2
Windows Media™ Photo Preliminary Specification

Windows Media™ Photo
Photographic Still Image File Format

Preliminary Specification
© 2005 Microsoft Corporation. All rights reserved. Any use, distribution or public discussion of, and any feedback to, these materials is subject to the terms of the attached license.

	Version
	0.7

	Status
	Draft

Microsoft Corporation Technical Documentation License Agreement for the specification “Windows Media™ Photo”

READ THIS! THIS IS A LEGAL AGREEMENT BETWEEN MICROSOFT CORPORATION ("MICROSOFT") AND THE RECIPIENT OF THE ABOVE REFERENCED MATERIALS, WHETHER AN INDIVIDUAL OR AN ENTITY ("YOU"). IF YOU HAVE ACCESSED THIS AGREEMENT IN THE PROCESS OF DOWNLOADING THESE MATERIALS ("MATERIALS") FROM A MICROSOFT WEB SITE, BY CLICKING "I ACCEPT", DOWNLOADING, USING OR PROVIDING FEEDBACK ON THE MATERIALS, YOU AGREE TO THESE TERMS. IF THIS AGREEMENT IS ATTACHED TO MATERIALS, BY ACCESSING, USING OR PROVIDING FEEDBACK ON THE ATTACHED MATERIALS, YOU AGREE TO THESE TERMS. IF YOU DO NOT AGREE TO THESE TERMS, YOU ARE NOT AUTHORIZED TO ACCESS, DOWNLOAD, USE OR REVIEW THE MATERIALS.

For good and valuable consideration, the receipt and sufficiency of which are acknowledged, You and Microsoft agree as follows:

1. You may review these Materials only (a) as a reference to assist You in planning and designing Your product, service or technology ("Product") to interface with a Microsoft product, specification, service or technology ("Microsoft Product") as described in these Materials; and (b) to provide feedback on these Materials to Microsoft. All other rights are retained by Microsoft; this Agreement does not give You rights under any Microsoft patents. You may not (i) duplicate any part of these Materials, (ii) remove this Agreement or any notices from these Materials, or (iii) give any part of these Materials, or assign or otherwise provide Your rights under this Agreement, to anyone else.

2. These Materials may contain preliminary information or inaccuracies, and may not correctly represent any associated Microsoft Product as commercially released. All Materials are provided entirely "AS IS." To the extent permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND ASSUMES NO LIABILITY TO YOU FOR ANY DAMAGES OF ANY TYPE IN CONNECTION WITH THESE MATERIALS OR ANY INTELLECTUAL PROPERTY IN THEM.

3. If You are an entity and (a) merge into another entity or (b) a controlling ownership interest in You changes, Your right to use these Materials automatically terminates and You must destroy them.

4. You have no obligation to give Microsoft any suggestions, comments or other feedback ("Feedback") relating to these Materials. However, any Feedback you voluntarily provide may be used in Microsoft Products and related specifications or other documentation (collectively, "Microsoft Offerings") which in turn may be relied upon by other third parties to develop their own products, services or technology ("Third Party Products"). Accordingly, if You do give Microsoft Feedback on any version of these Materials or the Microsoft Offerings to which they apply, You agree: (a) Microsoft may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any Microsoft Offering; (b) You also grant third parties, without charge, only those patent rights necessary to enable Third Party Products to use, implement or interface with any specific parts of a Microsoft Product that incorporate Your Feedback; and (c) You will not give Microsoft any Feedback (i) that You have reason to believe is subject to any patent, copyright or other intellectual property claim or right of any third party; or (ii) subject to license terms which seek to require any Microsoft Offering incorporating or derived from such Feedback, or other Microsoft intellectual property, to be licensed to or otherwise shared with any third party.

5. Microsoft has no obligation to maintain the confidentiality of any Microsoft Offering, or the confidentiality of Your Feedback, including Your identity as the source of such Feedback.

6. This Agreement is governed by the laws of the State of Washington. Any dispute involving it must be brought in the federal or state superior courts located in King County, Washington, and You waive any defenses allowing the dispute to be litigated elsewhere. If there is litigation, the losing party must pay the other party's reasonable attorneys' fees, costs and other expenses. If any part of this Agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the remainder shall continue in effect. This Agreement is the entire agreement between You and Microsoft concerning these Materials; it may be changed only by a written document signed by both You and Microsoft.

Contents

ivPreface

1Chapter 1.
OVERVIEW

11.1
Objectives for Introducing a New Still Image Format

11.2
Compression Algorithm Overview

21.3
Image Data Encoding Formats

21.4
Format Identity

3Chapter 2.
Windows Media™ Photo Container

32.1
TIFF-Like Container

32.2
Windows Media™ Photo File Header

52.3
Image file directory

52.3.1
IFD Entry

52.3.2
Sort Order

52.3.3
Value/Offset

52.3.4
Count

52.3.5
Types

62.3.6
Fields are arrays

62.4
Multiple Images per Windows Media™ Photo File

7Windows Media™ Photo Tags

72.5
Image Format

72.5.1
PixelFormat

82.5.1.1
RGB

82.5.1.2
Grey

92.5.1.3
n-Channel

102.5.1.4
CMYK

102.5.1.5
Packed Bits

102.6
Rows and Columns

102.6.1
ImageWidth

112.6.2
ImageHeight

112.6.3
WidthResolution

112.6.4
HeightResolution

112.7
Location of the Data

112.7.1
ImageOffset

122.7.2
ImageByteCount

122.7.3
AlphaOffset

122.7.4
AlphaByteCount

122.7.5
Compression

122.7.6
Transformation

152.8
Descriptive Tags

152.8.1
ICCProfile

152.8.2
XMPMetadata

152.8.3
EXIFMetadata

16Chapter 3.
Windows Image Codec (WIC) Application Program Interfaces

163.1
Overview

163.1.1
Classes

163.2
IPropertyBag2 Interface for Encoder Parameters

163.2.1
Canonical Encoder Parameters

173.2.1.1
ImageQuality

173.2.1.2
CompressionQuality

173.2.1.3
Lossless

173.2.1.4
BitMapTransform

173.2.2
WMPhoto-Specific Encoder Parameters

183.2.2.1
UseCodecOptions

183.2.2.2
Quality

183.2.2.3
Overlap

183.2.2.4
Subsampling

183.2.2.5
RegionWidth, RegionHeight

183.2.2.6
Frequency Order

193.2.2.7
InterleavedAlpha

193.2.2.8
AlphaQuality

193.2.3
IPropertyBag2 Encoder/Decoder Options Usage

203.3
Interim Encoder Parameter Data Structure

213.4
WMPhoto Implementation of IWICBitmapSourceTransform

213.4.1.1
DoesSupportTransform function

213.4.1.2
GetClosestSize function

213.4.1.3
GetClosestPixelFormat function

213.4.1.4
CopyPixels function

Preface

About This Specification

Windows Media™ Photo is a file format and associated codec specifically designed to for use with all types of continuous tone photographic content. This document describes the features and capabilities of Windows Media™ Photo at the time of the Beta 2 release of Windows Vista.

