
Automating TCP/IP Networking on Clients
Part 2: Scripting Basic TCP/IP Networking on Clients

Contents

Retrieving Basic TCP/IP Client Settings by Using Non-Scripting Methods
Getting Basic Settings by Using Ipconfig.exe
Retrieving Basic Settings with a Script
Using the Win32_NetworkAdapterConfiguration WMI Class
Win32_NetworkAdapterConfiguration and Win32_NetworkAdapter
Associating the Network Connections Name with MAC and IP Addresses
Using Two Classes
Using Association Classes to Retrieve Correlated Data
Displaying Expanded IP Configuration Data
Using Ipconfig.exe to Display Expanded Configuration Data
Using a Script to Display Expanded Configuration Data
Tools for Basic TCP/IP Networking on Clients
In some kinds of IT environments, such as convention centers, hotels, and universities, network administrators must frequently change network client information because transient users and computers come and go. In these kinds of computing environments, using scripts to configure network clients may prove particularly useful. Even on less turbulent TCP/IP networks, scripting basic configuration on clients can help standardize change and configuration management, avoid manual administrative errors, and accomplish bulk changes on many clients rapidly and effectively.

Windows provides extensive GUI and command-line functionality to help network administrators manage TCP/IP network clients. Through Network and Dial-Up Connections in Windows 2000 and Network Connections in Windows XP and Windows Server 2003 (in Control Panel), you can view and modify most network settings. Widely used command-line tools such as Ipconfig.exe and Ping.exe provide additional options. Sometimes these are all you need to accomplish a networking task. However, if you find yourself clicking OK repeatedly or trying to change a parameter on a hundred computers on a subnet that is contingent on the state of two other parameters, the techniques detailed in this paper should prove useful.

This section covers the basic techniques for retrieving and changing the most common TCP/IP settings, such as IP addresses and subnet masks. The section begins with a brief review of the non-scripting methods and command-line methods that you can use to perform these tasks. Next, the section covers a variety of scripting techniques for working with the two most important WMI classes for these tasks. Finally, it shows how to retrieve extended TCP/IP settings by using a script that reproduces nearly all the functionality of the ipconfig /all command.

Retrieving Basic TCP/IP Client Settings by Using Non-Scripting Methods

To simply check a couple of TCP/IP settings on one computer, many network administrators prefer to use the Windows interface that is provided in Windows XP through Network Connections and in Windows 2000 through Network and Dial-Up Connections.

[image: image1.wmf]
To check TCP/IP settings by using the Windows interface in Windows XP

1. Open Control Panel and double-click Network Connections.

2. In the Network Connections dialog box, right-click a specific network connection and then click Properties.

3. In the properties dialog box for the network connection, select Internet Protocol (TCP/IP) and then click Properties.

Figure 1 shows the available options when you use the Internet Protocol (TCP/IP) Properties dialog box.

Figure 1 Internet Protocol (TCP/IP) Properties Dialog Box

[image: image2.png]Internet Protocol (TCP/IP) Properties

Geneel | At Coniurtion]
D ——

this capabily. Otherwise, you need to ask your retvork adminitator for
the appropriste P settings.

& iibiai an 1P addiess autaratiail

€ Uige the folwing IP address:

& Obtain DNS server address automatiall

€ Use the folowing DN server addresses:

Adyanced.

[Cancel

The DNS, WINS, and Options tabs also display settings for those technologies and enable you to change most settings.

Getting Basic Settings by Using Ipconfig.exe

Many administrators use command-line tools to obtain TCP/IP client configuration information. One popular command-line tool is Ipconfig.exe, which is included with the Windows operating system. Figure 2 illustrates the network settings you can display by using Ipconfig.exe.

Figure 2 Typical Network Settings Displayed by Ipconfig.exe

[image: image3.png]C:\seripts>ipcont ig.exe

iindous TP Configuration

[Echernet adapter Local Area Connection:

Connection-specific DNS Suffix
192.168.0.12

IP Address. - - . .
Subnet Mask 2552552550

Default Gateway . .

You can use this tool not only to display networking settings but also to perform certain operations. For example, the /renew option renews DHCP leases and the /flushdns option purges the DNS client resolver cache.

Retrieving Basic Settings with a Script

By writing scripts in VBScript that use WSH and WMI, system administrators can create more powerful and flexible tools to manage a broader range of Windows functionality.

For each setting in the Advanced TCP/IP Settings dialog box, WMI classes offer properties and methods that can retrieve and modify client network settings, the most important of which is the Win32_NetworkAdapterConfiguration class. Figure 3 illustrates which WMI classes correspond to different elements of the Advanced TCP/IP Settings dialog box.

Figure 3 How TCP/IP WMI Properties and Methods Correspond to the Windows UI

[image: image4.png][Advanced TCH

1P Setings | NS | VNS | Opers |
T

B WINSPrimaryServer

€6 WINSSecondaryServer

t
3

By e (o ||

LUHOSTS ook ensbid. & sppis o connacions s which
TCPP ' et

6 WINSEn ableLMHostsLookup.

F—— entieLutiosTs ookio ot LYHOSTS

& TepiphietbiosOptions.

(B8 WINSHostLookupFile

o105 et
alr|
s NeB10S st o the DHCP sene f s P oddess
redtthe OHEF s o 1t rovis HEBI0S sk
e NBI0S over TCP AP

€ EsloNeBIOS ove TCPIP

Do NoI0S over TCPIP.

o ol

For purposes of scripting, a WMI class is simply a way of packaging a related set of configuration settings and configuring them into a bundle with a recognizable name. Scripts call the properties to retrieve the settings and methods in order to change them.

Win32_NetworkAdapterConfiguration also includes properties and methods that correspond to the DNS, WMI, and Options tabs of the Advanced TCP/IP Settings dialog box. The sections that follow cover this in detail.
Using the Win32_NetworkAdapterConfiguration WMI Class

The 61 properties and 41 methods of Win32_NetworkAdapterConfiguration cover nearly all the settings and actions that are available through the Windows interface or command-line tools, and some that are not. To retrieve a property or call a method, only a few lines of VBScript code are required, as the following examples illustrate. For more information about the properties and methods for this WMI class, see the WMI Software Development Kit (SDK) topic at http://go.microsoft.com/fwlink/?LinkId=29991.

Calling the InstancesOf() or ExecQuery() methods of the SWbemServices object on Win32_NetworkAdapterConfiguration returns a collection of objects. This collection is in the form of an SWbemObjectSet collection containing zero or more SWbemObject instances. These objects and methods are documented in detail in the WMI Reference of the WMI SDK under "Scripting API for WMI."

Displaying One Setting

The following example displays the DHCPEnabled property of Win32_NetworkAdapterConfiguration. The DHCPEnabled property returns a Boolean value, which is a way of representing a condition that can be either true or false. The values used by VBScript are -1 for true and 0 for false; however, any non-zero value can be used programmatically to represent true. In most cases, scripts should use True and False, which are the two VBScript keywords, to represent these values.

The pattern used in this simple script can be repeated for any property of Win32_NetworkAdapterConfiguration except for those that return arrays. Handling properties that return arrays is discussed later in this paper.

Scripting Steps

4. Connect to the WMI service using the "winmgmts:" moniker.

5. Retrieve all the instances of the Win32_NetworkAdapterConfiguration class with the InstancesOf method.

This returns a collection consisting of all the network adapter configurations on the computer.

6. For each network adapter configuration in the collection, use the WSH Echo method to display the Boolean property corresponding to the DHCP Enabled setting in the IP addresses box on the IP Settings tab of the Advanced TCP/IP Settings dialog box.

