Application Infrastructure – Demo 3 Transcript

In this final demo, I'd like to demonstrate for you a page that uses auto-compiled resources to do some rudimentary, but effective, localization of content in an ASP.NET Web page. Let me first bring the page up. It's called Localize.aspx. When it appears, it displays a greeting and a flag, and it goes to some effort to make the greeting and the flag locale aware. Currently, my browser is configured for an English-speaking user. In every request that goes up to a Web site, there is a header, an Accept Language header, saying that U.S. English is my preferred language. However, watch what happens with this page if I change the way IE is configured. I'm going to go into Languages and let's add, say, French as a language preference. Move that up in the priority list so all subsequent requests going out from our browser to Web servers will now include information saying that French is our preferred language. When I go back and refresh the page, Good Morning! changes to Bonjour! and the U.S. flag changes to the French flag.

I have support for other locales built in here as well. For example, let's add one more in here. I'll do Germany, and see what happens when we refresh the page then. We'll move that up to the top in the priority list, go back and Refresh again, and low and behold, we see Germany. On the other hand, if we go back and we delete those entries for French and German so that we're once again letting Web servers know that we prefer U.S. English, then the page reverts to that form.

The question is how does this work? Well, in ASP.NET 1.0, there would have been a fair amount of effort involved in localizing a page to this extent. In ASP.NET 2.0, it's extraordinarily easy. First off, note that I have an Images folder on this site. It's in that Images folder that I have stored .gif files containing the flag-in images that you saw. I also have in my Resources directory, and remember that's a special directory, resx files inside it are auto compiled when this site is accessed. In that directory, I have resx files named AppResources.something.resx. Notice the naming convention I'm using here. If I named this resource files with locale identifiers in the file name extension, like de, for Germany, en-gb for Great Britain English, fr for France. Then, when ASP.NET loads resources for me, it will automatically go to the file whose file name corresponds to the locale specified in Accept Language headers.

In order to help that work, I had to do something a little bit special in my localized.aspx file. Notice my @ Page directive has attributes that read Culture="auto" and UICulture="auto." That basically tells ASP.NET that I want the information in the Accept Language headers coming into my Web site honored and used to load local-specific resources over here.

Look at how we actually load the resources. For the greeting, the Good Morning! or the Bonjour!, I have a label control declared on the page. I'm initializing the text property of that label control with a $ Resources expression that goes and loads from AppResources.resx, the string resource named Greeting. Each of these resources has a string resource named Greeting. If I look at the resx file for French users, for example, you can see that Greeting has the value Bonjour! If I look at it for German users, on the other hand, the value of Greeting is Guten Morgen!

Notice also how I load the flag image. I'm storing the images as you saw in the images directory. What I have in the resources for these different locales is the name of the file. I simply load the file name as a string resource for the file, and use it to initialize the image URL property of an ASP.NET image control. Again, what's really key here is that with Culture="auto" and UICulture="auto," I'm telling ASP.NET to honor the information and accept language headers specifying language preferences. I also have a set of auto-compiled resource files in my Resources directory. Each resource file has two resources in it, a greeting and a flag image name. Each of those resource files has a file name extension that allows ASP.NET to determine what locale that resource corresponds to. Then, in my code, I simply use declarative expressions, like these right here, to load those resources. ASP.NET does the hard work of building those resources for me and going to the appropriate locale-specific resource to give me the content that I need.

That is a quick look at what localization- at how localization works in ASP.NET Version 2.0.
Page 2 of 2

