[bookmark: _Toc182924075]Project Astoria – Data Services for the Web: Pablo Castro
Pablo Castro, Technical Lead, presented information about the Astoria project, elaborating on what the data services look like. He also focused on how the Astoria infrastructure allows developers to build and consume those services and concluded with a broad picture of the data interface and where it fits in a general sense.

Pablo Castro: My name is Pablo Castro. Project started about a year ago. Initial idea was figure out what need to do to interact and work with data from developer perspective when it comes to web related technologies. So started as an incubation effort and evolved to concurrent extension to Microsoft development platform offering on how to deal with, expose data. So have something looking like the web sitting right in between them.

<Data In The Web>
This slide makes well-known observations.. how some things are changing in the web. Looking at traditional web applications today in .NET framework, usually for data driven business applications have a database somewhere and the web server pulls a bunch of information and renders html stuff and ships to client. By the time gets to the client, all mixed up together. The browser paints that screen. Then goes back to server, and so on. Fine model, actually. Scales well, etc. But if you look at how new architectures are being pushed. Number of changes. Looking for more interactive ability in web applications, once you have a presentation you can interact between client and server only with data. Paint the screen, interact with that app, then app may go back to server for more data, etc. But everything is pure data. Similar happens with Silverlight. Can build a very rich application. You can use Visual Studio, Visual Basic, or C# to write your code. Compile everything to dll, then accessed by browsers. Bu by the time makes it to client, there is no data in it. First thing it does is go back to server to ask for data. Then multi-step thing. Data keeps being exchanged between client and server. Replacement scenarios. Visually expressive applications using browser and server. The other shift happening now is around online services. Everything that used to be a website is a hybrid website/ web service type thing. MySpace, Flickr, etc. The trend is very interesting. Same reason for multi-based Mashups. Data in a way that is simple to access enables these scenarios. You have interesting experiences for end user. Case of enterprise environment, consolidate departmental information. In practice, this is hard at lower levels. No one has control over the entire picture, which is fairly distributed in large companies. Don’t necessarily have URI and not operations centric. They are data centric. Common theme is that we want to expose data, and want to do it in a mode that is very uniform. So maybe a full Windows client with online service. So if running in web, want to be a good player in the web.

<Astoria: A REST Interface For Data>
We already have a rich powerful offering if centered on infrastructure services offering. Starting with new version of .NET framework. Excellent to create something centered on a bunch f operations. If you want to create data centric, instead of operations centric, this is where Astoria kicks in if you have to create uniform access interface. Data model is mostly a set of concepts. You can transform – you don’t have to change the nature of the data sources. An entity is a structural type and an association is a binding of relationships between the two entities. This works pretty well. Can turn entities into resources, and turn associations into links between resources. So leverage the REST approach. We have a link between resources directly there and intrinsic. REST, in short, is set of observations or class of systems that follows architecture with very good layering capabilities. Uses a very uniform interface. Set of tradeoffs. For REST to work well have to be presenting a uniform interface. Rather than having your own custom operations. This is somewhat opposite to some other approaches, which are operations centric. Whether one or the other applies better, depends a lot of the app you’re building. Let’s say you have REST interface and entity that sits underneath the data interface you want to expose. URI’s have nothing to invent there. plenty of plenty of libraries there. so URI’s that allow you to point to resources. The URI is just a resource identifier. So tell which URI you want to fetch the entity for and get it back. Also, http, nothing to invent there. infrastructure elements already present in most environments. Already have proxies and firewalls in http environments. So a natural thing to pick up on. Also nice in http, it already defines a set of uniform verbs that apply. GET, POST, PUT, DELETE. Since uniform when you say PUT, not only will end servicer know what you’re talking about, but every proxy and firewall knows what you mean. Also have to exchange something between client and server. So again we try to pick up industry standards item PUB protocol. Also JSON , java script object notation, for browsers and building applications within and parse the data. Data service needs data to come from somewhere. So if you want to layer data service on top of database, we support a simpler path for entity framework so works well if sitting in a middle tier. But use Astoria so that you can now layer business logic on top of that and expose it to the web. It gives you a nice end-to-end. We allow you to expose data sources with the same interface. We use the link infrastructure we are shipping in the next version. So IQueryable-based data sources. Very nice trade-off. Very expressive plug-in model. So this is pretty abstract. Now I’ll show you a working one of these.

<Demo>
Visual studio 2008 plus Astoria Runtime. Data for a bicycle shop. I get a description of the service that I’m looking at. Important to note categories, customers, products. Identify source containers. This is using ATOM as the particular format. Every entity represents an entry in the field. Also every entity has a URL that uniquely identifies it. So I can keep drilling down on it. So this is a resource of an entity. I could to an http delete or http PUT and replace value with a new one. Here, I have a link to a related thing, SalesOrders. This is the URL to that set. This represents all of the orders for a particular customer. We can keep drilling down. Properties of the sales orders, etc. you can also go to a product. Pick a particular one and drill down to particular property in it. You can extract binary payloads. If you set mime type correctly, able to represent this in the UI. If you want to display something interesting, you usually use operators. If you want to do pages of two, you can skip page four, and give me the next two. So an easy way to do paging over these entries. Also can sort by color, etc. you can filter sand do a subset. You can filter where the property color is “red.” Finally, the last operator interesting in context of UI display, is something called Expansion. So sales order links. If you want to paint the order, sometimes want the whole draft retrieved. Ideally, you wouldn’t get the link. You can get lines and not just the deep. So both deep and wide. You can retrieve all together, into the client. Last thing I want to show, simple set of entities in product categories. So far we’ve been doing everything using ATOM. Can switch to JSON and see the JSON representation of the same payload. So I want to create a new category. Look at existing ones first. The net value is the category name and ID. All I care about is the name. so I can set the field name. That’s all I need to specify. If I do an http post, on the way back, return the payload. So now you can do a GET and this is the category that we just created. We can do dropdown DELETE to eliminate the category from the server. If I do GET again, the recourse no longer exists. SO far, we’ve been doing this against the database. First there is the memory data. Maybe you’re trying to connect to a data source that is not supported. So query for it in memory and process it in memory. So simply define the class and data set and expose it using any IQeryable implementation. It's an active thing that you can place into another query. It’s very nice because with URL translation can convert to IQeryable three’s. if we drill down into “People” here, we can traverse through associations. The important things is that the interface is identical. Another example that I have here is similar, but a real link – not in memory. So we have access to the same data of the users. If I say “/users,” it will take a long time. it gets pushed down via LDop into active directory. So I go to Groups it shows the Astoria groups in Microsoft domain. This is precisely the same interface as before.

