ASP.NET MVC 2 Preview 1 Release Notes

This document describes the first preview of the ASP.NET MVC 2 framework.
2Documentation

2Support

2Upgrading an ASP.NET MVC 1.0 Project to ASP.NET MVC 2

3New Features

3Templated Helpers

3Areas

4New HttpPostAttribute Action Filter

4Support for DataAnnotations Attributes with Model Binders

4Support for DefaultValueAttribute in Action-Method Parameters

5Support for Binding Binary Data with Model Binders

6API Improvements

7Breaking Changes

7DefaultControllerFactory API changes will break custom controller factories that derive from it

7“Area” Is a Now a Reserved Route-Value Key

7Bug Fixes

8Known Issues

This is a preview release of ASP.NET MVC 2 for Visual Studio 2008 SP1. ASP.NET MVC 2 can be installed and run side-by-side with ASP.NET MVC 1.0. This preview is not compatible with Visual Studio 2010 Beta 1. The next preview of ASP.NET MVC for Visual Studio 2010 will be included as part of Visual Studio 2010 Beta 2.
The MVC 2 preview can be downloaded from the following page:

http://go.microsoft.com/fwlink/?LinkID=154409
Documentation

Documentation for ASP.NET MVC is available on the MSDN Web site at the following URL:

http://go.microsoft.com/fwlink/?LinkId=145989
Tutorials and other information about ASP.NET MVC are available on the MVC page of the ASP.NET Web site (http://www.asp.net/mvc/).

Support

This is a preview release and is not officially supported. If you have questions about working with this release, post them to the ASP.NET MVC forum (http://forums.asp.net/1146.aspx), where members of the ASP.NET community are frequently able to provide informal support.
Upgrading an ASP.NET MVC 1.0 Project to ASP.NET MVC 2
The simplest approach to upgrading is to create a new ASP.NET MVC 2 project and copy all the views, controllers, code, and content files from the existing MVC 1.0 project to the new project and to update the assembly references in the new project to match the old project. If you have made changes to the Web.config file in the MVC 1.0 project, you must also merge those changes with the Web.config file in the MVC 2 project.

To manually upgrade an existing ASP.NET MVC 1.0 application to version 2, perform the following steps:
1. In the Web.config file, globally search and replace the MVC version. Find “System.Web.Mvc, Version=1.0.0.0” and replace it with “System.Web.Mvc, Version=2.0.0.0”. There are three changes in the root Web.config and four in the Shared\Web.config file.

2. In Solution Explorer, delete the reference to System.Web.Mvc (which points to the version 1 DLL). Then add a reference to System.Web.Mvc (v2.0.50727).
3. Unload the MVC project, then open the MVC project file. Replace “System.Web.Mvc, Version=1.0.0.0” and with “System.Web.Mvc, Version=2.0.0.0,” There is one instance in the Reference element, as in the following example:
<Reference Include="System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35, processorArchitecture=MSIL" />

4. If the project references any third-party libraries that are compiled against ASP.NET MVC 1.0, add the following bindingRedirect element to the Web.config file in the application root under the configuaton section:
<runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="System.Web.Mvc"
 publicKeyToken="31bf3856ad364e35"/>

 <bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

</runtime>

New Features

This section describes features that have been introduced in the MVC 2 release.
Templated Helpers
Templated helpers provide a means to automatically associate elements for edit and display with data types. For example, a date-picker UI element can be automatically rendered when data of type System.DateTime is displayed in a view. This is similar to how field templates work in ASP.NET Dynamic Data. For more details, see Using Templated Helpers to Display Data on the MSDN Web site.
Areas

Areas let you group controllers and views in a large application to build subsections that are separated from each other. Each area is implemented as a separate ASP.NET MVC project that is merged into the main application when the solution is built. Areas let you manage complexity when building a large application, and they facilitate multiple teams working together on a single application.
The areas feature currently takes advantage of a new build task that is referenced in the Visual Studio project file (.csproj or .vbproj file). To update an existing project to take advantage of areas, you must manually add those settings into your project file.