Listing 1 Onesetting.vbs

	1

2

3

4

5

6
	Set objWMIService = GetObject("winmgmts:")

Set colNicConfig = _

 objWMIService.InstancesOf("Win32_NetworkAdapterConfiguration")

For Each objNicConfig In colNicConfig

 WScript.Echo objNicConfig.DHCPEnabled

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>onesetting.vbs

-1

0

0

0

0

0

0

0

[image: image5.wmf]
Note

A computer that contains only one physical network adapter may show settings for multiple network adapters. This is because some kinds of network connections, such as virtual private networks (VPNs), create their own virtual network adapters.

Displaying a Boolean Setting as a String

To produce more readable output, a minor change in line 5 causes the Boolean settings to be displayed as True or False rather than -1 or 0, which increases the readability of the script's output. By echoing "DHCP Enabled: " first and then concatenating the DHCPEnabled property, the script allows VBScript to "coerce" the Boolean setting into a string format.

Although all VBScript variables are type variant, VBScript automatically coerces (transforms) variants into appropriate data subtypes depending on the context in which they occur. In this case, because the script concatenates a variable of subtype Boolean onto a literal string, VBScript automatically converts the Boolean to its string equivalent.

Scripting Steps

7. Connect to the WMI service.

8. Retrieve all the instances of the Win32_NetworkAdapterConfiguration class with the InstancesOf method.

This returns a collection consisting of all the network adapter configurations on the computer.

9. For each network adapter configuration in the collection, use the WSH Echo method to display the caption "DHCP Enabled:" concatenated with the Boolean property DHCPEnabled.

Listing 2 Onesetting-string.vbs

	1

2

3

4

5

6
	Set objWMIService = GetObject("winmgmts:")

Set colNicConfig = _

 objWMIService.InstancesOf("Win32_NetworkAdapterConfiguration")

For Each objNicConfig In colNicConfig

 WScript.Echo "DHCP Enabled: " & objNicConfig.DHCPEnabled

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>onesetting-string.vbs

DHCP Enabled: True

DHCP Enabled: False

DHCP Enabled: False

DHCP Enabled: False

DHCP Enabled: False

DHCP Enabled: False

DHCP Enabled: False

DHCP Enabled: False

Displaying a Setting for Specific Network Adapters

The previous two examples display the value of the DHCPEnabled property for every network adapter configuration that WMI can find. Sometimes you may not want to work with all network adapters. For example, certain features, such as Routing and Remote Access and virtual private networks, may create their own virtual network adapter configurations on which TCP/IP is not enabled.

To filter for IP-enabled network adapters only, you can use the ExecQuery() method of the SWbemServices object, the object type returned by the GetObject() call on line 1. As a required parameter, ExecQuery() generally takes a string containing a query in WMI Query Language (WQL), a dialect of Structured Query Language (SQL). It returns an SWbemObjectSet collection of objects.

Although WQL queries are not case sensitive, putting all WQL keywords in caps is the standard convention because it makes the script more legible.

The most basic query used by system administrative scripts is "SELECT * FROM classname". This query returns all instances of the class, and the "*" serves as a wildcard character (as in SQL and command-line file system specifiers) that returns all the properties of each instance. For example, "SELECT * FROM Win32_Service" would return all the properties of all the instances of the Win32_Service class, which would represent all the services currently running on the computer.

In the following script, the WHERE keyword (also part of SQL) enables you to specify limiting conditions for the query. Here the query "SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled = True" requests all instances of the Win32_NetworkAdapterConfiguration class where the Boolean value of its IPEnabled property is True, in other words, for which IP is enabled.

This example also adds a second property, Index (see line 5), to distinguish between adapters when more than one is installed. Index is the key property for the Win32_NetworkAdapterConfiguration class, serving as the unique identifier for each instance of the class. The value of Index is an integer, starting with 0 for the first active network adapter configuration and incrementing by 1 for each successive one, that identifies a particular configuration.

Listing 3 returns the Index and DHCPEnabled properties for all adapters for which IPEnabled is True.

Scripting Steps

10. Connect to the WMI service.

11. Retrieve specific instances of the Win32_NetworkAdapterConfiguration class with the ExecQuery method and a query string that filters for those network adapters where the IPEnabled property is True.

This returns a collection consisting of the network adapter configurations on the computer for which IP is enabled.

12. For each network adapter configuration in the collection, use the WSH Echo method to display the index of the network adapter and the DHCPEnabled property.

Listing 3 Onesetting-execquery.vbs

	1

2

3

4

5

6

7
	Set objWMIService = GetObject("winmgmts:")

Set colNicConfig = objWMIService.ExecQuery("SELECT * FROM " & _

 "Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

For Each objNicConfig In colNicConfig

 WScript.Echo "Network Adapter: " & objNicConfig.Index

 WScript.Echo " DHCP Enabled: " & objNicConfig.DHCPEnabled

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>onesetting-execquery.vbs

Network Adapter: 1

 DHCP Enabled: True

Network Adapter: 10

 DHCP Enabled: False

In other cases, you may want to restrict the script to running against just a single network adapter configuration. For example, on a dual-homed computer that is connected to two networks, you might want to enable DHCP on one network adapter but not the other. To do this, you could use a WQL query such as "SELECT * FROM Win32_NetworkAdapterConfiguration WHERE Index = 0."

A simpler way to accomplish the same thing is to use the Get() method of the SWbemServices object (returned by the GetObject call to the wingmgts: moniker). Get() takes a string containing a WMI object path as a required parameter and returns an SWbemObject object.

[image: image6.wmf]
Tip

The following script displays a quirk of WMI: although VBScript, WSH, and WMI typically ignore white space, within the object path (the string parameter) passed to objWMIService.Get() there can be no space before or after the equal sign (=) in "Index=0." A space on either side of the equal sign causes an error.

Scripting Steps

13. Connect to the WMI service.

14. Retrieve a specific instance of the Win32_NetworkAdapterConfiguration class with the Get method and an object path that specifies an Index property (the key property) equal to 0.

This returns a collection consisting of the network adapter configuration on the computer for which the index is 0.

15. For this instance, use the WSH Echo method to display the index of the network adapter and the DHCPEnabled property.

Listing 4 Onesetting-onenic.vbs

	1

2

3

4

5

6

7

8
	intIndex = 1 ' index of an IP-enabled network adapter

Set objWMIService = GetObject("winmgmts:")

Set colNicConfig = objWMIService.ExecQuery("SELECT * FROM " & _

 "Win32_NetworkAdapterConfiguration WHERE Index = " & intIndex)

For Each objNicConfig In colNicConfig

 WScript.Echo "Network Adapter: " & objNicConfig.Index

 WScript.Echo " DHCP Enabled: " & objNicConfig.DHCPEnabled

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>onesetting-onenic.vbs

Network Adapter: 1

 DHCP Enabled: True

Displaying Multi-Valued Properties

Because Windows allows a single network adapter setting to have more than one IP address, subnet mask, default gateway, or DNS server, some properties of Win32_NetworkAdapterConfiguration can have multiple values. WMI returns these multiple values in the form of an array. Because an array contains multiple values, it cannot be handled in the same way as a single string, Boolean, or number.

VBScript offers two techniques for transforming arrays into a string format that can be displayed with WScript.Echo: the Join function and the For Each loop.

Using the VBScript Join function

The VBScript Join function concatenates or joins together the elements of an array into a single string that is separated by a character or characters specified in an optional second parameter. If you do not specify this delimiter, Join uses a single space.

The Join function is necessary because you cannot directly display an array. First, you must divide the array into its elements or convert the array into a string. Join allows you to control the formatting of this string. For example, you can use either commas or colons (rather than spaces) to separate the elements of the array.

