144 bytes long.

addxa.dll is 285056 bytes long.

ASDat.MSI is 5626880 bytes long.

ASEntDat.MSI is 5626880 bytes long.

ASEntIRS.MSI is 910336 bytes long.

ASEntSig.MSI is 45056 bytes long.

BPA.Common.dll is 211848 bytes long.

BPA.ConfigCollector.dll is 101272 bytes long.

BPA.NetworkCollector.dll is 52128 bytes long.

These examples show that you can use the Length property more than one time to display different information about the same variable. You can do this because more than one type of data is stored in the $DirOutput variable. The first type of data is the directory object itself, and the second type of data is the file objects. When you run the $DirObject.Length command, without specifying an array index, you are accessing the directory parent object types that are stored in the array. When you specify an array index, such as $DirObject[5].Length, you are accessing the file child objects that are stored in the directory object.

This behavior exists on many objects. You can typically access many levels of object data that are contained in a single variable. The ability to access this data makes the Exchange Management Shell very flexible.

Shell Variables

Shell variables are a set of variables that are created and declared automatically by the Exchange Management Shell. The variables are maintained throughout your session as part of the system state and are available to all commands, scripts, and applications that run in that session.

The Exchange Management Shell supports two types of shell variables:


Automatic variables provide a mechanism for passing information to and from commands, scripts, and applications.


Policy variables store information about the state of the Exchange Management Shell.

You can use shell variables as you would use any other type of variable. For example, the $PSHome shell variable stores the name of the directory where the Exchange Management Shell is installed, and the $_ shell variable stores the current pipeline object. You can use these variables in a command to specify the location of the file and to call a property of the Get-ChildItem object, as shown in the following example:

Get-ChildItem $PSHome | Sort {$_.Name}

This command retrieves all items from the Exchange Management Shell installation directory, and it uses the name property of the object that is stored in the $_ variable to sort the data when it is displayed.

Common Shell Variables

Table 1 lists several common automatic variables that are available for your use in the Exchange Management Shell.

Table 1 Common automatic variables

	Automatic variable
	Description

	$$
	This variable contains the last token of the last line that is received by the Exchange Management Shell.

	$?
	This variable contains the success or fail status of the last operation.

	$^
	This variable contains the first token of the last line that is received by the Exchange Management Shell.

	$_
	This variable contains the current pipeline object that is used in script blocks, filters, and the Where statement.

	$Error
	This variable contains objects for which an error occurred when they are processed in a cmdlet.

	$ExBin
	This variable displays the full path of the Exchange Server\bin directory.

	$ExScripts
	This variable the full path of the Exchange scripts directory.

	$ForEach
	This variable refers to the enumerator in a ForEach loop.

	$Home
	This variable specifies the user’s root directory. It is the equivalent of %HomeDrive%%HomePath%.

	$MaximumHistoryCount
	This variable specifies the maximum number of entries that can be saved in the command history.

	$PSHome
	This variable specifies the directory where the Exchange Management Shell is installed.

Sample Output

This topic provides sample output from Exchange Management Shell commands that you would typically run on a computer that is running Microsoft Exchange Server 2007. Each example provides the default display of information and the optional verbose display of information.

This topic is not intended to show how to configure the components or features that are highlighted in the following examples. Each example is preceded by a link to the procedural topic that is associated with the component or feature.

Example: Viewing Information About a Receive Connector

For more information about how to manage Simple Mail Transfer Protocol (SMTP) connectors, see "Managing Connectors" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

The Get-ReceiveConnector "Client MBX" command retrieves the following default display of information:

Name Bindings Enabled

---- -------- -------

Client MBX {0.0.0.0:587} True

The Get-ReceiveConnector "Client MBX" | Format-List command retrieves the following verbose display of information:

Schema : Microsoft.Exchange.Data.Directory.SystemConfiguration.ReceiveConnectorSchema

AuthMechanism : Tls, BasicAuth, BasicAuthPlusTls, ExchangeServer

Banner :

BinaryMimeEnabled : True

Bindings : {0.0.0.0:587}

ChunkingEnabled : True

DefaultDomain :