The information contained in this specification is subject to change. Every effort has been made to ensure accuracy at the time of publication.

This specification is written for developers who are implementing support for Windows Media™ Photo in applications, including support for the XML Paper Specification (XPS).
Chapters 1 through 3 contain information about the file format itself; Chapter 4 contains information specific for Windows Vista developers.
Licensing Notes

Certain information relating to Windows Media™ Photo, including the details of the image compression algorithm, are available only to licensees of the technology.

The bit stream level documentation of the Windows Media™ Photo compression technology is documented in the Windows Media™ Photo Device Porting Kit (DPK). Information on licensing this DPK, including for use in XPS, will be available at http://www.microsoft.com/windows/windowsmedia/wmphoto.

Formatting Conventions

This specification uses the following formatting conventions:

Terms are formatted like this.

Important comments, typically highlighting unimplemented or preliminary features look like this.

Code looks like this.

Raw text and editorial notes look like this.

Language Notes

In this specification, the words that are used to define the significance of each particular requirement are capitalized. These words are used in accordance with their definitions in RFC 2119 and their meaning is reproduced here for convenience:

· MUST. This word, or the adjective “REQUIRED,” means that the item is an absolute requirement of the specification.

· SHOULD. This word, or the adjective “RECOMMENDED,” means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighed before choosing a different course.

· MAY. This word, or the adjective “OPTIONAL,” means that this item is truly optional. For example, one implementation may choose to include the item because a particular marketplace or scenario requires it or because it enhances the product. Another implementation may omit the same item.

OVERVIEW

Objectives for Introducing a New Still Image Format

Today’s file formats for continuous tone images present many limitations in maintaining the highest image quality or delivering the most optimal system performance. Windows Media™ Photo was designed to remove these limitations. The design objectives include:

High performance, embedded system friendly compression

· Small memory footprint

· Simple, integer-only operations (no divides)

· Industry-leading compression quality

· Lossless or lossy compression using the same algorithm

· Support a very wide range of pixel formats:

· Monochrome, RGB, CMYK or n-Channel image representation

· 8 or 16-bit unsigned integer

· 16 or 32-bit signed integer

· 16 or 32-bit floating point

· Several packed bit formats

· 1bpc monochrome

· 5 or 10bpc RGB

· RGBE Radiance

· Simple, extensible TIFF-like container structure

Planar or interleaved alpha channel

· Embedded ICC Profile

· EXIF and XMP metadata

Windows Media™ Photo is the only format that offers high dynamic range image encoding, lossless or lossy compression, multiple color formats, and performance that enables practical in-device implementation.

Compression Algorithm Overview

Windows Media™ Photo employs a new, state-of-the-art compression algorithm optimized for the digital photography market. Windows Media™ Photo offers image quality comparable to JPEG-2000 with computational and memory performance more closely comparable to JPEG. Windows Media™ Photo delivers a lossy compressed image of better perceptive quality than JPEG at less than half the file size. The same compression algorithm can also deliver mathematically lossless compressed images that are typically 2.5 times smaller than the original uncompressed data.

Windows Media™ Photo uses a very high performance reversible color space conversion, a reversible lapped biorthogonal transform and an advanced non-arithmentic entropy coding scheme. The transform requires at most 3 non-trivial (multiply plus addition) and 7 trivial (addition or shift) operations per pixel (with no divisions) at the highest quality level. In the highest performance mode, only 1 non-trivial and 4 trivial operations per pixel are required. The image is processed in 16x16 macro blocks, allowing a minimal memory footprint for embedded implementations.

Windows Media™ Photo provides native support for both RGB and CMYK, providing a reversible color transform for each of these color formats to an internal luminance-dominant format used for optimal compression efficiency. In addition Windows Media™ Photo supports YUV, monochrome and arbitrary n-channel color formats.

Because the transforms employed are fully reversible, the codec supports both lossless and lossy operation using a single algorithm. This significantly simplifies the implementation for embedded applications.

Windows Media™ Photo supports a wide range of popular numerical encodings at multiple bit depths. 8-bit and 16-bit formats, as well as some specialized packed bit formats are supported for both lossy and lossless compression. 32-bit formats are only supported using lossy compression as only 24 bits are typically retained through the various transforms designed to achieve maximum compression efficiency. While Windows Media™ Photo uses integer arithmetic exclusively for it’s internal processing, an innovative color transform process provides lossless encoding support for both fixed and floating point image information. This also enables extremely efficient conversion between different color formats as part of the encode/decode process.

The technical details of the Windows Media™ Photo compression algorithm are documented in the Windows Media™ Photo Device Porting Kit (see Preface.)
Image Data Encoding Formats

Windows Media™ Photo supports a wide range of color encoding formats including monochrome, RGB, CMYK and n-channel colors using several different fixed and floating point numerical representations at multiple bit depths, providing support for a very wide range of data compression scenarios.

The overall goal is to support the greatest possible level of image dynamic range and color precision, maintain forward compatibility with existing formats, and keep the device implementations of the encoder and decoder as simple as possible. To that end, the formats supported by Windows Media™ Photo are divided into Basic and Advanced formats. The minimum requirements for a decoder for digital photography applications include support for the Basic formats. The Advanced formats can optionally be supported by decoders targeted for other application-specific scenarios including printing, 3D rendering or advanced imagery applications. An encoder need only support the specific formats required for it’s particular scenarios. For example, a digital camera encoder has no need to support CMYK color or bit depths or channel configurations beyond the capabilities of the camera’s sensor. A general purpose image application should ideally support all the formats supported by Windows Media™ Photo. Since the underlying components in Windows provide this support, this is a simple requirement for any Windows application.

Windows Media™ Photo does not directly support palletized (indexed) color formats, those these formats can be readily converted to one of the formats directly supported by Windows Media™ Photo.

The a table listing pixel formats supported by Windows Media™ Photo, including whether these are Basic or Advanced formats, is included in the metadata section of this document, under the PixelFormat tag.