Scripting Steps

16. Connect to the WMI service.

17. Retrieve all the instances of the Win32_NetworkAdapterConfiguration class with the ExecQuery method and a query string that filters for those network adapters where the IPEnabled property is True.

This returns a collection consisting of the network adapter configurations on the computer for which IP is enabled.

18. For each network adapter configuration in the collection, use the WSH Echo method to display the index of the network adapter.

19. If the IPAddress property (an array):

· Is not Null, use the VBScript Join function to concatenate the elements of the IPAddress array into a string with elements separated by a space (the default) and assign them to a variable.

· Is Null, assign an empty string to the variable.

20. Display the space-delimited string of IP addresses.

Listing 5 Onesetting-array-join.vbs

	1

2

3

4

5

6

7

8

9

10

11

12
	Set objWMIService = GetObject("winmgmts:")

Set colNicConfig = objWMIService.ExecQuery("SELECT * FROM " & _

 "Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

For Each objNicConfig In colNicConfig

 WScript.Echo "Network Adapter: " & objNicConfig.Index

 If Not IsNull(objNicConfig.IPAddress) Then

 strIPAddresses = Join(objNicConfig.IPAddress)

 Else

 strIPAddresses = ""

 End If

 WScript.Echo " IP Address(es): " & strIPAddresses

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>onesetting-array-join.vbs

Network Adapter: 1

 IP Address(es): 0.0.0.0

Network Adapter: 10

 IP Address(es): 192.168.1.2

Using For Each … In … Next

The For Each loop provides an alternative way to display the elements of an array. This statement iterates through the array, allowing the script to separately perform an action on each element. In this case, we merely display the element.

Scripting Steps

21. Connect to the WMI service.

22. Retrieve all the instances of the Win32_NetworkAdapterConfiguration class with the ExecQuery method and a query string that filters for those network adapters where the IPEnabled property is True.

This returns a collection consisting of the network adapter configurations on the computer for which IP is enabled.

23. For each network adapter configuration in the collection, use the WSH Echo method to display the index of the network adapter.

24. If the IPAddress property (an array) is not Null, use a For Each loop to iterate through the IPAddress array, displaying each element with the WSH Echo method.

Listing 6 Onesetting-array-foreach.vbs

	1

2

3

4

5

6

7

8

9

10

11

12
	Set objWMIService = GetObject("winmgmts:")

Set colNicConfig = objWMIService.ExecQuery("SELECT * FROM " & _

 "Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

For Each objNicConfig In colNicConfig

 WScript.Echo "Network Adapter: " & objNicConfig.Index

 WScript.Echo " IP Address(es):"

 If Not IsNull(objNicConfig.IPAddress) Then

 For Each strIPAddress In objNicConfig.IPAddress

 WScript.Echo " " & strIPAddress

 Next

 End If

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>onesetting-array-foreach.vbs

Network Adapter: 1

 IP Address(es):

 0.0.0.0

Network Adapter: 10

 IP Address(es):

 192.168.1.2

Displaying a Range of Networking Properties

When inventorying network clients, you might often want to gather information about a larger selection of TCP/IP settings. For example, you might want to collect the settings displayed in the Advanced TCP/IP Settings dialog box and those shown by Ipconfig.exe. There is overlap between the two but also some differences. A script can combine all the settings from these sources into one package.

For each IP-enabled network adapter on a specific computer, use Ipsettings.vbs to obtain the information that displays on the IP Settings tab of the Advanced TCP/IP Settings dialog box for a network connection as well as the information that Ipconfig.exe (used with a few parameters) displays.

A network adapter configuration can have multiple IP addresses, subnets, default gateways, and gateway metrics.
Scripting Steps

25. Create a variable to specify the computer name.

26. Use a GetObject call to connect to the WMI namespace root\cimv2, and set the impersonation level to “impersonate.”

27. Use the ExecQuery method to query the Win32_NetworkAdapterConfiguration class, filtering the WQL query with “WHERE IPEnabled = True.”

This returns a collection consisting of all the network adapter configurations on the computer for which IP is enabled.

28. For each network adapter configuration in the collection, use the WSH Echo method to display the properties corresponding to the settings on the IP Settings tab.

29. For those properties that return an array, use the VBScript IsNull() function to check whether the array is null.

· If the array is not null, use the VBScript Join() function to concatenate the array elements into a string and display the string.

· If the array is null, display an empty string.

Listing 7 Ipsettings.vbs

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
	On Error Resume Next

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colNicConfigs = objWMIService.ExecQuery _

 ("SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

WScript.Echo VbCrLf & "IP Settings"

For Each objNicConfig In colNicConfigs

 WScript.Echo VbCrLf & " Network Adapter " & objNicConfig.Index

 WScript.Echo " " & objNicConfig.Description & VbCrLf

 WScript.Echo " DHCP Enabled: " & _

 objNicConfig.DHCPEnabled

 If Not IsNull(objNicConfig.IPAddress) Then

 strIPAddresses = Join(objNicConfig.IPAddress)

 Else

 strIPAddresses = ""

 End If

 WScript.Echo " IP Address(es): " & strIPAddresses

 If Not IsNull(objNicConfig.IPSubnet) Then

 strIPSubnet = Join(objNicConfig.IPSubnet)

 Else

 strIPSubnet = ""

 End If

 WScript.Echo " Subnet Mask(s): " & strIPSubnet

 If Not IsNull(objNicConfig.DefaultIPGateway) Then

 strDefaultIPGateway = Join(objNicConfig.DefaultIPGateway)

 Else

 strDefaultIPGateway = ""

 End If

 WScript.Echo " Default Gateways(s): " & strDefaultIPGateway

 If Not IsNull(objNicConfig.GatewayCostMetric) Then

 strGatewayCostMetric = Join(objNicConfig.GatewayCostMetric)

 Else

 strGatewayCostMetric = ""

 End If

 WScript.Echo " Gateway Metric(s): " & strGatewayCostMetric

 WScript.Echo " Interface Metric: " & _

 objNicConfig.IPConnectionMetric

 WScript.Echo " Connection-specific DNS Suffix: " & _

 objNicConfig.DNSDomain

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>ipsettings.vbs

IP Settings

 Network Adapter 1

 Intel(R) PRO/1000 MT Network Connection - Packet Scheduler Miniport

 DHCP Enabled: True

 IP Address(es): 0.0.0.0

 Subnet Mask(s):

 Default Gateways(s):

 Gateway Metric(s):

 Interface Metric: 1

 Connection-specific DNS Suffix:

 Network Adapter 10

 3Com EtherLink 10/100 PCI For Complete PC Management NIC (3C905C-TX) - Packet Scheduler Miniport

 DHCP Enabled: False

 IP Address(es): 192.168.1.2

 Subnet Mask(s): 255.255.255.0

 Default Gateways(s):

 Gateway Metric(s):

 Interface Metric: 20

 Connection-specific DNS Suffix:

Win32_NetworkAdapterConfiguration and Win32_NetworkAdapter

Win32_NetworkAdapterConfiguration is closely related to Win32_NetworkAdapter, another WMI class. There is a one-to-one correspondence between instances of the two classes and an implicit division of labor between the two classes: Win32_NetworkAdapter exposes mostly hardware-related properties, and in contrast to Win32_NetworkAdapterConfiguration, includes no methods. There is some overlap between the two classes: for example, both have a MACAddress property that retrieves the physical address of a network adapter.

Figure 4 illustrates the relationship between the Win32_NetworkAdapterConfiguration and Win32_NetworkAdapter classes.

Only Win32_NetworkAdapter, however, has a NetConnectionID property (available only on Windows XP and Windows Server 2003) that returns the name of the Network Connection (from Network Connections) that is bound to the network adapter, even though such a software setting might more logically belong in Win32_NetworkAdapterConfiguration. This NetConnectionID property corresponds to the name that Ipconfig.exe uses for each network adapter.