For more details, see Walkthrough: Organizing an ASP.NET MVC Application by Logical Areas on the MSDN Web site.
New HttpPostAttribute Action Filter

The HttpPostAttribute class represents an action selector, which is an attribute for the common case of applying an AcceptVerbsAttribute attribute with the value POST to an action method. The following example shows the AcceptVerbs attribute.
[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Edit(MyObject o) {

 //...
}

By using the new attribute, this code can be replaced with the following:

[HttpPost]

public ActionResult Edit(MyObject o) {

 //...
}

Support for DataAnnotations Attributes with Model Binders
The DefaultModelBinder class now supports using DataAnnotations validation attributes such as Range and Required when you are binding to a model to provide validation of user input.
For details, see the MSDN article How to: Validate Model Data Using DataAnnotations Attributes. A sample project that you can download is available at http://go.microsoft.com/fwlink/?LinkId=157753.
Support for DefaultValueAttribute in Action-Method Parameters

The System.ComponentModel.DefaultValueAttribute class allows a default value to be supplied for the argument parameter to an action method. This attribute applies only to arguments that are typed as primitive data types such as Int32, DateTime, or Guid.
For example, assume that the following default route is defined:

{controller}/{action}/{id}

Also assume the following controller and action method is defined:
public class ArticleController {

 public ActionResult View(int id, [DefaultValue(1)]int page) {

 }

}

Any of the following request URLs will invoke the View action method defined in the preceding example.
· /Article/View/123
· /Article/View/123?page=1 (Same as the previous request)
· /Article/View/123?page=2
Without the attribute, the first URL from the above list would not work because the argument page is a non-nullable value type whose value has not been provided.
Support for Binding Binary Data with Model Binders
The DefaultModelBinder class now supports binding base64-encoded string values to properties of type byte[] and System.Data.Linq.Binary.
There are two new overloads of the Html.Hidden helper that encode the provided binary values as base64-encoded strings:
public static string Hidden(this HtmlHelper htmlHelper, string name, Binary value);

public static string Hidden(this HtmlHelper htmlHelper, string name, byte[] value);
A typical use is to embed a timestamp for an object in the view. For example, your application might include the following Product object.
public class Product {

 //... other properties ...

 public byte[] TimeStamp {

 get;

 set;

 }

}
An edit form can render the TimeStamp property in the form, as shown in the following example:
<%@ Page Inherits="ViewPage<Product>" %>

<%= Html.Hidden("TimeStamp", Model.TimeStamp) %>

This markup renders a hidden input element with the timestamp value as a base64-encoded string, as in the following example:
<input type="hidden" name="TimeStamp" value="QVNQLk5FVCBNVkMgaXMgZnVuIQ==" />

This form might be posted to an action method that has an argument of type Product., as shown here:
public ActionResult Edit(Product p) {

 // p.TimeStamp is populated from the form

}

In the action method, the TimeStamp property is populated correctly because the posted base64-encoded string is converted to a byte array.
API Improvements
This section describes changes to existing ASP.NET MVC types and members.
· New protected virtual CreateActionInvoker method in the Controller class. This method is invoked by the ActionInvoker property of Controller and allows for lazy instantiation of the invoker if none is already set.
· New protected virtual OnAuthorizationFailed method in the AuthorizationFilter class. This enables filters that derive from AuthorizationFilter to control the behavior when authorization fails.

