Application Infrastructure – Demo 1 Transcript

In this demo, we're going to take a quick look at configuration in ASP.NET. I want to start by mentioning that I still have open in Visual Studio a Web site. This is one of the sample sites that is provided to you along with these training materials. I'm going to go to the Web site menu and choose the ASP.NET configuration command. This is how, through Visual Studio, you bring up ASP.NET's new Web site administration tool. Remember that in Version 1.0 of ASP.NET, the vast majority of editing of the configuration files was done by hand, because there were no tools for editing those files for you. That changes with Version 2.0 with the Web site administration tool. When you bring it up, you can click these tabs that you see at the top to get to different sections of it. I'll let you take some time on your own to browse through this, and see what all's there. It is changing a little bit from release to release during the beta cycle.

Just as an example, a little bit later we're going to talk about security in ASP.NET 2.0. We'll talk about users, and roles, and authorization rules. Through the security page, you can apply most of these settings to a configuration file without having to manually edit it. A little bit later on, also, we're going to talk about profiles, and how they can be used to store data on a per-user basis, and store it persistently. I'll be showing you some profile definitions in web.config, but realize that when I- when you see them you don't have to hand code those definitions. If you want, you can use this page right here to create those definitions using UI's like this one. Through the applications page, you can do various things, like turn Debugging and Tracing on and off in the application. Through the provider page, you can map providers to the various provider-based state management services that ASP.NET provides.

That's one of the admin GUIs provided in ASP.NET 2.0. But, there's another one. I'm going to go out to Control Panel and bring up the IIS admin tool, and find default Web site. I'll bring up its Properties sheet and note that there is an ASP.NET tab there. This tab is much richer in Version 2.0 than it was in Version 1.0, giving you the ability to edit even more configuration settings without having to manually edit the corresponding files. If I click the Edit machine.config button, I have a GUI here for editing many of the multitude of settings that can be set through machine.config. Remember that any settings that you enter here will apply not just to one application, but to all ASP.NET applications on that machine.

On the other hand, if I click the Edit Configuration button, this allows me to edit configuration settings for a given application. There's some overlap between this GUI and the Web site administration tool, but there’re also things that you can with each of these that you cannot do with the other. Most administration, most configuration settings, will be applied to ASP.NET 2.0 Web sites using these tools, although you're always free to hand edit those configuration files if you want.

I want to show you very briefly something that I think you'll find very interesting, something that will help you meet one of the requirements in the site that you're going to be building as part of this project. This application that I have open has a web.config file, which has a connection string section in it. Currently, those connections strings are not encrypted. They're stored in plain text. That's okay as long as my Web Server is very secure. But, if someone could manage somehow to walk away with this web.config file, they would have my connections strings, and that information might help them penetrate my back-end databases.

We're going to encrypt the connections string section of web.config. Again, before ASP.NET 2.0 ships, there will probably be an admin GUI for encrypting and decrypting these sections of web.config. Right now, in beta 1.0, there is no such tool. But, I do have a page that I wrote here named ProtectSection.aspx. I'm going to run that page. If you look through the source code for it, and there is a fair amount of code making this page work, I'm programmatically enumerating all of the configuration sections that this application has access to, and displaying them in a grid view control.

In that grid view, I have a column of buttons on the right-hand side that allows me to encrypt any section. I'm going to click this Encrypt button, then go back to Visual Studio. Notice Visual Studio says this file has been modified outside of the source editor. Would you like to reload it? I'll say yes, and look what has happened to the connection strings section of web.config. It is now encrypted so that if this entire file is stolen, in theory, the data in those connection string is secure, because the key required to decrypt that data is stored securely on this Web Server, stored by the operating system itself.

How did I perform that encryption? If you look at my Protect Section page, you'll see that I'm calling a method in ASP.NET named ConfigurationSection.Protect section, very much like the example that you saw in the slides. Let's find that code here. Here we are. When the Encrypt button is clicked, I've- I then go in and grab a programmatic reference to the connection string's section. Then, I call Protect Section on it. Notice the call to ConfigurationSection.Update. This does the encryption of the section in memory. This commits those changes back to disk. This physically modifies the web.config file. If I wanted to decrypt that section, I could run the page again, click the Decrypt button, and all that does is call the method named ConfigurationSection.Unprotect section, which you see right here. Encrypting and decrypting entire configuration sections in ASP.NET 2.0 is very easy.

Now, something very important. In your code, when you programmatically or declaratively load those connection strings, you don't have to decrypt them even if they're encrypted, because ASP.NET automatically decrypts them for you. In other words, when you encrypt that configuration section, the connection string section, you don't have to change anything else anywhere in your- else in your code. ASP.NET takes care of that. That makes it extraordinarily easy to secure the database connection strings that your application uses. It'll be even easier in later builds when we have a GUI admin tool that will perform the encryption for us.
Page 1 of 2