In addition, Win32_NetworkAdapter alone includes an AdapterType property that describes the network medium to which the adapter connects, such as Ethernet 802.3 or Token Ring 802.5. Ipconfig.exe also uses this information to describe the network adapter.

Figure 4 Relationship Between These WMI Classes

[image: image7.png]Win32_Networkadapter | - Win32_NetworkAdspterCorfiguration

l |

The following examples show how to display the properties of Win32_NetworkAdapter and also the methods for correlating properties from instances of Win32_NetworkAdapter and Win32_NetworkAdapterConfiguration.

Displaying Network Adapter Properties

Displaying network adapter settings requires similar scripting techniques to those involved in displaying TCP/IP settings. The only difference is that you use the Win32_NetworkAdapterConfiguration class to display TCP/IP settings and the Win32_NetworkAdapter class to display network adapter properties. For more information about the properties and methods for this WMI class, see the WMI Software Development Kit (SDK) topic at http://go.microsoft.com/fwlink/?LinkId=29992.

Scripting Steps

Listing 8 retrieves the properties for all the network adapters on a computer. This script retrieves some properties available only on Windows XP and Windows Server 2003.

30. Create a variable to specify the computer name. For example, to specify the local computer, use (".").

31. Use a GetObject call to connect to the WMI namespace root\cimv2, and set the impersonation level to “impersonate.”

32. Use the ExecQuery method to query the Win32_NetworkAdapter class.

This returns a collection consisting of all the network adapters on the computer.

33. For each network adapter in the collection, use the WSH Echo method to display its properties.

34. For those properties that return an array, use the VBScript IsNull() function to check whether the array is null.

· If the array is not null, use the VBScript Join() function to concatenate the array elements into a string and display the string.

· If the array is null, display an empty string.

Listing 8 Nicsettings.vbs

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
	On Error Resume Next

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colNics = objWMIService.ExecQuery _

 ("SELECT * FROM Win32_NetworkAdapter")

WScript.Echo VbCrLf & "Network Adapter Settings"

For Each objNic In colNics

 WScript.Echo VbCrLf & " Network Adapter (Device ID)" & _

 objNic.DeviceID

 Wscript.Echo " Index: " & objNic.Index

 Wscript.Echo " MAC Address: " & objNic.MACAddress

 Wscript.Echo " Adapter Type: " & objNic.AdapterType

 Wscript.Echo " Adapter Type Id: " & objNic.AdapterTypeID

 Wscript.Echo " Description: " & objNic.Description

 Wscript.Echo " Manufacturer: " & objNic.Manufacturer

 Wscript.Echo " Name: " & objNic.Name

 Wscript.Echo " Product Name: " & objNic.ProductName

 Wscript.Echo " Net Connection ID: " & objNic.NetConnectionID

 Wscript.Echo " Net Connection Status: " & objNic.NetConnectionStatus

 Wscript.Echo " PNP Device ID: " & objNic.PNPDeviceID

 Wscript.Echo " Service Name: " & objNic.ServiceName

 If Not IsNull(objNic.NetworkAddresses) Then

 strNetworkAddresses = Join(objNic.NetworkAddresses)

 Else

 strNetworkAddresses = ""

 End If

 Wscript.Echo " NetworkAddresses: " & strNetworkAddresses

 Wscript.Echo " Permanent Address: " & objNic.PermanentAddress

 Wscript.Echo " AutoSense: " & objNic.AutoSense

 Wscript.Echo " Maximum Number Controlled: " & objNic.MaxNumberControlled

 Wscript.Echo " Speed: " & objNic.Speed

 Wscript.Echo " Maximum Speed: " & objNic.MaxSpeed

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>nicsettings.vbs

Network Adapter Settings

 Network Adapter (Device ID)1

 Index: 1

 MAC Address: 00:0D:56:15:ED:B7

 Adapter Type: Ethernet 802.3

 Adapter Type Id: 0

 Description: Intel(R) PRO/1000 MT Network Connection

 Manufacturer: Intel

 Name: Intel(R) PRO/1000 MT Network Connection

 Product Name: Intel(R) PRO/1000 MT Network Connection

 Net Connection ID: Local Area Connection

 Net Connection Status: 7

 PNP Device ID: PCI\VEN_8086&DEV_100E&SUBSYS_01511028&REV_02\4&1C660DD6&0&60F0

 Service Name: E1000

 NetworkAddresses:

 Permanent Address:

 AutoSense:

 Maximum Number Controlled: 0

 Speed:

 Maximum Speed:

 Network Adapter (Device ID)2

 Index: 2

 MAC Address:

 Adapter Type:

 Adapter Type Id:

 Description: RAS Async Adapter

 Manufacturer:

 Name: RAS Async Adapter

 Product Name: RAS Async Adapter

 Net Connection ID:

 Net Connection Status:

 PNP Device ID:

 Service Name:

 NetworkAddresses:

 Permanent Address:

 AutoSense:

 Maximum Number Controlled: 0

 Speed:

 Maximum Speed:

 Network Adapter (Device ID)3

 Index: 3

 MAC Address:

 Adapter Type:

 Adapter Type Id:

 Description: WAN Miniport (L2TP)

 Manufacturer: Microsoft

 Name: WAN Miniport (L2TP)

 Product Name: WAN Miniport (L2TP)

 Net Connection ID:

 Net Connection Status:

 PNP Device ID: ROOT\MS_L2TPMINIPORT\0000

 Service Name: Rasl2tp

 NetworkAddresses:

 Permanent Address:

 AutoSense:

 Maximum Number Controlled: 0

 Speed:

 Maximum Speed:

 Network Adapter (Device ID)6

 Index: 6

 MAC Address:

 Adapter Type:

 Adapter Type Id:

 Description: Direct Parallel

 Manufacturer: Microsoft

 Name: Direct Parallel

 Product Name: Direct Parallel

 Net Connection ID:

 Net Connection Status:

 PNP Device ID: ROOT\MS_PTIMINIPORT\0000

 Service Name: Raspti

 NetworkAddresses:

 Permanent Address:

 AutoSense:

 Maximum Number Controlled: 0

 Speed:

 Maximum Speed:

 Network Adapter (Device ID)8

 Index: 8

 MAC Address: 00:0D:56:15:ED:B7

 Adapter Type: Ethernet 802.3

 Adapter Type Id: 0

 Description: Packet Scheduler Miniport

 Manufacturer: Microsoft

 Name: Packet Scheduler Miniport

 Product Name: Packet Scheduler Miniport

 Net Connection ID:

 Net Connection Status:

 PNP Device ID: ROOT\MS_PSCHEDMP\0000

 Service Name: PSched

 NetworkAddresses:

 Permanent Address:

 AutoSense:

 Maximum Number Controlled: 0

 Speed:

 Maximum Speed:

 Network Adapter (Device ID)10

 Index: 10

 MAC Address: 00:0A:5E:3D:E3:70

 Adapter Type: Ethernet 802.3

 Adapter Type Id: 0

 Description: 3Com EtherLink 10/100 PCI For Complete PC Management NIC (3C905C-TX)

 Manufacturer: 3Com

 Name: 3Com EtherLink 10/100 PCI For Complete PC Management NIC (3C905C-TX)

 Product Name: 3Com EtherLink 10/100 PCI For Complete PC Management NIC (3C905C-TX)

 Net Connection ID: Local Area Connection 2

 Net Connection Status: 2

 PNP Device ID: PCI\VEN_10B7&DEV_9200&SUBSYS_100010B7&REV_78\4&1C660DD6&0&40F0

 Service Name: EL90Xbc

 NetworkAddresses:

 Permanent Address:

 AutoSense:

 Maximum Number Controlled: 0

 Speed:

 Maximum Speed:

Associating the Network Connections Name with MAC and IP Addresses Using Two Classes

For various purposes, administrators may need to retrieve the MAC or physical addresses and IP addresses of computers and correlate them with the name of the adapter listed in Network Connections. Ipconfig.exe uses the network adapter name and type to distinguish between network adapters, as shown in Figure 5.