· New Add(string key, object value) method in the ValueProviderDictionary class. This enables you to use the dictionary initializer syntax for ValueProviderDictionary, as in the following example:
Controller c = new MyController();

c.ValueProvider = new ValueProviderDictionary(null) {

 { "example1", "example1Value" },

 { "example2", "example2Value" },

 { "example3", new int[] { 1, 2, 3 } }

};

· New get_object method in the Sys.Mvc.AjaxContext class. This is a JavaScript method similar to the get_data method, but if the content type of the response is application/json, get_object returns the JSON object.
· New ActionDescriptor property in the AuthorizationContext class.
Breaking Changes

The following changes might cause errors in existing ASP.NET MVC 1.0 applications.
DefaultControllerFactory API changes will break custom controller factories that derive from it
This change affects custom controller factories that derive from DefaultControllerFactory . The DefaultControllerFactory class was fixed by removing the RequestContext property and instead passing the request context instance to the protected virtual methods GetControllerInstance and GetControllerType.

Custom controller factories are often used to provide dependency injection for ASP.NET MVC applications. To update the custom controller factories to support ASP.NET MVC 2, change the method signature or signatures to match the new signatures, and use the request context parameter instead of the property.
“Area” Is a Now a Reserved Route-Value Key

The string “area” in Route values now has special meaning in ASP.NET MVC, in the same way that “controller” and “action” do. One implication is that if HTML helpers are supplied with a route-value dictionary containing “area”, the helpers will no longer append “area” in the query string.

Bug Fixes

The following bugs have been resolved in the ASP.NET MVC 2 release.
· An ASP.NET compiler error occurs when a view is requested that has Unicode characters in a property. The Add View and Add Controller dialog boxes now include byte-order marks correctly in generated files.
· HTML helpers throw a NullReferenceException error when ModelError is added without setting a value. A NullReferenceException is no longer thrown in this case.
· The SessionStateTempDataProvider class fails if session state is not enabled. The provider now throws an exception only if it is attempting to save temp data to session state and the session state service is disabled.
· AJAX helpers do not send the submit button and submit image as part of the request body. The MicrosoftMvcAjax.js script library has been updated to include these form inputs. To take advantage of this fix, when you upgrade an existing project, update the MicrosoftMvcAjax.js script library.

· A compilation error occurs when a ViewMasterPage<T> instance does not contain any <%= ... %> code blocks. This has been fixed.
Known Issues

The following are known issues with this release.
· Editor, Display, and Label templates for the new template helpers cannot use value types. The following example shows an attempt to build an editor template for DateTime that will not work.

<%@ Page Inherits="ViewUserControl<DateTime>" %>

<%= Html.TextBox("", Model, new {@class="datepicker"}) %>

<script>

 // Pseudo code

 $('input.datepicker').attach('datepicker');

</script>

This is not supported because value types are not allowed in the Model property of ViewDataDictionary<TModel> , ViewPage<TModel>, ViewMasterPage<TModel> , or ViewUserControl<TModel>.
· Templated helpers such as EditorFor or DisplayFor throw an InvalidOperationException error when given an expression that resolves to an interface that does not have a template defined for it. For example, the following EditorFor helper will throw an exception if there is no template for ISomeInterface (such as ISomeInterface.ascx).

<%@ Page Inherits="ViewUserControl<ISomeInterface>" %>

<%= Html.EditorFor(model => model) %>

· If an area-enabled project is removed from the solution, the corresponding manifest file must be deleted by hand. By default, the manifest files are located in the following folder:

\\pathToSolution\Manifests\
· Route-generation APIs that accept a route name (such as RouteLink) will not generate cross-area links. The area name must be specified in the route values when RouteLink is called.
· Route-generation APIs will not generate correct links from an area-aware route (a route that is registered using RouteCollectionExtensions.MapAreaRoute) to a non-area-aware route (a route that is registered using MapRoute). A workaround is to generate the URLs by hand or to specify an area for all routes.

· Area projects are not intended to be run individually. Instead, run the main project to build and copy the area contents into the main project.

· When building an area-enabled Web site, Visual Studio deployment will not recognize content files that are copied from area projects into the main project. To deploy the application, use xcopy deployment from the main project to the server. Make sure that you exclude unnecessary directories and files like the obj directory and code files that have already been compiled as part of the project.
ASP.NET MVC 2 Preview 1 Release Notes

Page 8
Copyright © 2009 Microsoft Corporation