Format Identity

The file extension for a Windows Media™ Photo file is WDP. The MIME type for a Windows Media™ Photo file is image/vnd.ms-photo.
Windows Media™ Photo Container

TIFF-Like Container

Windows Media™ Photo stores image data in a container organized as a table of Image File Directory (IFD) tags, similar to a TIFF 6.0 container. A standard Windows Media™ Photo file contains the following:

· Image data

· Optional planar alpha channel

· Basic Windows Media™ Photo metadata stored as IFD tags

· Optional XMP metadata stored as XML in a single IFD tag

· Optional EXIF metadata stored as a sub IFD table linked by an IFD tag

The image data is a monolithic self contained, self describing Windows Media™ Photo compressed data structure.

A planar alpha channel is stored as a separately compressed single channel image as a second image data record, separately compressed from the primary image data record. This enables the image to be decoded independently of the alpha channel.

In an effort to remain compatible with software designed to decode IFD-table based TIFF files, the largest possible Windows Media™ Photo file is 2**32 bytes in length. This limit will be addressed in a future update.

All multi-byte numerical values in a Windows Media™ Photo file are stored in “little-endian” format, starting with the least significant bytes in the serial byte stream. Windows Media™ Photo does not support “big-endian” encoding. By supporting only one endian encoding, it limits the additional work of dealing with the two different formats to only those systems or devices which are natively big-endian, rather than requiring every decoder implementation, regardless of the native format to accommodate both possible encodings.

A Windows Media™ Photo file begins with an 8-byte file header that points to an image file directory (IFD). An image file directory contains information about the photo, as well as pointers to the actual photo data.

The following paragraphs describe the Windows Media™ Photo file header and IFD in more detail.

Windows Media™ Photo File Header

A Windows Media™ Photo file begins with an 8-byte photo file header, containing the following information:

Bytes 0-1:
“II” (0x4949) - This corresponds to the TIFF header convention for little-endian byte order for multi-byte numerical formats. Windows Media™ Photo only supports little-endian encoding, so the first two bytes of the file will always be “II”

Byte 2:
0xBC - An arbitrary but carefully chosen number (188) that uniquely identifies the file as a Windows Media™ Photo file vs. a TIFF 6.0 or other TIFF style file.

Byte 3:
The version number of the Windows Media™ Photo file structure. At present, the only allowable version numbers are 0 and 1. 0 is reserved to represent pre-release development versions of the bit stream. A version 0 file may contain data incompatible with the final version of the format. A Windows Media™ Photo file that fully conforms with the released 1.0 Windows Media™ Photo specification must always have a version number of 1. Values greater than 1 are reserved for future versions of the file format. Since the interpretation of any information beyond the first four bytes of the file may change in future versions, a 1.0 compatible decoder must reject any files with a version number greater than 1.
Bytes 4-7:
The offset (in bytes) of the first IFD. The directory may be at any location in the file after the header but must begin on a word boundary. In particular, a IFD may follow the image data it describes. Readers must follow the pointers wherever they may lead.

The term byte offset is always used in this document to refer to a location with respect to the beginning of the Windows Media™ Photo file. The first byte of the file has an offset of 0.

[image: image1.emf]A

B

.

.

.

0

2

4

6

A

A+2

A+14

A+26

A+2+B*12

0x4949

0xBC00 or

0xBC01

Offset of 1st IFD

IFD Entries

IFD Entry 0

IFD Entry 1

IFD Entry 2

Offset to next IFD

X

X+2

X+4

X+8

Tag

Type

Count

Value or Offset

Value

IFD Entry

IFD

Header

Figure 1

Image file directory

A Image file directory (IFD) consists of a 2-byte count of the number of directory entries (i.e., the number of fields), followed by a sequence of 12-byte field entries, and followed by a 4-byte byte offset to the next IFD (or 0 if none). (Do not forget to write the 4 bytes of 0 after the last IFD.) There must be at least 1 IFD in a Windows Media™ Photo file and each IFD must have at least one entry.

IFD Entry

Each 12-byte IFD entry has the following format:

Bytes 0-1
The Tag that identifies the field.

Bytes 2-3
The field Type.

Bytes 4-7
The number of values, Count of the indicated Type.

Bytes 8-11
The Value/Offset, contains the tag value if it is four bytes (or less) or the file offset (in bytes) of the location in the file of the Value for this tag. The Value is expected to begin on a word boundary; the corresponding Value Offset will thus be an even number. This file offset may point anywhere in the file, even after the photo data.

Sort Order

The entries in an IFD must be sorted in ascending order by Tag. Note that this is not the order in which the fields are described in this document. The Values to which directory entries point need not be in any particular order in the file.

Value/Offset

To save time and space the Value/Offset contains the Value instead of pointing to the Value if and only if the Value fits into 4 bytes. If the Value is shorter than 4 bytes, it is left-justified within the 4-byte Value/Offset, i.e., stored in the lower numbered bytes. (If this value is read into a 32-bit register on a little-endian machine, this will correspond the least significant bytes.) Whether the Value fits within 4 bytes is determined by the Type and Count of the field.

Count

Count is the number of values. Note that Count is not the total number of bytes. For example, a single 16-bit word (SHORT) has a Count of 1; not 2.

Types

The field types and their sizes are:

1 = BYTE
8-bit unsigned integer.

2 = ASCII
8-bit byte that contains a 7-bit ASCII code; the last byte must be NUL (binary zero).

3 = SHORT
16-bit (2-byte) unsigned integer in little-endian (LSB first) byte order.

4 = LONG
32-bit (4-byte) unsigned integer in little-endian (LSB first) byte order.

5 = RATIONAL
Two LONGs: the first represents the numerator of a fraction; the second, the denominator, both in little-endian (LSB first) byte order.

6 = SBYTE
An 8-bit signed (twos-complement) integer.

7 = UNDEFINED
An 8-bit byte that may contain anything, depending on the definition of the field.

8 = SSHORT
A 16-bit (2-byte) signed (twos-complement) integer in little-endian (LSB first) byte order.

9 = SLONG
A 32-bit (4-byte) signed (twos-complement) integer in little-endian (LSB first) byte order.

10 = SRATIONAL
Two SLONG’s: the first represents the numerator of a fraction, the second the denominator, both in little-endian (LSB first) byte order.

11 = FLOAT
Single precision (4-byte) IEEE format in little-endian (LSB first) byte order.

12 = DOUBLE
Double precision (8-byte) IEEE format in little-endian (LSB first) byte order.

The value of the Count part of an ASCII field entry includes the NUL. If padding is necessary, the Count does not include the pad byte. Note that there is no initial “count byte” as in Pascal-style strings.

Any ASCII field can contain multiple strings, each terminated with a NUL. A single string is preferred whenever possible. The Count for multi-string fields is the number of bytes in all the strings in that field plus their terminating NUL bytes. Only one NUL is allowed between strings, so that the strings following the first string will often begin on an odd byte.