Associating MAC and IP addresses corresponds to the part of the IP routing process performed by the Address Resolution Protocol (ARP). You can view the resulting IP - MAC address translation tables by using the command-line tool Arp.exe. Figure 5 provides an example of the output obtained by running the arp -a command.

Figure 5 Arp.exe output

[image: image8.png]5% Command Prompt

C:nseriptedarp.exe —a

Interface: 192.168.8.12 ——— Bx2
Internet Address Physical Address Type
192.168.0.1 00-01-63-40-d1-83 dynanic

To use WMI to connect MAC and IP addresses with network adapter names and types, you must correlate properties from corresponding instances of Win32_NetworkAdapterConfiguration (MACAddress and IPAddress) and Win32_NetworkAdapter (NetConnectionID and AdapterType). The NetConnectionID property of Win32_NetworkAdapter is available only on Windows XP and Windows Server 2003.

In order to find the specific instances of each class that correspond to each other, you can use the Key qualifier to determine key properties for each class. Key properties (there can be more than one) together supply a unique reference for each class instance and are part of the instance namespace handle. They are a little like the key field in a database. The WMI SDK or Wbemtest.exe (the WMI Tester tool, which is included on all versions of Windows that include WMI) can tell you which property or properties of a class are keys.

Table 2 displays the key properties for the two WMI network adapter classes.

Table 2 Key Properties for WMI Network Adapter Classes

	Class
	Key Property

	Win32_NetworkAdapterConfiguration
	Index

	Win32_NetworkAdapter
	DeviceID

By using either of these keys, you can match instances of the two classes. In the following example, the Get property of SWbemServices is used to retrieve the instance of Win32_NetworkAdapter, whose DeviceID property corresponds to the Index property of a specific Win32_NetworkAdapterConfiguration instance.

Getncmacip.vbs displays the network connection name (or index number for pre-Windows XP clients), MAC address, IP addresses, and subnet masks for IP-enabled network interfaces. A network adapter configuration can have more than one IP address and subnet. The script gets properties from corresponding instances of Win32_NetworkAdapter and Win32_NetworkAdapterConfiguration by using the direct correlation between Win32_NetworkAdapter.DeviceID and Win32_NetworkAdapterConfiguration.Index.

The script shows a simpler way than the GetNetConnectionID() function in Ipsettings.vbs to determine whether the NetConnectionID property is available. Instead of checking the operating system version to see if it is Windows XP (which would ensure that the Win32_NetworkAdapter.NetConnectionID was available), it simply tries to retrieve the NetConnectionID property. If an error is returned, it uses the Win32_NetworkAdapterConfiguration.Index property instead.

Scripting Steps

Listing 9 retrieves the IP addresses and subnet masks for each network adapter on a single computer.

35. Create a variable to specify the computer name.

36. Use a GetObject call to connect to the WMI namespace root\cimv2, and set the impersonation level to “impersonate.”

37. Use the ExecQuery method to query the Win32_NetworkAdapterConfiguration class, filtering the WQL query with “WHERE IPEnabled = True.”

This returns a collection consisting of all the network adapter configurations on the computer for which IP is enabled.

38. Iterate through each network adapter configuration in the collection, performing the following steps.

39. Use the Get method of the objWMIService object to fetch the instance of Win32_NetworkAdapter whose DeviceID property equals the Index property of Win32_NetworkAdapterConfiguration.

40. Display the AdapterType and NetConnectionID properties of the current instance of Win32_NetworkAdapter.

If an error occurs, the NetConnectionID property does not exist (this property is new to Windows XP and Windows Server 2003); so switch back to displaying the Index property of Win32_NetworkAdapterConfiguration to identify the current network adapter.

41. Display the Description property of Win32_NetworkAdapterConfiguration and the MACAddress property of Win32_NetworkAdapter.

42. Display the IPAddress and IPSubnet properties of Win32_NetworkAdapterConfiguration.

Listing 9 Getncmacip.vbs

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
	On Error Resume Next

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colNicConfigs = objWMIService.ExecQuery _

 ("SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

WScript.Echo VbCrLf & "MAC & IP Addresses & Subnet Masks"

For Each objNicConfig In colNicConfigs

 Set objNic = objWMIService.Get _

 ("Win32_NetworkAdapter.DeviceID=" & objNicConfig.Index)

 WScript.Echo VbCrLf & " " & objNic.AdapterType & " " & _

 objNic.NetConnectionID

 If Err Then

 WScript.Echo VbCrLf & " Network Adapter " & objNicConfig.Index

 End If

 WScript.Echo " " & objNicConfig.Description & VbCrLf

 WScript.Echo " MAC Address:" & VbCrLf & _

 " " & objNic.MACAddress

 WScript.Echo " IP Address(es):"

 For Each strIPAddress In objNicConfig.IPAddress

 WScript.Echo " " & strIPAddress

 Next

 WScript.Echo " Subnet Mask(s):"

 For Each strIPSubnet In objNicConfig.IPSubnet

 WScript.Echo " " & strIPSubnet

 Next

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>getncmacip.vbs

MAC & IP Addresses & Subnet Masks

 Ethernet 802.3 Local Area Connection

 Intel(R) PRO/1000 MT Network Connection - Packet Scheduler Miniport

 MAC Address:

 00:0D:56:15:ED:B7

 IP Address(es):

 0.0.0.0

 Subnet Mask(s):

 Ethernet 802.3 Local Area Connection 2

 3Com EtherLink 10/100 PCI For Complete PC Management NIC (3C905C-TX) - Packet Scheduler Miniport

 MAC Address:

 00:0A:5E:3D:E3:70

 IP Address(es):

 192.168.1.2

 Subnet Mask(s):

 255.255.255.0

Using Association Classes to Retrieve Correlated Data

Another way to get data from related instances of Win32_NetworkAdapterConfiguration and Win32_NetworkAdapter is to use the association class, Win32_NetworkAdapterSetting. In this case, the properties to be correlated are the NetConnectionID and MACAddress properties of Win32_NetworkAdapter and the IPAddress and IPSubnet properties of Win32_NetworkAdapterConfiguration.

Figure 6 illustrates how the Win32_NetworkAdapterSetting association class is used to obtain data from related instances of these two classes. This example uses an ASSOCIATORS OF query with the ExecQuery method of SWbemServices to associate properties from the two classes. ASSOCIATORS OF is a keyword of WMI Query Language (WQL).

Figure 6 Correlating Data by Using Win32_NetworkAdapterSetting

[image: image9.png]Win32_Networkadapter | | Win32_NetworkadapterCanfiguration

etworkadapterSetting
Tassaciation class)

Associating the Network Connections Name with IP Addresses Using an Association Class

Getncmacip-assoc.vbs displays the network connection name (called an index number on clients that run an operating system older than Windows XP), MAC address, IP addresses, and subnet masks for IP-enabled network interfaces. It uses the Win32_NetworkAdapterSetting association class to correlate properties from Win32_NetworkAdapterConfiguration and Win32_NetworkAdapter. A network adapter configuration can have more than one IP address and subnet.

Scripting Steps

Listing 10 retrieves the TCP/IP network client properties on a single computer.