<Components And Scenarios>
Question of how to build, consume, and expose the services. First question is, "How do you create one of these services to expose them to web or corporate environment?” Here is a web application. This is effectively the same as starting from scratch. Need to tell system where to get data from first. I’ll get it from database and want to use Entity framework. So create new item in my project. Call it bikes.edm. entity data model. So will generate a conceptual model out of the database. Choose which database to talk to. within the database, need to say which tables I want, etc. this will create a 1:1 mapping between database and my conceptual model. You can have associations between certain points in the hierarchy. We usually have mapping between the two. This is a sort of 1:1 mapping. You can tweak the objects, merge tables together, etc. for each one, you can see that there is a mapping specification where you can choose which fields, tables, etc. So you can say this particular link is supported by database, etc. You can figure out how to map backwards into the database, etc. so create new item, and create a new data series called bikes service. Pull the bikes model, which we just created and tell the system what the data source class is. So again, if you hit the root of the service, you get nothing. By default we don’t show you anything. In order to expose pieces, you have to build entry points into the system. So add one called “Initalizeservice.” List individual containers that are visible here. Now can get access to the containers. So we’ve built it from scratch. Typically, you wouldn’t just expose the data raw. We’ll get back to that in a minute. So that’s how you build one of these things.

So what are the components to address that scenario? So looking at AJAX, or Silverlight applications. Create app that exchanges data separate from UI. We created a number of client components. We created libraries for JavaScript, for Silverlight, etc, that makes it easier to use Astoria. so find the categories that match the prefix. Very straightforward. You can use xml http object. But this allows me to do it in simpler terms. So I’ll create a data service object. We want to find all of the categories that have a certain prefix. We want to build a URL that pulls that. The “A” is AJAX is for “asynchronous.” We have executed the queries up on the server, and UI can work. We will actually get passed on the actually objects. It comes back as JavaScript objects. For example, here, I’ll pair a list of lines of categories that match. So I want to render a little bit of HTML. Use the string builder. We want to go through each of the category objects. This is a very simple example, but important that you can build highly interactive applications. There is literally one or two lines for the service. Everything else is pure rendering code. also, you have no imbedded knowledge of where the service is coming from. So crystal clear separation. We have one for .NET and one for Silverlight.

<Northwind Traders – DEMO>
Interesting because completely self-contained within the browser in this case.

<Components And Scenarios>
third scenario is creating services for others to consume. Maybe you’re creating a large web presence and you want people to go create new clients. If you’re in a Windows app you can do that. We give you a little bit of help in the form of client libraries. This is a very simple console-based app. You could apply it to a full-on web application or a Windows app. The important thing is that what we’re trying to do allow you to work entirely in terms of objects. We also allow you to do this using language-integrated query. This is just the Astoria infrastructure interaction. So http line of site and nothing else. When you initialize it, give it a URL to talk to. when we hover over the query, here is the URL that we translated the query to. once we are finished, we execute on the server and the result has color, price, etc, from the XML payload we saw before. So nice way of enabling clients to consume a service that you have out there. If you’re using this inside a server, we also have a data source control.

<Access Control And Business Logic>
Drilling down on how to build a service that actually exposes the data you want. First, around what data is accessible. Has to do with visibility control. You may say to allow a customer all the read options. So if I run it now, you’ll see only customers. I can incrementally enable the containers that I want to show. Can also show the links between the containers. So if we see both are visible, then we see the link as well. The other aspect that comes after that is sometimes you want to encapsulate more than just an all or nothing visibility check. So we allow you to take a piece of the URI space. We literally call that function at your point. Also, for whatever set of data you’re exposing, you may want to have some control over how it is exposed. Each user could have a different data set. Challenges with this is very hard to come up with a policy that applies to everyone. So instead of particular policy, we have infrastructures. We leveraged the composablity characteristic of link queries. So I will tell you which base query I want. Then you can do a set based operation on each of the visible sets. The nice thing is that it’s entirely expressed within my model, using my programming language. There are many options. You can filter based on rows, etc. It’s a very efficient way of achieving access control at the interface level. Good for data retrieval but doesn’t work for update. So we have a similar thing to update. So by having these two components, we have a mechanism to manipulate which data comes into the system, etc. so you can build a service that is well beyond your database.

<A Platform For Data On The Web>
Why is this interesting? If we can build these things to have uniform interface, we can build these controls. On top of that we can build widgets. All of these just understand the Astoria format. You can even build linear applications like interactively adding product information. Here I can sort by name, filter, paging, etc. So we build a uniform set of tools. So nice opportunity to create an ecosystem.

<Roadmap>
Officially the ADO.NET data Services framework shipped CTPs in May and September 2007. We got very positive feedback. Team working on production and will ship CTP in December, with the real code base of the one we’re going to ship in the middle of next year. So starting with December CTP, it well get pretty concrete. After the beta release, the product should look pretty solid for experimentation.