The reader must check the type to verify that it contains an expected value. Windows Media™ Photo currently allows more than 1 valid type for some fields. For example, ImageWidth and ImageLength are usually specified as having type SHORT. But photos with more than 64K rows or columns must use the LONG field type.

Windows Media™ Photo readers must accept BYTE, SHORT, or LONG values for any unsigned integer field. This allows a single procedure to retrieve any integer value, makes reading more robust, and saves disk space in some situations.

Warning: It is possible that other Windows Media™ Photo field types will be added in the future. Readers must not try to interpret fields containing an unexpected field type.

Fields are arrays

Each IFD Entry has an associated Count. This means that all fields are actually one-dimensional arrays, even though most fields contain only a single value. For example, to store a complicated data structure in a single private field, use the UNDEFINED field type and set the Count to the number of bytes required to hold the data structure.

Multiple Images per Windows Media™ Photo File

There may be more than one IFD in a Windows Media™ Photo file. The default view of the Windows Media™ Photo file is always stored as the first subfile so a basic Windows Media™ Photo reader is not required to read any IFD’s beyond the first one.

More information on multiple images per Windows Media™ Photo file will be added in a future update of this document.
Windows Media™ Photo Tags
Image Format

Rather than use a series of metadata tags to attempt to describe the attributes of the structure of an image, Windows Media™ Photo uses a unique GUID to provide a non-ambiguous definition of the image pixel format. Each pixel format value represents a unique definition of all the parameters that describe the image format. An encoder or decoder maintains a list of the GUID’s it supports with a table of the associated pixel attributes. This eliminates any ambiguity over unsupported combinations of individual image attribute tags.

PixelFormat

Tag
= 48129 (0xBC01)

Type
= Byte

Count
= 16

A 128-bit Globally Unique Identifier (GUID) that identifies the image pixel format.

The tables starting on the next page list all the pixel formats currently supported by the Windows Media™ Photo codec. Each table contains the following information:

PixelFormat Name
A descriptive identification for the purpose of this document. The Windows Avalon WIC symbol for the GUID is this name, preceded by “GUID_”.

GUID
The globally unique identifier that specifies this pixel format.

Ch
The number of channels.

BPC
The number of bits per channel.

BPP
The number of bits per pixel. In the case when this value is not equal to Ch * BPP there are additional padding bits

Num
The numerical interpretation of the value, either an unsigned integer, a signed integer or a floating point number. Signed integers are always in two’s complement format. 32-bit floating point numbers are in IEEE format. 16-bit floating point numbers are in Half format.

Color
The basic color structure of the image. Windows Media™ Photo supports image data structured as single channel monochrome (Grey), three-channel RGB, four-channel CMYK or n-Channel data containing anywhere from two to sixteen channels of arbitrary, uncorrelated continuous tone information. The detailed information that describes the colorimetric attributes of the image are stored in the ICC color profile.

A
Indicates that this format includes an alpha channel.

B
Indicates that this is a Basic pixel format supported by all Windows Media™ Photo decoder implementations.

RGB

	PixelFormat Name

GUID
	Ch
	BPC
	BPP
	Num
	Color
	A
	B

	WICPixelFormat24bppRGB

6fddc324-4e03-4bfe-b1853d77768dc90d
	3
	8
	24
	UINT
	RGB
	
	(

	WICPixelFormat24bppBGR

6fddc324-4e03-4bfe-b1853d77768dc90c
	3
	8
	24
	UINT
	RGB
	
	(

	WICPixelFormat32bppBGR

6fddc324-4e03-4bfe-b1853d77768dc90e
	3
	8
	24
	UINT
	RGB
	
	

	WICPixelFormat48bppRGB

6fddc324-4e03-4bfe-b1853d77768dc915
	3
	16
	48
	UINT
	RGB
	
	(

	WICPixelFormat48bppRGBFixedPoint

6fddc324-4e03-4bfe-b1853d77768dc912
	3
	16
	48
	SINT
	RGB
	
	(

	WICPixelFormat48bppRGBHalf

6fddc324-4e03-4bfe-b1853d77768dc93b
	3
	16
	48
	Float
	RGB
	
	

	WICPixelFormat96bppRGBFixedPoint

6fddc324-4e03-4bfe-b1853d77768dc918
	3
	32
	96
	Float
	RGB
	
	

	WICPixelFormat128bppRGBFloat

6fddc324-4e03-4bfe-b1853d77768dc91b
	3
	32
	96
	Float
	RGB
	
	

	WICPixelFormat32bppBGRA

6fddc324-4e03-4bfe-b1853d77768dc90f
	4
	8
	32
	UINT
	RGB
	(
	

	WICPixelFormat64bppRGBA

6fddc324-4e03-4bfe-b1853d77768dc916
	4
	16
	64
	UINT
	RGB
	(
	

	WICPixelFormat64bppRGBAFixedPoint

6fddc324-4e03-4bfe-b1853d77768dc91d
	4
	16
	64
	SINT
	RGB
	(
	

	WICPixelFormat64bppRGBAHalf

6fddc324-4e03-4bfe-b1853d77768dc93a
	4
	16
	64
	Float
	RGB
	(
	

	WICPixelFormat128bppRGBAFixedPoint

6fddc324-4e03-4bfe-b1853d77768dc91e
	4
	32
	128
	SINT
	RGB
	(
	

	WICPixelFormat128bppRGBAFloat

6fddc324-4e03-4bfe-b1853d77768dc919
	4
	32
	128
	Float
	RGB
	(
	

	WICPixelFormat32bppPBGRA

6fddc324-4e03-4bfe-b1853d77768dc910
	4
	8
	32
	UINT
	RGB
	(
	

	WICPixelFormat64bppPRGBA

6fddc324-4e03-4bfe-b1853d77768dc917
	4
	16
	64
	UINT
	RGB
	(
	

	WICPixelFormat128bppPRGBAFloat

6fddc324-4e03-4bfe-b1853d77768dc91a
	4
	32
	128
	Float
	RGB
	(
	

Grey

	PixelFormat Name

GUID
	Ch
	BPC
	BPP
	Num
	Color
	A
	B

	WICPixelFormat8bppGray

6fddc324-4e03-4bfe-b1853d77768dc908
	1
	8
	8
	UINT
	Grey
	
	(

	WICPixelFormat16bppGray

6fddc324-4e03-4bfe-b1853d77768dc90b
	1
	16
	16
	UINT
	Grey
	
	(

	WICPixelFormat16bppGrayFixedPoint
6fddc324-4e03-4bfe-b1853d77768dc913
	1
	16
	16
	SINT
	Grey
	
	(

	WICPixelFormat16bppGrayHalf

6fddc324-4e03-4bfe-b1853d77768dc93e
	1
	16
	16
	Float
	Grey
	
	

