Application Infrastructure – Presentation Transcript

Our next task is to talk a little bit about application infrastructure, the facilities that ASP.NET places at your disposal for writing applications. In this lecture, we're going to cover some important topics that we haven't covered before, including some special files that can go inside an ASP.NET application. Here's a quick rundown on what we're going to look at. We're first going to look at a special file named web.config.

It's for a configuration directives for an ASP.NET application go. We're also going to look at a special file named global.asax. For you ASP programmers, it's very much like global.asa, but with some features that didn't exist in ASP. We're also going to look a little bit more closely at the code directory, which you already know is a special place where you can put source code and have it auto compiled by ASP.NET. Finally, we'll look at another new special directory, new, as in didn't exist in ASP.NET 1.0, named Resources, where you can place resources that you want to have auto compiled by your application.

Among other things, those auto-compiled resources can be very useful. If you are internationalizing an application, you'll want to use locale-specific resources to adapt the content to different types of users. Again, with the web.config file, back in the early days of 32-bit Windows, configuration of applications, configuration data was typically stored in the registry. Today, in the .NET environment, we try very hard not to store configuration settings in the registry. Instead, we store them in XML configuration files. For ASP.NET those configuration files are named Web.config. When you deploy a site, you also deploy with it a web.config file that contains XML configuration directives. You can have up to one Web.config file per directory in an ASP. NET application. As you'll see, it's sometimes useful to have more than one web.config file, so you can apply different configuration settings to different directories.

We're also going to talk about the configuration inheritance, a very useful feature of ASP.NET that allows configuration settings specified in one directory to propagate downward through the directive hierarchy to other directives. Also, you should know, and we will discuss this a bit further, that new at ASP.NET version 2.0 is a full read/write API that allows configuration settings to be both read and written.

There's limited ability to read from web.config in the ASP.NET Version 1.0, but very little ability in the runtime to write to web.config. That has changed. There are several ways that we can put that to work in a Web site. Here's a quick look at what a web.config file might look like. In general, every web.config file is different, because every application has different requirements in terms of configuration settings. There are a couple of important terms here that you should know about. When I use the term configuration section, I'm referring to elements in a web.config file containing configuration settings that don't have sub-elements. The role manager element, for example, allows me to enable and disable a feature of ASP.NET called the role management service. Because it's not designed to take sub-elements, we refer to it as a configuration section. On the other hand, the system.web element of web.config, we refer to as a configuration section group, because it is designed to store other elements.

In fact, system.web is very, very important to ASP.NET because all the configuration settings that apply to a particular application, if it's an ASP.NET application, appear inside a system.web configuration section. Now there are dozens and dozens of different configuration sections that can appear inside a web.config file. This is a partial list of those sections, just highlighting some of the ones that you're most likely to use. You've already seen one example of the connection string section. That is the right place to store connection strings in most ASP.NET Web apps. You can also see here that there are other sections. For example, the compilation section allows you to change the way compilation is performed in ASP.NET. If, for example, you want to change the default language from Visual Basic to some other language like C#, you can do that quite easily through the compilation section. When we talk about security a little bit later on, we'll be looking at the authentication and authorization elements in web.config. Those are security related and allow us to, among other things, specify what types of authentication an application uses, but also which resources in that application are only viewable by authenticated users, or even by subsets of authenticated users. Here's one example of how we can apply configuration settings, useful configuration settings through a web.config.

In this web.config file, there is a custom errors element. Note that that element has an attribute named default redirect. This is how an ASP.NET you specify an error page that is shown automatically by the runtime, if and when an unhandled exception occurs. This is something that you should always do in an ASP.NET Web site. You should build an error page that simply provides some plain vanilla error message indicating an error occurred, and hook it into the system this way, so that if an exception is thrown that you didn't anticipate and therefore doesn't get caught, rather than let a client see something indicating that you didn't do your job, you control what they see by specified and default error page. Also, the connection string section of web.config is an important one. Again, you've seen an example or two of this already, but, in general, this is where we want to store connection strings in an ASP.NET 2.0 application.