DeliveryStatusNotificationEnabled : True

EightBitMimeEnabled : True

EnhancedStatusCodesEnabled : True

ExternallySecuredAsPartnerDomain :

Fqdn : MBX.contoso.com

Comment :

Enabled : True

ConnectionTimeout : 00:10:00

ConnectionInactivityTimeout : 00:05:00

MessageRateLimit : 600

MaxInboundConnection : 5000

MaxInboundConnectionPerSource : 100

MaxInboundConnectionPercentagePerSource : 2

MaxHeaderSize : 64KB

MaxHopCount : 30

MaxLocalHopCount : 3

MaxLogonFailures : 3

MaxMessageSize : 10MB

MaxProtocolErrors : 5

MaxRecipientsPerMessage : 200

PermissionGroups : ExchangeUsers

PipeliningEnabled : True

ProtocolLoggingLevel : None

RemoteIPRanges : {0.0.0.0-255.255.255.255}

RequireEHLODomain : False

RequireTLS : False

Server : MBX

SizeEnabled : True

TarpitInterval : 00:00:05

AdminDisplayName :

ObjectCategoryName : msExchSmtpReceiveConnector

ExchangeVersion : 0.1 (8.0.535.0)

CurrentObjectVersion : 0.1 (8.0.535.0)

Name : Client MBX

DistinguishedName : CN=Client MBX,CN=SMTP Receive Connectors,CN=Protocols,CN=MBX,CN=Servers,CN=Exchange Administrative Group (FYDIBOHF23SPDLT),CN=Administrative Groups,CN=First Organization,CN=Microsoft Exchange,CN=Services,CN=Configuration,DC=contoso,DC=com

Identity : MBX\Client MBX

Guid : ee9828f3-c88c-4ea9-9797-b76926a0019e

ObjectCategory : contoso.com/Configuration/Schema/ms-Exch-Smtp-Receive-Connector

ObjectClass : {top, msExchSmtpReceiveConnector}

OriginalId : MBX\Client MBX

WhenChanged : 6/19/2006 5:19:39 PM

WhenCreated : 6/19/2006 5:19:39 PM

ObjectState : Unchanged

OriginatingServer : MBX.contoso.com

IsReadOnly : False

Id : MBX\Client MBX

IsValid : True

Example: Viewing a List of Mailboxes

For more information about how to manage administrator commands, see "Mailbox Server Cmdlets" in Exchange Server 2007 Help (http://go.microsoft.com/fwlink/?linkid=65320).

The Get-Mailbox command retrieves the following default display of information:

Name Alias Server ProhibitSendQuota

---- ----- ------ ---------------

Administrator Administrator dc1 unlimited

Kim Akers KimAkers dc1 unlimited

The Get-Mailbox "Administrator" | Format-List command retrieves the following verbose display of information:

Id : contoso.com/Users/Administrator

IsValid : True

Item :

DistinguishedName : CN=Administrator,CN=Users,DC=contoso,DC=com

Guid : 104f5066-9d9c-4596-907b-88e5270d79b3

Identity : contoso.com/Users/Administrator

Name : Administrator

ObjectCategory : contoso.com/Configuration/Schema/Person

ObjectCategoryName : user

ObjectClass : {top, person, organizationalPerson, user}

ObjectState : Unchanged

OriginatingServer : DC1.contoso.com

Schema : Microsoft.Exchange.Data.Directory.Manageme

 nt.MailboxSchema

WhenChanged : 7/11/2006 8:15:13 PM

WhenCreated : 6/29/2005 4:39:20 PM

SamAccountName : Administrator

Database : DC1\First Storage Group\Mailbox Database

RetentionHoldEnabled : False

EndDateForRetentionHold :

StartDateForRetentionHold :

ManagedFolderMailboxPolicy :

ServerLegacyDN : /o=First Organization/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Configuration/cn=Servers/cn=DC1

ServerName : dc1

UseDatabaseQuotaDefaults : True

StorageQuota :

RulesQuota : 64KB

DeletedItemFlags : DatabaseDefault

UseDatabaseRetentionDefaults : True

RetainDeletedItemsUntilBackup : False

DeliverToMailboxAndForward : False

ExchangeGuid : 75086963-d1bc-446c-9f4b-5a04385e3d80

ExchangeSecurityDescriptor : System.Security.AccessControl.RawSecurityDescriptor

ExchangeUserAccountControl : None

ExternalOofOptions : External

RetainDeletedItemsFor : 14.00:00:00

IsMailboxEnabled : True

OfflineAddressBook :