	WICPixelFormat32bppGrayFixedPoint

6fddc324-4e03-4bfe-b1853d77768dc93f
	1
	32
	32
	SINT
	Grey
	
	

n-Channel

	PixelFormat Name

GUID
	Ch
	BPC
	BPP
	Num
	Color
	A
	B

	WICPixelFormat24bpp3Channels

6fddc324-4e03-4bfe-b1853d77768dc920
	3
	8
	24
	UINT
	N-Chn
	
	

	WICPixelFormat32bpp4Channels

6fddc324-4e03-4bfe-b1853d77768dc921
	4
	8
	32
	UINT
	N-Chn
	
	

	WICPixelFormat40bpp5Channels

6fddc324-4e03-4bfe-b1853d77768dc922
	5
	8
	40
	UINT
	N-Chn
	
	

	WICPixelFormat48bpp6Channels

6fddc324-4e03-4bfe-b1853d77768dc923
	6
	8
	48
	UINT
	N-Chn
	
	

	WICPixelFormat56bpp7Channels

6fddc324-4e03-4bfe-b1853d77768dc924
	7
	8
	56
	UINT
	N-Chn
	
	

	WICPixelFormat64bpp8Channels

6fddc324-4e03-4bfe-b1853d77768dc925
	8
	8
	64
	UINT
	N-Chn
	
	

	WICPixelFormat32bpp3ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc92e
	4
	8
	32
	UINT
	N-Chn
	(
	

	WICPixelFormat40bpp4ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc92f
	5
	8
	40
	UINT
	N-Chn
	(
	

	WICPixelFormat48bpp5ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc930
	6
	8
	48
	UINT
	N-Chn
	(
	

	WICPixelFormat56bpp6ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc931
	7
	8
	56
	UINT
	N-Chn
	(
	

	WICPixelFormat64bpp7ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc932
	8
	8
	64
	UINT
	N-Chn
	(
	

	WICPixelFormat72bpp8ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc933
	9
	8
	72
	UINT
	N-Chn
	(
	

	WICPixelFormat48bpp3Channels

6fddc324-4e03-4bfe-b1853d77768dc926
	3
	16
	48
	UINT
	N-Chn
	
	

	WICPixelFormat64bpp4Channels

6fddc324-4e03-4bfe-b1853d77768dc927
	4
	16
	64
	UINT
	N-Chn
	
	

	WICPixelFormat80bpp5Channels

6fddc324-4e03-4bfe-b1853d77768dc928
	5
	16
	80
	UINT
	N-Chn
	
	

	WICPixelFormat96bpp6Channels

6fddc324-4e03-4bfe-b1853d77768dc929
	6
	16
	96
	UINT
	N-Chn
	
	

	WICPixelFormat112bpp7Channels

6fddc324-4e03-4bfe-b1853d77768dc92a
	7
	16
	112
	UINT
	N-Chn
	
	

	WICPixelFormat128bpp8Channels

6fddc324-4e03-4bfe-b1853d77768dc92b
	8
	16
	128
	UINT
	N-Chn
	
	

	WICPixelFormat64bpp3ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc934
	4
	16
	64
	UINT
	N-Chn
	(
	

	WICPixelFormat80bpp4ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc935
	5
	16
	80
	UINT
	N-Chn
	(
	

	WICPixelFormat96bpp5ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc936
	6
	16
	96
	UINT
	N-Chn
	(
	

	WICPixelFormat112bpp6ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc937
	7
	16
	112
	UINT
	N-Chn
	(
	

	WICPixelFormat128bpp7ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc938
	8
	16
	128
	UINT
	N-Chn
	(
	

	WICPixelFormat144bpp8ChannelsAlpha

6fddc324-4e03-4bfe-b1853d77768dc939
	9
	16
	144
	UINT
	N-Chn
	(
	

CMYK

	PixelFormat Name

GUID
	Ch
	BPC
	BPP
	Num
	Color
	A
	B

	WICPixelFormat32bppCMYK

6fddc324-4e03-4bfe-b1853d77768dc91c
	4
	8
	32
	UINT
	CMYK
	
	

	WICPixelFormat40bppCMYKAlpha

6fddc324-4e03-4bfe-b1853d77768dc92c
	5
	8
	40
	UINT
	CMYK
	(
	

	WICPixelFormat64bppCMYK

6fddc324-4e03-4bfe-b1853d77768dc91f
	4
	16
	64
	UINT
	CMYK
	
	

	WICPixelFormat80bppCMYKAlpha

6fddc324-4e03-4bfe-b1853d77768dc92d
	5
	16
	80
	UINT
	CMYK
	(
	

Packed Bits

	PixelFormat Name

GUID
	Ch
	BPC
	BPP
	Num
	Color
	A
	B

	WICPixelFormatBlackWhite

6fddc324-4e03-4bfe-b1853d77768dc905
	1
	1
	1
	UINT
	Grey
	
	

	WICPixelFormat16bppRGB555

6fddc324-4e03-4bfe-b1853d77768dc909
	3
	5
	16
	UINT
	RGB
	
	

	WICPixelFormat16bppRGB565

6fddc324-4e03-4bfe-b1853d77768dc90a
	3
	5,6,5
	16
	UINT
	RGB
	
	

Rows and Columns

An image is organized as a rectangular array of pixels. The dimensions of this array are described by the following fields. If an application directly changes the Transformation metadata tag (effectively requesting a transform to be performed when the image is decoded) then the application must also make sure the values for ImageWidth, ImageHeight, WidthResolution and HeightResolution are correct, and make the appropriate swap between width and height values if the resulting transformation change includes a rotation. For applications written using the Avalon WindowsCodecs interfaces, it will never be necessary to directly access these metadata tags. All information in these tags are queried and changed through WIC interfaces.

ImageWidth

Tag
= 48256 (0hBC80)

Type
= LONG

Count
=1

This specifies the number of columns in the transformed photo, or the number of pixels per scan line.

ImageHeight

Tag
= 48257 (0hBC81)

Type
= LONG

Count
=1

This specifies the number of rows of pixels or scan lines in the transformed photo.

WidthResolution

Tag
= 48258 (0hBC82)

Type
= SINGLE

N
=1

This specifies horizontal resolution of transformed image, expressed in pixels per inch. If this value is zero or the tag is not present then there is no defined resolution.

HeightResolution

Tag
= 48259 (0hBC83)

Type
= SINGLE

Count
=1

This specifies the vertical resolution of transformed image, expressed in pixels per inch. If this value is zero or the tag is not present then there is no defined resolution.