43. Create a variable to specify the computer name.

44. Use a GetObject call to connect to the WMI namespace root\cimv2, and set the impersonation level to “impersonate.”

45. Use the ExecQuery method to query the Win32_NetworkAdapterConfiguration class, filtering the WQL query with “WHERE IPEnabled = True.”

This returns a collection consisting of all the network adapter configurations on the computer for which IP is enabled.

46. For each network adapter configuration in the collection, use the ExecQuery method to query the Win32_NetworkAdapterConfiguration class with an ASSOCIATORS OF query. The query returns a collection of instances of Win32_NetworkAdapter.

An ASSOCIATORS OF query uses the Win32_NetworkAdapterSetting association class to correlate the instances of Win32_NetworkAdapterConfiguration (identified by the Index property) with the corresponding instances of the associated class, Win32_NetworkAdapter.

47. Iterate through the collection of instances of Win32_NetworkAdapter, displaying the AdapterType, NetConnectionID, and MACAddress properties.

If an error occurs when displaying the NetConnectionID property, display instead the Index of the corresponding instance of Win32_NetworkAdapterConfiguration.

48. Display the IPAddress and IPSubnet properties for the instance of Win32_NetworkAdapterConfiguration associated with the current instance of Win32_NetworkAdapter.

Listing 10 Getncmacip-assoc.vbs

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
	On Error Resume Next

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colNicConfigs = objWMIService.ExecQuery _

 ("SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

WScript.Echo VbCrLf & "MAC & IP Addresses & Subnet Masks"

For Each objNicConfig In colNicConfigs

 Set colNics = objWMIService.ExecQuery _

 ("ASSOCIATORS OF " & "{Win32_NetworkAdapterConfiguration.Index='" & _

 objNicConfig.Index & "'}" & _

 " WHERE AssocClass=Win32_NetworkAdapterSetting")

 For Each objNic in colNics

 WScript.Echo VbCrLf & " " & objNic.AdapterType & " " & _

 objNic.NetConnectionID

 If Err Then

 WScript.Echo VbCrLf & " Network Adapter " & objNicConfig.Index

 End If

 WScript.Echo " " & objNicConfig.Description & VbCrLf

 WScript.Echo " MAC Address:" & VbCrLf & _

 " " & objNic.MACAddress

 WScript.Echo " IP Address(es):"

 For Each strIPAddress In objNicConfig.IPAddress

 WScript.Echo " " & strIPAddress

 Next

 WScript.Echo " Subnet Mask(s):"

 For Each strIPSubnet In objNicConfig.IPSubnet

 WScript.Echo " " & strIPSubnet

 Next

 Next

Next

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>getncmacip-assoc.vbs

MAC & IP Addresses & Subnet Masks

 Ethernet 802.3 Local Area Connection

 Intel(R) PRO/1000 MT Network Connection - Packet Scheduler Miniport

 MAC Address:

 00:0D:56:15:ED:B7

 IP Address(es):

 0.0.0.0

 Subnet Mask(s):

 Ethernet 802.3 Local Area Connection 2

 3Com EtherLink 10/100 PCI For Complete PC Management NIC (3C905C-TX) - Packet Scheduler Miniport

 MAC Address:

 00:0A:5E:3D:E3:70

 IP Address(es):

 192.168.1.2

 Subnet Mask(s):

 255.255.255.0

Displaying Settings Filtered for Network Connections Name

Now that you know how to use a single script to retrieve related properties from Win32_NetworkAdapterConfiguration and Win32_NetworkAdapter, here is another way you might want to use this capability. If you need information from only one network adapter, you could connect to it by using its name under Network Connections — a more mnemonic identifier than the index number — and retrieve a setting from that network adapter. You can do this by using the NetConnectionID property of Win32_NetworkAdapter.

The NetConnectionID property is available only on Windows XP and Windows Server 2003. If the property is not found, the script generates a run-time error, which is handled by checking the VBScript Err object. If the Err object's default property, Number, is not 0, an error has occurred; in response, the script displays an error message and ends.

Scripting Steps

Listing 11 retrieves the TCP/IP network client properties on a single computer.

49. Create a variable to specify the computer name.

50. Use a GetObject call to connect to the WMI namespace root\cimv2, and set the impersonation level to “impersonate.”

51. Use the ExecQuery method to query the Win32_NetworkAdapter class, filtering the WQL query with a WHERE clause for a specific NetConnectionID.

This returns a collection of one instance representing the network adapter with that particular NetConnectionID.

52. Check that the NetConnectionID was found. If it was, proceed with the tasks of the script.

53. For each network adapter in the collection, correlate each network adaptor configuration with a network adapter by using an ASSOCIATORS OF query. To do this, you must use the DeviceID property of Win32_NetworkAdapter, which is the key property for this class (lines 12–15).

54. For each network adapter and associated configuration, display the adapter type and IP addresses.

55. If the specific NetConnectionID was not found, display a message.

Listing 11 Getncip.vbs

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
	On Error Resume Next

strComputer = "."

strNetConn = "Local Area Connection"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\cimv2")

Set colNics = objWMIService.ExecQuery("SELECT * FROM " & _

 "Win32_NetworkAdapter WHERE NetConnectionID = '" & strNetConn & "'")

If colNics.Count > 0 Then

 For Each objNic in colNics

 Set colNicConfigs = objWMIService.ExecQuery ("ASSOCIATORS OF " & _

 "{Win32_NetworkAdapter.DeviceID='" & objNic.DeviceID & "'}" & _

 " WHERE AssocClass=Win32_NetworkAdapterSetting")

 For Each objNicConfig In colNicConfigs

 WScript.Echo VbCrLf & " " & objNic.AdapterType & " " & _

 objNic.NetConnectionID

 If Not IsNull(objNicConfig.IPAddress) Then

 For Each strIPAddress in objNicConfig.IPAddress

 Wscript.Echo " IP Address: " & strIPAddress

 Next

 End If

 Next

 Next

Else

 WScript.Echo "Unable to find NetconnectID named '" & strNetConn & "'." & _

 VbCrLf & "If Windows 2000 or earlier, NetConnectionID property unavailable."

End If

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>getncip.vbs

 Ethernet 802.3 Local Area Connection

 IP Address: 192.168.0.213

Displaying Expanded IP Configuration Data

In Windows XP, a convenient way to retrieve more detailed TCP/IP client settings is through the Network Connections Details dialog box for a specific network connection.

[image: image10.wmf]
To retrieve detailed TCP/IP settings for a specific network connection

56. Open Control Panel and then double-click Network Connections.

57. In the Network Connections dialog box, right-click a specific network connection and then click Status.

58. On the Support tab, click Details to view network connection settings.

Figure 7 shows an example of a Network Connection Details box.

Figure 7 Network Connection Details Dialog Box

[image: image11.png]Network Connection Details

Network Connection Detai:

Lease Oblained
Lease Expires
DNS Server
WIN Server

Fropert Value
Physical Address W0E0D022 7037
1P Adkdress 192168012
Subnet Mask. 265.25.25.0
Default Galeway 19216801

DHCP Server 19216801

5/25/2004 7:11:23 PM
6/4/2004 10:11:23 PM
19216801

Using Ipconfig.exe to Display Expanded Configuration Data

You can use the /all option with the Ipconfig.exe command-line tool to retrieve a collection of settings even more detailed than those in the Network Connections Details dialog box. Figure 8 shows screen output like what displays when you use the ipconfig /all command.