ProhibitSendQuota : unlimited

ProhibitSendReceiveQuota : unlimited

UserPrincipalName :

Office :

AcceptMessagesOnlyFrom : {}

AcceptMessagesOnlyFromDLMembers : {}

AddressListMembership : {Default Global Address List, All Users}

Alias : Administrator

AntispamBypassEnabled : False

CustomAttribute1 :

CustomAttribute2 :

CustomAttribute3 :

CustomAttribute4 :

CustomAttribute5 :

CustomAttribute6 :

CustomAttribute7 :

CustomAttribute8 :

CustomAttribute9 :

CustomAttribute10 :

CustomAttribute11 :

CustomAttribute12 :

CustomAttribute13 :

CustomAttribute14 :

CustomAttribute15 :

DisplayName : Administrator

EmailAddresses : {SMTP:Administrator@contoso.com, X400:c=US;a= ;p=First Organizati;o=Exchange;s=Administrator;}

ForwardingAddress :

GrantSendOnBehalfTo : {}

HiddenFromAddressListsEnabled : False

LegacyExchangeDN : /o=First Organization/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Recipients/cn=Administrator

MasterAccountSid :

MaxSendSize : unlimited

MaxReceiveSize : unlimited

PoliciesIncluded : {{43C0F25A-8B8F-410E-9296-D5DCF590CE7C},{26491CFC-9E50-4857-861B-0CB8DF22B5D7}}

PoliciesExcluded : {}

EmailAddressPolicyEnabled : True

PrimarySmtpAddress : Administrator@contoso.com

ProtocolSettings : {}

RecipientLimits : unlimited

RecipientType : UserMailbox

RecipientTypeDetails : UserMailbox

RejectMessagesFrom : {}

RejectMessagesFromDLMembers : {}

RequireSenderAuthenticationEnabled : False

ResourceType :

ResourceCapacity :

ResourceCustom : {}

IsResource : False

IsShared : False

IsLinked : False

SCLDeleteThreshold :

SCLDeleteEnabled :

SCLRejectThreshold :

SCLRejectEnabled :

SCLQuarantineThreshold :

SCLQuarantineEnabled :

SCLJunkThreshold :

SCLJunkEnabled :

SimpleDisplayName :

WindowsEmailAddress : Administrator@contoso.com

Languages : {}

Structured Data

Traditional command shells have always supported the redirection of the output of one command to another in the form of a textual stream. This method has its disadvantages because parsing text has to be carefully controlled, usually by some kind of encoding to prevent unexpected behavior.

Each action that you take in the Exchange Management Shell must be done within the context of objects. The Exchange Management Shell uses structured collections of information that are called objects. These objects represent items in hierarchical data sources. When you call a cmdlet, one or more strongly typed structured objects are returned. Objects carry information about an item and about the object’s structure. The object also acts as a proxy for the real item. For example, when you access a file from the Exchange Management Shell, you work with the object that represents that file, not the file itself.

The Exchange Management Shell uses this object model to pass information from one command to another by using pipelining. This avoids the problems that are caused by textual parsing in other command shells because the data that the Exchange Management Shell uses has a definite structure and is interpreted according to the object model.

For more information about pipelining, see Pipelining.

The Structure of an Object

An object consists of three types of data: the object’s type, its methods, and its properties.

Object Type

The data type of an object provides details about what kind of object it is. For example, an object that represents a mailbox is a Mailbox object. An object that represents a file is a FileInfo object. All objects have a distinct predefined type and namespace that the Exchange Management Shell can process.

Object Methods

A method is a set of instructions that define a particular action that you can take on an object. For example, a Mailbox object includes the method Set_EmailAddresses. This can be used to set the value of attribute ProxyAddresses on Active Directory directory service mailbox-enabled user accounts.