Location of the Data

Because Windows Media™ Photo uses an advanced compression scheme, there is no simple way for applications to directly access specific portions the stored photo data other than through the appropriate codec interfaces. Windows Media™ Photo files include the following tags to specify the location and size of the compressed image data structure, and the optional compressed alpha channel data structure.

Applications written using the WindowsCodecs API’s will never need to directly access these metadata tags. WIC interfaces provide a more convenient and safer method for all operations that make use of these metadata values.

ImageOffset

Tag
= 48320 (0hBCC0)

Type
= LONG

Count
=1

This specifies the byte offset pointer to the beginning of the photo data, relative to the beginning of the file.

ImageByteCount

Tag
= 48321 (0hBCC1)

Type
= LONG

Count
=1

This specifies the size of the photo data, in bytes.

AlphaOffset

Tag
= 48322 (0hBCC2)

Type
= LONG

Count
=1

If this tag is present and non-zero, it specifies the byte offset pointer the beginning of the alpha channel data, relative to the beginning of the file.

AlphaByteCount

Tag
= 48323 (0hBCC3)

Type
= LONG

Count
=1

If this tag is present and non-zero, it specifies the size of the alpha channel data, in bytes.

Compression

Tag
= 259 (0hBC03)

Type
= LONG

Count
=1

This tag specifies if the image data is compressed. A value of zero or if the tag is not present specifies that the image is compressed using the Windows Media™ Photo compression algorithm. A value of 1 specifies an uncompressed image.

Uncompressed mode is not currently implemented.

Transformation

Tag
= 48130 (0xBC02)

Type
= LONG

Count
= 1

This specifies the transformation to be applied when decoding the image to present the desired representation.

There are 8 different possible image orientations as the result of the combination of a 90 degree clockwise rotation, a horizontal flip and a vertical flip. The Transformation tag represents the required transformation to achieve each orientation, as shown in the following table. ID=0 represents the un-transformed image:

	ID
	RCW
	FlipH
	FlipV
	Orient
	Fill
	TIFF

	0
	0
	0
	0
	[image: image2.png]

	TL
	1

	1
	0
	0
	1
	[image: image3.png]

	BL
	4

	2
	0
	1
	0
	[image: image4.png]

	TR
	2

	3
	0
	1
	1
	[image: image5.png]

	BR
	3

	4
	1
	0
	0
	[image: image6.png]

	RT
	6

	5
	1
	0
	1
	[image: image7.png]

	RB
	7

	6
	1
	1
	0
	[image: image8.png]

	LT
	5

	7
	1
	1
	1
	[image: image9.png]

	LB
	8

The columns in the table above are as follows:

ID
The tag value that specifies the transformation.

RCW
A value of one specifies that a 90 degree clockwise rotation is applied as the first step of the transformation.

FlipV
A value of one specifies that vertical flip is applied as part of the transformation, following the rotation.

FlipH
A value of one specifies that horizontal flip is applied as part of the transformation, following the rotation.

Orient
This graphically shows the resulting orientation as a result of the transformation.

Fill
This is an alternate way to describe the requested transformation, specifying the associated two-dimensional fill order of the bitmap as follows:

TL
The 0th row represents the top edge of the image and the 0th column represents the left edge of the image.

BL
The 0th row represents the bottom edge of the image and the 0th column represents the left edge of the image.

TR
The 0th row represents the top edge of the image and the 0th column represents the right edge of the image.

BR
The 0th row represents the bottom edge of the image and the 0th column represents the right edge of the image.

RT
The 0th row represents the top right of the image and the 0th column represents the top edge of the image.

RB
The 0th row represents the right edge of the image and the 0th column represents the bottom edge of the image.

LT
The 0th row represents the left edge of the image and the 0th column represents the top edge of the image.

LB
The 0th row represents the left edge of the image and the 0th column represents the bottom edge of the image.

TIFF
This is the value of the TIFF-compatible Orientation tag that would result in the same transformation. Windows Media™ Photo does not use the Orientation tag.

While an application may set a value for the Transformation tag, it must not depend on that value remaining the same. The Windows Media™ Photo codec may elect (typically during a re-encoding process) to apply the transformation specified by the tag to the image bits, resetting the tag to 0. In either case an application never has to perform the transformation specified by the tag. The Windows Media™ Photo decoder will use this tag to transform the image during decoding. An application only needs to set this flag to quickly apply a lossless transformation to an image.

If an application chooses to apply a transformation to a Windows Media™ Photo file by setting this metadata tag, it must take into account the current value of the tag. The table below specifies the correct tag setting. The first column specifies the current value of the tag. The header row specifies the additional transform that the application wants to apply and the associated cell entry specifies the new value that must be stored in the tag, resulting in the combined transformation.

	
	Secondary Transform

	1st Trnsfrm
	0
	1
	2
	3
	4
	5
	6
	7

	0
	0
	1
	2
	3
	4
	5
	6
	7

	1
	1
	0
	3
	2
	6
	7
	4
	5

	2
	2
	3
	0
	1
	5
	4
	7
	6

	3
	3
	2
	1
	0
	7
	6
	5
	4

	4
	4
	5
	6
	7
	3
	2
	1
	0

	5
	5
	4
	7
	6
	1
	0
	3
	2

	6
	6
	7
	4
	5
	2
	3
	0
	1

	7
	7
	6
	5
	4
	0
	1
	2
	3

Whenever an image is encoded, it should be stored in an un-transformed orientation and the Transformation tag should be reset to zero.

If an application changes the Transformation metadata tag (effectively requesting a transform to be performed when the image is decoded) then the application must also make sure the values for ImageWidth and ImageHeight are correct (swap them if the transform includes a rotation.)

Descriptive Tags

ICCProfile

This contains information to correctly interpret the numeric color values contained in the image, in accordance with the format defined by the InterColor Consortium’s InterColor Profile Format.

If this tag is missing or has a Count of zero, RGB images (or their equivalent grey scale formats) are interpreted as sRGB for unsigned values or scRGB for signed or floating point values.

Tag
= 34675 (0x8773)

Type
= BYTE

Count
= the total number of bytes in the ICC Profile data record.

XMPMetadata

All the descriptive information for a Windows Media™ Photo file may be stored in XML syntax in accordance with the Adobe Extensible Metadata Platform (XMP) specification dated January 2004. (www.adobe.com/xmp) The XML-encoded XMP metadata is located using this IFD tag.

Tag
= 700 (0x2bc)

Type
= BYTE

Count
= the total number of bytes in the XML data record, including any terminator.

EXIFMetadata

All the descriptive information for a Windows Media™ Photo file may be stored in accordance with the EXIF 2.2 schema and syntax. This EXIF data is stored as an additional IFD table. The tag ID’s and types in this table are as defined by EXIF 2.2. This tag value is the byte offset pointer to the beginning of the EXIF IFD table.