The benefit of storing connection strings in the web.config is twofold. Number one, it centralizes the connection string so that if you need to make a change to one, you can change it in one place, and the changes will propagate throughout the app. In other words, you don't have to be going through multiple source code files changing the hard-coded connection string. A second benefit of storing connection strings this way is that in ASP.NET 2.0 we have the option of encrypting individual sections of web.config. From a security standpoint, it's a very good idea to encrypt your database connections strings, because database connection strings are one of the things that hackers will go after when they're trying to penetrate your Web site. In ASP.NET 1.0, we had to write code to encrypt and unencrypt connection strings. In Version 2.0 we have to write no code at all. We simply put the connection strings in the connections strings section of your registry, and encrypt that section.

Decryption is transparent. We don't have to do anything to make it happen. I'll show you how to do that encryption momentarily. I mentioned earlier the term configuration inheritance. This is something that you should know about. In ASP.NET, when you put a web.config file in a directory, you're not only specifying configuration settings for that directory, but also for subdirectories of that directory and perhaps subdirectories of those subdirectories.

That's because ASP.NET gives us configuration inheritance. In this diagram that you're looking at, in a top-level folder we have a web.config file that says the default language for code in files found in that directory to C#. In subfolder two, because we haven't overridden that with the web.config file, the default language is still C#. Take a look at subfolder one. We've put another web.config file there, which has a compilation default language directive of its own. In essence what we're doing here is overriding the default language setting inherited from the web.config file above. Now this configuration inheritance works any number of levels deep. At any given level in the subdirectory tree, you can always create another web.config file and override settings inherited from higher up. The master configuration file for ASP.NET is one named machine.config. This file is installed on your machine when you install ASP.NET.

In fact, all the configuration settings specify the machine.config flow down to your application directories. In reality, when you put a web.config file in a virtual root directory, what you're really doing in it is overriding settings that were inherited from machine.config. Now in ASP.NET 1.0, machine.config was a large file. It's much smaller in Version 2.0. For performance reasons, the size has been reduced. After all, it takes time to parse a big block of XML. Many of the default settings for ASP.NET are no longer encoded in machine.config, but are baked into the runtime itself. Along with machine.config you'll find a file on your Web server named machine.config.defaults, which documents what those default settings are.

You can always change a default by expliciting specifying it in machine.config. Also, your Web server contains a machine named machine.config.comments, which documents what is inside a machine.config file in all the various settings that you can apply in one. With a few exceptions, anything you can apply in machine.config file can also be applied in web.config. The difference is scope. Settings applied in machine.config apply to all applications on that Web server, whereas, settings applied in a web.config file are application specific. That is, they apply only to the application that that Web file belongs to. In ASP.NET 1.0, when you wanted to add a configuration settings, you had little choice but to use Notepad or some other text editor to manually edit web.config files and even machine.config. That changes in Version 2.0 with the new administration tool that we call the Web Site Administration Tool, pictured here. A couple of ways you can evoke this. If you're in the Visual Studio editing a Web site, you can use the Web site ASP.NET configuration command to display this GUI.

Outside of Visual Studio, you can simply pull up your browser and ask for a file named Web adven.axd in the virtual directory where the application lives. That request will cause this configuration GUI to come up. Through this tool you can apply not all of, but many of the settings that can be exercised through machine.config and web.config. That's one configuration GUI in ASP.NET 2.0. There is another. This one actually showed up in Version 1.0 but is enhanced in Version 2.0. If you bring up the Internet services manager application or the IIS control panel, you'll find an ASP.NET page there. Actually, you bring that page up by right-clicking default Web site or any one of the Web sites and clicking properties. On at ASP.NET page, you have a GUI for making configuration changes to ASP.NET. This GUI isn't quite finished in beta 1.0, so you'll probably see additional features added to it in the subsequent betas and the release product. Before I do a demo for you showing some of these tools and showing what web.config are and how they work, I want to mention encryption.