Object Properties

A property is data that is associated with an object that specifies a particular state of that object. For example, a Mailbox object includes the property EmailAddresses that was mentioned in "Object Methods" earlier in this topic. This object property represents the value of the actual attribute ProxyAddresses on mailbox-enabled Active Directory user accounts. This is the actual item that is represented by the Mailbox object.

The information about properties that is included with an object includes the current state and the definition of each property. This includes its name and the type of data that the property can take, such as Integer, Boolean, String, and so on.

Arrays

An array provides a data structure that can be used to store a collection of data elements of the same type. The Exchange Management Shell supports all kinds of data elements.

For detailed information about how to use arrays, run the following command in the Exchange Management Shell:

Get-Help About_Array

Creating Arrays

You can create and initialize arrays by assigning multiple values to a variable. The values that are stored in the array are delimited by using a comma and are separated from the variable name by the = assignment operator. For example, suppose you want to create an array that is named $Example that contains the following seven integer values: 22, 5, 10, 8, 12, 9, 80. To create the array, enter the following command:

$Example = 22,5,10,8,12,9,80

In the array, the first data element is at index position 0, the second is at position 1, and so on.

Reading Arrays

You can reference an array by its variable name, such as $Example. You can reference a specific value within the array by using the index number of the position in the array where the value is stored. For example, to reference the first data element in the $Example array, enter the following command:

Write-Host $Example[0]

The Exchange Management Shell will return the value 22 because that is stored in the first array element.

Manipulating Arrays

To change the value of a single item in an array, specify the array name, the index you want to modify, the = assignment operator, and the new value that you want to use instead of the existing value. For example, to change the value of the second item in the $Example array, index position 1, to 10, enter the following command:

$Example[1] = 10

You can also use the SetValue method to change a value. The following example changes the second value, index position 1, of an array named $Example to 500:

$Example.SetValue(500,1)

You can append a value to the end of an existing array. For example, to add an additional integer, such as 200, to the $Example array, enter the following command:

$Example += 200

Associative Arrays

Associative arrays are the same as regular arrays. However, they enable the assignment of key-value pairs to a variable. For example, you may want to assign values to keys in an array to be called on when a command is being processed. The following example creates an associative array:

$Example = @{blue = 1; red = 2,3}

When you enter $Example on the command line, you see the following output:

Key Value

--- -----

red {2, 3}

blue 1

You can retrieve the information that is stored in the array by calling the array as follows:

$Example.blue

The previous example returns a value 1.

Because multiple values were assigned to the red key, those values make up a nested array. You can reference the values in this nested array by using their index value. You can retrieve the information that is stored in the key's nested array by calling the associative array, $Example, with the red key and the index of the nested array location that you want to retrieve 1, as follows:

$Example.red[1]

The previous example returns the value 3.

For more information about associative arrays, run the following command in the Exchange Management Shell:

Get-Help About_Associative_Array

Script Security

This topic explains how script security in the Exchange Management Shell helps prevent harmful or otherwise unwanted scripts from running in your organization and what options are available to modify script security to meet the requirements of your organization.

You typically encounter scripts from three different sources: yourself, another person in your organization, and script writers from outside your organization, such as the Internet. If you write a script, you trust the script to do what it is designed to do. If you share the script with other administrators in your organization, they too may trust the script, but only because they trust you.

When scripts come from other sources, such as the Internet, script security is a concern. The only way that you can trust scripts from sources unknown to your organization is to inspect the script code directly and test it in an isolated lab environment. This process can be time-consuming and tedious. But it is a recommended practice to prevent unintentional execution of malicious or destructive code.

The Exchange Management Shell supports the recommended use of digital signatures to make sure a script is not altered after the script is created. For more information about digital signatures, see "Code-Signing Basics" later in this topic.

Script Execution Modes

Four modes of script execution are possible for the Exchange Management Shell to control how scripts are used, depending on how they are signed and if they are from known or unknown sources. The following table describes each script execution mode.

Script execution modes

	Mode
	Description

	Restricted mode
	No scripts will run, even if they are signed by a trusted publisher.

	AllSigned mode
	All scripts must be digitally signed by a trusted publisher before they will run.

	RemoteSigned mode
	All scripts that are locally created will run. Scripts that are downloaded from remote locations, such as the Internet, that cannot be trusted, will not run. This is the default script execution mode.