Tag
= 34665 (0x8769)

Type
= LONG

Count
= 1

Windows Image Codec (WIC) Application Program Interfaces

Overview

WMPhoto is an installable codec for Windows Media™ Photo files based on the Windows Imaging Codec (WIC) installable codec architecture. It implements several of the WIC defined interfaces for codecs. The complete documentation for these interfaces can be found in the Avalon Unmanaged Codec APIs Specification.

Classes

WMPhoto defines the following C++ classes and implements the associated WIC interfaces as follows:

	WMPhoto Class
	WIC Interface

	CWMPCodecInfo
	IWICBitmapEncoderInfo

IWICBitmapDecoderInfo

	CWMPencoder
	IWICBitmapEncoder

	CWMPdecoder
	IWICBitmapDecoder

	CWMPdecoderframe
	IWICBitmapFrameDecoder

IWICBitmapSourceTransform

IWICMetadataBlockReader

	CWMPEncoderFrame
	IWICBitmapFrameEncode

IWICBitmapMetadataBlockWriter

IPropertyBag2

Refer to the Avalon Unmanaged Codec API’s Specification for complete details on the WIC interfaces.

IPropertyBag2 Interface for Encoder Parameters

NOTE: The IPropertyBag2 interface is not currently supported in WIC. As an interim, an application passes a pointer to a fixed data structure that contains the encoder parameters via the IWICBitmapEncodeFrame interface. This interim data structure is at the end of this section.

Parameters that control the image encoding process are specified using the Windows IPropertyBag2 interface. There are a set of canonical properties that apply to any image file codec type, and additional properties that are specific to WMPhoto. An application can provide basic control of the WMPhoto encoding process using the canonical properties, or have more specific control using the codec-specific properties.

Using the IPropertyBag2 interface, an application can query the available encoder parameters. Each parameter also has a default value in the event it is not specified by the calling application. It is acceptable for an application to encode a file using default values by simply ignoring the encoder parameters and the associated IPropertyBag2 interface.

Canonical Encoder Parameters
The Longhorn Windows Image Codecs (WIC) interface expects all installable codecs to support a subset of these canonical encoder options:

	Property Name
	VARTYPE
	Value

	ImageQuality
	VT_R4
	0-1.0

	CompressionQuality
	VT_R4
	0-1.0

	Lossless
	VT_BOOL
	True/False

	BitmapTransform
	VT_UI1
	WICBitmapTransformOption

ImageQuality

0.0 means the lowest possible fidelity rendition and 1.0 means the highest fidelity, which for WMPhoto means lossless. This value maps to specific WMPhoto encoder parameters based on the following table:

	ImageQuality
	Q (BD<=8)
	Q (BD<=16)
	Q (BD>16)
	Subsample
	Overlap

	>0.0 <0.4
	105-IQ*100
	185-IQ*180
	245-IQ*240
	4:4:4
	2

	>0.4 <1.0
	105-IQ*100
	185-IQ*180
	245-IQ*240
	4:4:4
	1

	1.0
	1
	1
	1
	4:4:4
	0

The default value is 0.9.

CompressionQuality

0.0 means the least efficient compression scheme available, typically resulting in a fast encode but larger output. A value of 1.0 means the most efficient scheme available, typically taking more time to encode but producing smaller output.

WMPhoto does not support this canonical encoder option and it should not be present in the encoder options IPropertyBag2 parameter list.

Lossless

Setting this parameter to TRUE is the equivalent of setting the ImageQuality to 1.0.

The default value is FALSE.

BitMapTransform

This parameter is stored as the BitMapTransform value in the compressed bitstream header, controlling how the image will be transformed during decode. The allowable values are 1 to 8, representing the following transforms:

The default value is 1.

WMPhoto-Specific Encoder Parameters
WMPhoto supports the following encoder parameters via the IPropertyBag2 Interface:

	Property Name
	VARTYPE
	Value

	UseCodecOptions
	VT_Bool
	True/False

	Quality
	VT_UI1
	1 - 255

	Overlap
	VT_UI1
	0 - 2

	Subsampling
	VT_UI1
	0 - 4

	RegionWidth
	VT_UI8
	16 to image width

	RegionHeight
	VT_UI8
	16 to image height

	FrequencyOrder
	VT_Bool
	True/False

	InterleavedAlpha
	VT_Bool
	True/False

	AlphaQuality
	VT_UI1
	1 - 255

UseCodecOptions

If this parameter is TRUE, the Quality, Overlap and Subsampling parameters are used in place of the ImageQuality encoder canonical parameter. The default value is FALSE. When FALSE, the Quality, Overlap and Subsampling parameters are set based on a table lookup determined by the ImageQuality parameter.

The default value is FALSE.

Quality

This parameter controls the compression quality for the main image. A value of 1 sets lossless mode. Increasing values result in higher compression ratios and lower image quality.

The default value is 10.

Overlap

This parameter selects the optional overlap processing level:

0
No overlap processing is enabled.

1
One level of overlap processing is enabled, modifying 4x4 block encoded values based on values of neighboring blocks.

2
Two levels of overlap processing are enabled; in addition to the first level processing, encoded values of 16x16 macro blocks are modified based on the values of neighboring macro blocks.

The default value is 1.

Subsampling

This parameter only applies to RGB images. It enabled additional compression in the chroma space, preserving luminance detail at the expense of color detail:

4
4:4:4 encoding preserves full chroma resolution

2
4:2:2 encoding reduces chroma resolution to ½ of luminance resolution

1
4:2:0 encoding reduces chroma resolution to ¼ of luminance resolution

0
4:0:0 encoding discards all chroma content, preserving luminance only

Any value >2 is interpreted as 4 (4:4:4 encoding.) The default value is 4.

RegionWidth, RegionHeight

These optional parameters specify the horizontal and vertical size of tiles for deconstructing the image prior to compression encoding for the most optimal region decode performance. The smallest allowable value is 16 and the largest value (and the default if the parameter is not present) is the corresponding image dimension. Because there is overhead associated with each region tile, these values should be chosen carefully to meet the specific scenario and small values should be avoided.

Frequency Order

This parameter specifies that the image must be encoded in frequency order, with the lowest frequency data appearing first in the file, and image content grouped by its frequency rather than its spatial orientation. Organizing a file by frequency order provides the highest performance results for any frequency-based decoding, and is the preferred option. Device implementations of Windows Media™ Photo encoders may choose to organize a file in spatial order to reduce the memory footprint required during encoding.

The default value is currently FALSE, though it is recommended that apps encoding Windows Media™ Photo files on a Windows system set this property to TRUE.