One of the most important things you can do to secure a Web application is to encrypt those database connection strings. Remember that in ASP.NET Version 2.0, with a few exceptions, any section in web.config can be encrypted.

The only problem is in beta 1.0, there is no tool provided with a runtime for encrypting that section. Therefore, you must do the encryption programmatically. This slide shows how to do that. I'll show you again how to do that in a demo that I do momentarily. The good news is, the code to encrypt or even decrypt a configuration section is almost trivial. It's very easy code to write, and later on, probably when beta 2.0 is released, you won't even have to write this code, because one of the administration tools, probably the MMC snap-in will contain a UI for encrypting those sections for you. With that, let's do a demo. Let's take a look inside web.config. Let's also demonstrate how you encrypt configuration sections, especially that connection string section and what effect that has on your applications.

Web.config is a very important file to an ASP.NET application, because as you now know, that's where your configuration settings for that app is stored. There's another file that is commonly found in ASP.NET applications that is equally important. That file is called global.asax. Global.asax is the ASP.NET analog of global.asa in ASP Classic. But there's a little bit more you can do with global.asax than you could with global.asa. Global.asax, first and foremost, is used as a repository for global event handlers. We've talked about events a little bit. You know, for example, that when a button is clicked on a Web form, it fires an event named "click." There are other types of events, however, that fire throughout the lifetime of an application. Global events are the ones that aren't tied to any specific page or any specific control. They apply to the application as the whole. You can only have one global.asax file per application. That file must be located in the virtual root directory for that app.

Let's talk a little bit more about these global event handlers. Inside ASP.NET lives an entity that we refer to as the HTTP pipeline. When requests come into ASP.NET, they travel through that pipeline where they're ultimately handled by an object called an HTTP handler. Then the resulting response travels back out of the pipeline as an HTTP response. As requests travel in and as responses travel back out of the pipeline, ASP.NET fires off a series of global events that you can process in a global.asax file. In this diagram you see a list of events that fire on each and every request, what the names of those events are, and what order they fire in with respect to one another. These events are actually part of the fabric of ASP.NET itself.

Much of the stuff ASP.NET does in terms of session management, caching, security, etc., revolves around these events. In global.asax, you can write handlers for these events. By hooking or by registering the handler for begin-request events, for example, you can perform preprocessing on requests as they come in. By hooking an event like in request, you can see every response before it goes back out. You could look at that response, you could log it. You even have some power to change what's going back in that response, if you want to. Now, how is it that you process an event fired from the pipeline? You do it this way. You build into your global.asax file a method whose name is application followed by an underscore followed by the name of the event that you wish to process.

When you do this, by virtue of that method's name and signature, ASP.NET then will automatically call it each and every time the corresponding event fires. You want to be very careful in coding up these event handlers, because since they do fire in every request, if you include code in one of these event handlers that takes awhile to execute, you're going to impact the performance of that entire application. Be very, very careful. Quickly, why would you want to process some of these global events? Well, any kind of pre or post processing you wanted to do on requests and responses is one reason. You're going to see an example of that in the next demo that we'll do. You should also know that there are some global events that are not fired on a per-request basis. Probably the most important global event in ASP.NET that is not fired in every request is one called error.

If you build in an application underscore error method into your global.asax file, ASP.NET will automatically call that method anytime an unhandled exception occurs. When that method fires, it's too late to recover from the exception, but it's not too late to log it or to do something to let a system administrator know that an unhandled exception has occurred. After all, an unhandled exception occurring too frequently is a sign of a sick application. If the application is sick, then you want to fix it. Let's break to a demo. In this demo we're going to look at an application with a global.asax file. We're going to hook one of the per-request events that fires, provide a handler in the global.asax file, and do some preprocessing of each and every request that comes into the application. I'd like to take just a moment to talk about how you use components in ASP.NET, that is classes that contain auxiliary code that you want to call from your pages.