	Unrestricted mode
	All scripts regardless of whether they are digitally signed or trusted will run. We don't recommend the Unrestricted mode unless you are running the script in a controlled non-production test environment.

To change the script execution mode from the default RemoteSigned script execution mode, use the Set-ExecutionPolicy cmdlet in the Exchange Management Shell. For example, to change the execution policy to AllSigned mode, run the following command:

Set-ExecutionPolicy AllSigned

The Exchange Management Shell recognizes the change to the policy immediately.

Large organizations that want to set a consistent script execution mode for all computers that are running the Exchange Management Shell should apply the script execution mode setting by using an Active Directory group policy. You configure the Active Directory group policy to set the ExecutionPolicy value located under the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell registry key to the desired script execution mode.

[image: image35.png]

Caution:

Incorrectly editing the registry can cause serious problems that may require you to reinstall your operating system. Problems resulting from editing the registry incorrectly may not be able to be resolved. Before editing the registry, back up any valuable data.

Code-Signing Basics

Digital signatures are created by using a public-key signature algorithm that uses two different cryptographic keys called a key pair: the public key and the private key. The private key is known only to its owner, and the public key is available to anyone. In digital signatures, the private key generates the signature, and the corresponding public key validates the signature.

A certificate is a digital document that is generally used for authentication and to help secure information on open networks. A certificate securely binds a public key to the entity that holds the corresponding private key. Certificates are digitally signed by the issuing certification authority (CA). By using a code-signing certificate, the author of the script adds a digital signature to the script file. During this process, a one-way hash of the script is created and encrypted by using the private key. The encrypted hash is a digital signature string that is added to the script file. This digital signature string is commented out so that it does not interfere with script functionality.

When this script is run in an Exchange Management Shell environment where code signing is required, a new one-way hash of the script file is produced. The one-way hash is compared to the encrypted hash that is included with the script file after it is decrypted by using the public key. If the script wasn't altered in any way after it was signed, the hashes will match. The computer then tries to verify that the signature is from a trusted publisher by building a certificate chain to a trusted certification authority. If the trust is verified, the script runs.

Whether a script is from a trusted source depends on the origin of the code-signing certificate that was used to digitally sign the script. There are generally two types of certificates:


Certificates that are issued by a trusted certification authority The certification authority verifies the identity of requestor before it issues a code-signing certificate. The issuing authority can be an external, public third party that sells certificates or an internal certification authority that is hosted by your organization. If you sign a script by using this kind of certificate, you can share the script with users on other computers that recognize and trust the certification authority that issued the certificate.


Self-signed certificates For this kind of certificate, your computer is the authority that creates the certificate. The benefit of a self-signed certificate is you can write, sign, and run scripts on your computer. But you can't share your script to run on other computers because they don't recognize your computer as a trusted certification authority. If they don't trust your computer, they can't validate your self-signed signature and the script won't run.

Cmdlets for Managing Code Signing

The Exchange Management Shell includes two cmdlets for managing code signing. The Set-AuthenticodeSignature cmdlet is used to add digital signatures to script files. The Set-AuthenticodeSignature cmdlet takes the name of the file to be signed as its first positional parameter. If the file is not in the current working directory, you must provide the path of the file. The second input parameter for this cmdlet is the certificate that is used for signing. This certificate is stored in the local certificate store. You must provide this parameter in the form of a string that references the certificate. The certificate can be accessed through the Cert: drive.

The second cmdlet for managing code signing is the Get-AuthenticodeSignature cmdlet. Use the Get-AuthenticodeSignature cmdlet to check and confirm the current code-signing status for the file that is provided as a parameter input. If a problem occurs when you use a code-signed script, the output from the Get-AuthenticodeSignature cmdlet will provide useful troubleshooting information.

If you want to run scripts from outside sources, such as Microsoft, you must adapt the scripts according to the script execution mode of your environment. You can receive scripts as basic .txt files, rename them as .ps1 script files, and then, after you apply any required signing, run these scripts as if you had written the script yourself.

For more information about digital signing and script execution policies, in the Exchange Management Shell, run the following command: Get-Help About_Signing. This command returns help information that includes detailed instructions for digitally signing scripts.

PAGE