InterleavedAlpha

Setting this parameter to true will instruct the codec to encode the alpha channel information as an additional interleaved channel, with no correlation to the image content channels. This mode is useful when it is important to decode alpha simultaneously with the image in a streaming scenario.

THIS SETTING IS CURRENTLY NOT SUPPORTED.

Setting this parameter to FALSE results in the alpha channel encoded as a separate image, with its own optional Quality value. A Planar alpha channel makes it possible to decode the image data and the alpha channel independently. Interleaved alpha channels are only supported for RGB image data. A Planar alpha channel can be associated with any image format that defines an alpha channel.

The default value is FALSE.

AlphaQuality

This parameter controls the compression quality for the planar alpha channel image. A value of 1 sets lossless mode. Increasing values result in higher compression ratios and lower image quality. The default value is the same as the Quality parameter.

THIS SETTING IS CURRENTLY NOT SUPPORTED.

IPropertyBag2 Encoder/Decoder Options Usage
The component factory provides an easy creation point for creating an encoder options property bag. The property bag must be initialized during creation with all the encoder options. Option value ranges will be enforced on Write.
An application is given the encoder options bag during frame creation and must configure any values prior to initializing the encoder frame. For a UI driven app, it can offer a fixed UI for the canonical encoder options or an advanced, WMPhoto-specific view for the more detailed options. Changes can be made one at a time through the Write method and any error will be reported through IErrorLog. The UI application should always re-read and display all options after making a change in case the change caused a cascading change. An application must be prepared to handle failed frame initialization for codecs that only provide minimal error reporting through their property bag.

 virtual HRESULT STDMETHODCALLTYPE CreatePropertyBag(

 /* [in] */ PROPBAG2 *ppropOptions,

 /* [in] */ UINT cCount,

 /* [out] */ IPropertyBag2 **ppIPropertyBag2) PURE;
Interim Encoder Parameter Data Structure
WIC has currently not implemented the IPropertyBag2 interface for encoder parameters. In the interim, rather than passing a handle to an IPropertyBag2 object as part of the IWICBitmapFrameEncode interface, an application must pass a pointer to a WICWmpEncodeStruct data structure, defined below. This fixed structure contains the WMPhoto specific encoder parameters; their specific interpretations are described in the IPropertyBag2 section above.

This interim struct will be eliminated when the IPropertyBag2 interface is implemented.

/*===*\

WICWmpEncodeStruct

===/

typedef [public] struct WICWmpEncodeStruct

{

WICPixelFormatGUID pixelFormat;

INT encodeOptions;
/* see WICWmpEncodeOptions */

INT iQP;

/* 1 - 255 */

INT yuvFormat;

/* see WMP_YUV_FORMAT */

INT olLevel;

/* see WMP_OVERLAP_LEVEL */

INT fPlanarAlpha;

} WICWmpEncodeStruct;

/*===*\

WICWmpEncodeOptions

===/

typedef [public] enum WICWmpEncodeOptions

{

WICWmpQualitySet = 0x00000001,

WICWmpPixelFormatSet = 0x00000002,

WICWmpYUVFormatSet = 0x00000004,

WICWmpOlLevelSet = 0x00000008,

WICWmpPlanarAlphaSet = 0x00000010,

WICWmpENCODEOPTIONS_FORCE_DWORD = CODEC_FORCE_DWORD

} WICWmpEncodeOptions;

/*===*\

WMP_YUV_FORMAT

===/

typedef [public] enum WMP_YUV_FORMAT

{

WMP_YUV_400 = 0x00000000,

WMP_YUV_420 = 0x00000001,

WMP_YUV_422 = 0x00000002,

WMP_YUV_444 = 0x00000003,

WMP_YUV_MAX = 0x00000004,

WICWMPYUVFORMATOPTION_FORCE_DWORD = CODEC_FORCE_DWORD

} WMP_YUV_FORMAT;

/*===*\

WMP_OVERLAP_LEVEL

===/

typedef [public] enum WMP_OVERLAP_LEVEL

{

WMP_OL_NONE = 0x00000000,

WMP_OL_ONE = 0x00000001,

WMP_OL_TWO = 0x00000002,

WMP_OL_MAX = 0x00000003,

WICWMPOVERLAPLEVELOPTION_FORCE_DWORD = CODEC_FORCE_DWORD

} WMP_OVERLAP_LEVEL;

WMPhoto Implementation of IWICBitmapSourceTransform

The IWICSourceTransform interface provides and advanced option for decoding an image bitstream. Rather than just return a complete image using IWICBitMapFrameDecoder, this interface allows a variety of decoder options including:

· Decode a rectangular sub-region of the image

· Decode to a lower resolution

· Decode to a different pixel format

· Perform a transformation (rotation/flip) while decoding

While WIC enables these capabilities for all format types, WMPhoto provides codec level accelerated support for all these functions in many scenarios. Specifically:

DoesSupportTransform function

WMPhoto returns true for every transform option

GetClosestSize function

For requests that are less than ½ the dimension of the source image in both dimensions, WMPhoto returns the next largest integer image size that is an evenly divisible by a factor of two. For all other requested size, WMPhoto returns the original image dimensions.

GetClosestPixelFormat function

WMPhoto returns the pixel format of the encoded image. In the future the WMPhoto decoder may allow “no cost” transforms to other pixel formats during decode, but this functionality is not currently implemented.

CopyPixels function

WMPhoto accepts any requested region specified by the WICRect parameter and returns that portion of the image.

The uiWidth and uiHeight parameters must specify dimensions as returned by the GetClosestSize function. Any other values will return an error.

The pguidDstFormat parameter must specify the pixel format returned by the GetClosestPixelFormat function. Any other value will return an error.

WMPhoto accepts any allowable value for the dstTransform parameter. Note that the values allowed by WIC for this parameter are different than the values used by WMPhoto for the Transformation metadata tag.

Version 0.6
Draft
9/9/2005 8:24:00 AM
© 2005 Microsoft Corporation. All rights reserved. By using or providing feedback on these materials, you agree to the attached license agreement (also available at http://www.microsoft.com/whdc/device/print/metro.mspx).
Version 0.7
Draft
9/9/2005 8:24:00 AM
© 2005 Microsoft Corporation. All rights reserved. By accessing, using or providing feedback on these materials, you agree to the attached license agreement.

_1187676589.vsd
text

A

B

.
.
.

0

2

4

6

A

A+2

A+14

A+26

0x4949

A+2+B*12

0xBC00 or 0xBC01

Offset of 1st IFD

IFD Entries

IFD Entry 0

IFD Entry 1

IFD Entry 2

Offset to next IFD

X

X+2

X+4

X+8

Tag

Type

Count

Value or Offset

Value

IFD Entry

IFD

Header