Figure 8 Using Ipconfig.exe /all to Display Network Data

[image: image12.png]C:\seripts>ipcontig.exe /all
iindous TP Configuration

Host Name
Prinary Dns Suffix’ |
Node Type . . . N
IP Routing Enabled.
WINS Proxy Enabled. _
DNS Suffix Search List

.. wsi-xp
ol fabrikan.con
ol Hybrid

ol No

ol No

ol fabrikan.con

[Echernet adapter Local Area Connection

Connection-specific DNS Suffix

Description . . . o 3Com 3C920 Integrated Fast Ethernet
[Controller (3CI05C-TR Compatibied

Physical fddress. . - - - 00-B8-DO-23-76-37

Dhcp Enabled. . . . 1 1 © Yes

Autoconfiguration Enabied ves

IP Address. - . - - - - - 192.168.0.12

Subnet Mask . . N 2552552550

Default Gateway : 1921168181

DHCP Server . . N 192.16820.1

DNS Sexvers . . N 192.16820.1

Lease Obtained. N Tuesday, May 25, 2004 7:11:23 PH

N Friday, June 84, 2004 10:11:23 PN

Lease Expires .

Using a Script to Display Expanded Configuration Data

WMI provides the functionality to reproduce nearly all the functionality of the ipconfig /all command, along with many other settings. Besides Win32_NetworkAdapterConfiguration, Ipconfig.vbs also uses StdRegProv, which is a class included in the System Registry WMI provider, to extract some settings from the registry.

[image: image13.wmf]
Caution

Incorrectly editing the registry may severely damage your system. Before making changes to the registry, you should back up any valued data on the computer.

Scripting Steps

Listing 12 retrieves an extensive set of TCP/IP network client properties, equivalent to those retrieved by Ipconfig.exe /all, from a single computer. The script uses two functions: one that converts the dates returned to a more readable format and another that returns the operating system version.

To carry out these tasks, the script must:

59. Invoke On Error Resume Next so that errors do not terminate the script.

60. Assign values to constants and variables to be used.

61. Use a GetObject call to connect to the StdRegProv class in the WMI namespace root\default.

62. Retrieve global settings from the registry by using the GetStringValue and GetDWORDValue methods of StdRegProv. These settings apply to all network adapters.

These methods return a value in an out parameter, the final parameter for each method.

63. Use a Select Case statement to decode the value returned by the dwNodeType out parameter.

64. Use an If … ElseIf … Else statement to decode the value returned by the dwIPRouting out parameter.

65. Use a GetObject call to connect to the WMI namespace root\cimv2.

66. Use the ExecQuery method to query the Win32_NetworkAdapterConfiguration class, filtering the WQL query with “WHERE IPEnabled = True.”

This returns a collection consisting of all the network adapter configurations on the computer for which IP is enabled.

67. Retrieve the value of DNSEnabledForWINSResolution, which is a global setting, the same for each network adapter. Use an If … ElseIf … Else statement to decode the Boolean value returned by DNSEnabledForWINSResolution.

68. Display the global settings retrieved.

69. Again use the ExecQuery method to query the Win32_NetworkAdapterConfiguration class, filtering the WQL query with “WHERE IPEnabled = True.”

70. Call the GetOSVer function, which gets the Version property of Win32_OperatingSystem. Assign the value returned to a variable.

71. Iterate through each network adapter configuration in the collection returned by the query.

72. Retrieve the Index property for the instance and use the Get method to return the instance of Win32_NetworkAdapter whose DeviceID property corresponds to the value of Index.

73. Retrieve the per-adapter properties of Win32_NetworkAdapter and Win32_NetworkAdapterConfiguration displayed by Ipconfig.exe /all.

74. If the AdapterType property is not available, display "Network" as the adapter type.

75. If the operating system version is:

· Greater than 5, indicating Windows XP or Windows Server 2003, retrieve the NetConnectionID property from Win32_NetworkAdapter.

· 5 or less, use the Index property of Win32_NetworkAdapterConfiguration as the identifier of the network adapter.

76. Retrieve and display other properties of the two classes.

77. If the property returns an array, check that the value is not null. If the return value is not null, assign each array element, separated by a space, to a string, and display the string.

78. If the property returns a value in WMI DATETIME format, call the WMIDateStringToDate function and pass it the DATETIME value.

This function converts the value to a more readable string representing the date and time.

Listing 12 Ipconfig.vbs

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172
	On Error Resume Next

Const HKEY_LOCAL_MACHINE = &H80000002

strComputer = "."

strKeyPath1 = "SYSTEM\CurrentControlSet\Services\Tcpip\Parameters"

strKeyPath2 = "SYSTEM\CurrentControlSet\Services\NetBT\Parameters"

strHostEntry = "Hostname"

strDomainEntry = "Domain"

strNodeEntry = "DhcpNodeType"

strRoutingEntry = "IPEnableRouter"

Set objReg = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" & _

 strComputer & "\root\default:StdRegProv")

objReg.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath1,strHostEntry,strHostname

objReg.GetStringValue HKEY_LOCAL_MACHINE,strKeyPath1,strDomainEntry,strDomain

objReg.GetDWORDValue HKEY_LOCAL_MACHINE,strKeyPath2,strNodeEntry,dwNodeType

objReg.GetDWORDValue HKEY_LOCAL_MACHINE,strKeyPath1,strRoutingEntry,dwIPRouting

Select Case dwNodeType

 Case 4 strNodeType = "Mixed"

 Case 8 strNodeType = "Hybrid"

 Case Else strNodeType = dwNodeType

End Select

If dwIPRouting = 0 Then

 strIPRouting = "No"

ElseIf dwIPRouting = 1 Then

 strIPRouting = "Yes"

Else

 strIPRouting = "?"

End If

strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colFirstNicConfig = objWMIService.ExecQuery _

 ("SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

For Each objFirstNicConfig In colFirstNicConfig

 strDnsWins = objFirstNicConfig.DNSEnabledForWINSResolution

Next

If strDnsWins = False Then

 strWinsProxy = "No"

ElseIf strDnsWins = True Then

 strWinsProxy = "Yes"

Else

 strWinsProxy = "?"

End If

' Display global settings.

WScript.Echo VbCrLf & "Windows IP Configuration" & VbCrLf

WScript.Echo " Host Name : " & strHostname

WScript.Echo " Primary DNS Suffix : " & strDomain

WScript.Echo " Node Type : " & strNodeType

WScript.Echo " IP Routing Enabled. : " & strIPRouting

WScript.Echo " WINS Proxy Enabled. : " & strWinsProxy

WScript.Echo " DNS Suffix Search List. : " & strDomain

Set colNicConfigs = objWMIService.ExecQuery _

 ("SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled = True")

sngOsVer = GetOsVer

' Display per-adapter settings.

For Each objNicConfig In colNicConfigs

 intIndex = objNicConfig.Index

 Set objNic = objWMIService.Get("Win32_NetworkAdapter.DeviceID=" & intIndex)

 strAdapterType = objNic.AdapterType

 If IsEmpty(strAdapterType) Or IsNull(strAdapterType) Or _

 (strAdapterType = "") Then

 strAdapterType = "Network"

 End If

 If sngOsVer > 5 Then

 strNetConn = objNic.NetConnectionID

 Else

 strNetConn = intIndex

 End If

 WScript.Echo VbCrLf & strAdapterType & " adapter " & strNetConn

 WScript.Echo " Connection-specific DNS Suffix . : " & _

 objNicConfig.DNSDomain

 WScript.Echo " Description : " & _

 objNicConfig.Description

 WScript.Echo " Physical Address. : " & _

 objNicConfig.MACAddress

 WScript.Echo " DHCP Enabled. : " & _

 objNicConfig.DHCPEnabled

' WScript.Echo " Autoconfiguration Enabled: " & objNicConfig.?

 strIPAddresses = ""

 If Not IsNull(objNicConfig.IPAddress) Then

 For Each strIPAddress In objNicConfig.IPAddress

 strIPAddresses = strIPAddresses & strIPAddress & " "