Back in the days of ASP Classic, it wasn't that easy to do component-based development. Typically, there, if you were going to build components, data access components, for example, or encryption components, you built com components. Com was not an easy architecture. In the .NET environment, classes and components tend to be much easier to write, because you are, after all writing managed code. In ASP.NET, using managed components is extraordinary easy. They're basically two different ways you can deploy the components that your application uses. Option number one is to compile the source code for those components yourself and to deploy the result of assemblies.

Assuming you want to do a private deployment, that is the assemblies that you're building contain components used just by your application or perhaps a very limited number of applications, then you simply copy those assemblies, those DLLs into the bin subdirectory of that application's application root directory. ASP.NET will automatically look to that directory to resolve type references made in your code. The second option you have, something that's new in ASP.NET 2.0 is to let ASP.NET auto compile the source code for those components for you. You can create a special directory in the root of your Web site, named code. Simply drop your .VB files in there. The classes in those files get automatically compiled on first access. The resulted assemblies are used by ASP.NET to resolve type references.

If you want to use a shopping-cart class in your code or in your application, you simply code up that class, drop the .VB file into the code directory, and then start using that class in your code as if it were part of ASP.NET itself. One thing you should note is that code is the name of this special directory in beta 1.0 that is going to change in beta 2.0. The new name will probably be application underscore code. Schematically, here's what the two deployment options look like. In this example, I'm doing an ASP.NET 1.0 style deployment where I take the source code files containing the components I'll be calling from my application. I build them into assemblies and drop those assemblies, those DLLs into the bin subdirectory. This is an option in Version 2.0, and it works perfectly well, but it is also backwards compatible with Version 1.0. Second option you have is to put the raw source code files in the code directory. Again, this is new in Version 2.0. When you do this, ASP.NET will automatically compile those source code files for you. Along with an auto-compilation option for source code for components in ASP.NET 2.0, we also have a new auto-compilation option for resources.

In ASP.NET 1.0, when you wanted to embed resources, say, localization strings or image resources in your application, there was a fairly manual process. In ASP.NET 2.0, it's very easy. You simply create a special directory named resources in your application, drop your RESX files in there. They get automatically compiled. You should know that this directory name too is likely to change in beta 2.0. The new name will probably be application underscore resources. Schematically, here's what it looks like. You simply create a directory named resources in your application's virtual root. You take the textural RESX files, which declare or define your resources, drop them into the resources directory. Those resources get automatically compiled and can be programmatically or declaratively loaded by your application. I think we should take a moment to talk about how those resources are loaded. In ASP.NET Version 1.0, you had to write code to load the resources that you included in the application. You can still load those resources programmatically, if you want. You even now have the benefit of strong typing when you do that. More importantly, there's a new declarative option for loading resources. You take a look at the bracket code box in the middle of this slide, you'll see that I'm using a dollar resources expression to load a resource.

What have I done to allow this to work? Take a look at the top. I've placed a file named app resources.RESX in my applications resources directory. Inside this file I have a string resource named greeting whose value is hello. Now go back to the dollar resources expression in the aspx file. In that expression I reference by name the RESX that contains the resource that I want, and I provide the resource name. ASP.NET will now automatically go out, load that resource for me, and return the value of the string resource, named greeting. To a large extent in ASP.NET 2.0, you can get away from programmatic resource loading and do your resource loading declaratively. One of the areas in which this auto compilation of resources and declarative loading resources is very valuable is in localizing ASP.NET Web sites. Localization is much easier than it was back in the days of ASP.NET 1.0, or even ASP Classic. I'd like to take just a moment to show you an example of the site that does use resources to provide some localization of content.

That does is for Application Infrastructure. You now know what a web.config file is; you know what global.asax is; you know that you can put source code files in your code directory, have them auto compiled; that you can place RESX files in your resources directory, have them auto compiled. We've also seen how you can declaratively load those resources. These facilities of ASP.NET are very different from facilities that you're familiar with in ASP Classic, but they allow you to get a lot of work done with very little code. That, after all, was one of the main design goals in ASP.NET 2.0. Do a lot with a little.
Page 1 of 7