 Next

 End If

 WScript.Echo " IP Address. : " & strIPAddresses

 strIPSubnets = ""

 If Not IsNull(objNicConfig.IPSubnet) Then

 For Each strIPSubnet In objNicConfig.IPSubnet

 strIPSubnets = strIPSubnets & strIPSubnet & " "

 Next

 End If

 WScript.Echo " Subnet Mask : " & strIPSubnets

 strDefaultIPGateways = ""

 If Not IsNull(objNicConfig.DefaultIPGateway) Then

 For Each strDefaultIPGateway In objNicConfig.DefaultIPGateway

 strDefaultIPGateways = strDefaultIPGateways & strDefaultIPGateway & " "

 Next

 End If

 WScript.Echo " Default Gateway : " & _

 strDefaultIPGateways

 WScript.Echo " DHCP Server : " & _

 objNicConfig.DHCPServer

 strDNSServerSearchOrder = ""

 If Not IsNull(objNicConfig.DNSServerSearchOrder) Then

 For Each strDNSServer In objNicConfig.DNSServerSearchOrder

 strDNSServerSearchOrder = strDNSServerSearchOrder & VbCrLf & _

 " " & strDNSServer

 Next

 End If

 WScript.Echo " DNS Servers :" & _

 strDNSServerSearchOrder

 If Not IsNull(objNicConfig.WINSPrimaryServer) Then

 WScript.Echo " Primary WINS Server : " & _

 objNicConfig.WINSPrimaryServer

 End If

 If Not IsNull(objNicConfig.WINSSecondaryServer) Then

 WScript.Echo " Secondary WINS Server : " & _

 objNicConfig.WINSSecondaryServer

 End If

 If objNicConfig.DHCPEnabled Then

 dtmRawLeaseObtainedDate = objNicConfig.DHCPLeaseObtained

 strFormattedLeaseObtainedDate = WMIDateToString(dtmRawLeaseObtainedDate)

 WScript.Echo " Lease Obtained. : " & _

 strFormattedLeaseObtainedDate

 dtmRawLeaseExpiresDate = objNicConfig.DHCPLeaseExpires

 strFormattedLeaseExpiresDate = WMIDateToString(dtmRawLeaseExpiresDate)

 WScript.Echo " Lease Expires : " & _

 strFormattedLeaseExpiresDate

 End If

Next

'**

' Function: WMIDateStringToDate(dtmDate)

' Converts WMI date to string.

'**

Function WMIDateToString(dtmDate)

 WMIDateToString = CDate(Mid(dtmDate, 5, 2) & "/" & _

 Mid(dtmDate, 7, 2) & "/" & _

 Left(dtmDate, 4) & " " & _

 Mid(dtmDate, 9, 2) & ":" & _

 Mid(dtmDate, 11, 2) & ":" & _

 Mid(dtmDate, 13, 2))

End Function

'**

' Function: GetOsVer

' Gets the operating system version number.

'**

Function GetOsVer

 Set colOperatingSystems = objWMIService.ExecQuery _

 ("Select * from Win32_OperatingSystem")

 For Each objOperatingSystem In colOperatingSystems

 GetOSVer = CSng(Left(objOperatingSystem.Version, 3))

 Next

End Function

When you use Cscript.exe to run this script, output similar to the following is displayed in the command window:

C:\scripts>ipconfig.vbs

Windows IP Configuration

 Host Name : client1

 Primary DNS Suffix : fabrikam.com

 Node Type : Hybrid

 IP Routing Enabled. : No

 WINS Proxy Enabled. : Yes

 DNS Suffix Search List. : fabrikam.com

Ethernet 802.3 adapter Local Area Connection

 Connection-specific DNS Suffix . :

 Description : 3Com 3C920 Integrated Fast Ethernet

Controller (3C905C-TX Compatible) - Packet Scheduler Miniport

 Physical Address. : 00:B0:D0:23:70:37

 DHCP Enabled. : True

 IP Address. : 192.168.0.12

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.0.1

 DHCP Server : 192.168.0.1

 DNS Servers :

 192.168.0.1

 Primary WINS Server : 192.168.0.1

 Secondary WINS Server : 192.168.0.2

 Lease Obtained. : 6/2/2004 4:31:19 PM

 Lease Expires : 6/12/2004 7:31:19 PM

Tools for Basic TCP/IP Networking on Clients

The tables in this section list the available command-line and scripting tools, and registry keys for retrieving and displaying basic networking data on clients. Table 3 lists the command-line tools for displaying basic TCP/IP networking on clients and also indicates where you find the tools.

Table 3 Command-Line Tools for Basic TCP/IP Networking on Clients

	Tool
	Where Available

	Arp.exe
	Windows operating systems1

	Getmac.exe: GetMAC
	Windows 2000 Resource Kit

	Hostname.exe
	Windows operating systems

	Ipconfig.exe
	Windows operating systems

	Listadapters.vbs
	Windows 2000 Resource Kit

	Netconnections.vbs
	Windows 2000 Resource Kit

	Netipconfig.pl
	Windows 2000 Resource Kit

	Netipfilteringconfig.pl
	Windows 2000 Resource Kit

	Net.exe
	Windows operating systems

	Netset.exe
	Windows 2000 Resource Kit

	Netsh.exe
	Windows operating systems

	Netstat.exe
	Windows operating systems

	Networkprotocol.vbs
	Windows 2000 Resource Kit

	Ping.exe
	Windows 2000 Resource Kit

	Protocolbinding.vbs
	Windows 2000 Resource Kit

	Subnet_op.vbs
	Windows 2000 Resource Kit

	Timezone.exe: Daylight Saving Time Update Utility
	Windows 2000 Resource Kit

	Tzedit.exe: Time Zone Editor
	Windows 2000 Resource Kit -- GUI tool

	Wsremote.exe
	Windows XP Support Tool

1. Windows 2000, Windows XP, and Windows Server 2003. May also be present on other versions of Windows.

Table 4 lists the WSH and WMI tools for displaying basic TCP/IP networking on clients and also provides notes and availability information.

Table 4 WSH and WMI Tools for Basic TCP/IP Networking on Clients

	Technology
	Tool
	Notes/Where Available

	WSH
	WshController

WshNetwork

WshShell
	

	WMI
	Win32_ComputerSystem
	

	
	Win32_NetworkAdapterConfiguration
	

	
	Win32_NetworkAdapter
	

	
	Win32_NetworkAdapterSetting
	Association class associating Win32_NetworkAdapter and Win32_NetworkAdapterConfiguration

	
	Win32_NetworkClient
	

	
	Win32_NetworkConnection
	

	
	Win32_NetworkProtocol
	

	
	Win32_NTDomain
	Windows XP and Windows Server 2003 only

	
	Win32_OperatingSystem
	

	
	Win32_PingStatus
	Windows XP and Windows Server 2003 only

	
	Win32_ProtocolBinding
	Association class associating Win32_NetworkProtocol, Win32_SystemDriver, and Win32_NetworkAdapter

Table 5 lists the registry keys to use for displaying basic TCP/IP networking on clients.

[image: image14.wmf]
Caution

Incorrectly editing the registry may severely damage your system. Before making changes to the registry, you should back up any valued data on the computer.

Table 5 Registry Subkeys Related to Basic TCP/IP Networking on Clients

	Registry Subkeys

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces
\{AdapterIdentifier}

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dhcp

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dnscache

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NetBIOS

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NetBT

	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netman

Automating TCP/IP Networking on Clients Part 2 of 10: Scripting Basic TCP/IP Networking on Clients
 36
Automating TCP/IP Networking on Clients Part 2 of 10: Scripting Basic TCP/IP Networking on Clients
 37

